Functions vectorized

This commit is contained in:
Lukas Klass 2020-05-18 14:44:08 +02:00
parent 86e47b356a
commit ef36ab908d
2 changed files with 35 additions and 31 deletions

View File

@ -108,11 +108,15 @@ class Imager(ASensor):
""" """
# Calculate the electron currents # Calculate the electron currents
signal_current, background_current, read_noise, dark_current = self.__exposePixels() signal_current, background_current, read_noise, dark_current = self.__exposePixels()
# Calculate the number of collected electrons # Calculate the SNR using the CCD-equation
signal = signal_current * exp_time snr = signal_current.sum() * exp_time / np.sqrt(
background = background_current * exp_time (signal_current + background_current + dark_current).sum() * exp_time + (read_noise ** 2).sum())
dark = dark_current * exp_time for exp_time_ in exp_time:
return self.__calcSNR(signal, background, read_noise, dark) # Print information
self.__printDetails(signal_current * exp_time_, background_current * exp_time_, read_noise,
dark_current * exp_time_, "t_exp=%.2f s: " % exp_time_.value)
# Return the value of the SNR, ignoring the physical units (electrons^0.5)
return snr.value * u.dimensionless_unscaled
@u.quantity_input(snr=u.dimensionless_unscaled) @u.quantity_input(snr=u.dimensionless_unscaled)
def getExpTime(self, snr: u.Quantity) -> u.s: def getExpTime(self, snr: u.Quantity) -> u.s:
@ -145,8 +149,10 @@ class Imager(ASensor):
exp_time = snr ** 2 * ( exp_time = snr ** 2 * (
1 + current_ratio + np.sqrt((1 + current_ratio) ** 2 + 4 * read_noise_tot ** 2 / snr ** 2)) / ( 1 + current_ratio + np.sqrt((1 + current_ratio) ** 2 + 4 * read_noise_tot ** 2 / snr ** 2)) / (
2 * signal_current_tot) 2 * signal_current_tot)
# Calculate the SNR in order to check for overexposed pixels for snr_, exp_time_ in zip(snr, exp_time):
self.__calcSNR(signal_current * exp_time, background_current * exp_time, read_noise, dark_current * exp_time) # Print information
self.__printDetails(signal_current * exp_time_, background_current * exp_time_, read_noise,
dark_current * exp_time_, "SNR=%.2f: " % snr_.value)
return exp_time return exp_time
@u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag) @u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag)
@ -173,15 +179,18 @@ class Imager(ASensor):
# Fix the physical units of the SNR # Fix the physical units of the SNR
snr = snr * u.electron ** 0.5 snr = snr * u.electron ** 0.5
signal_current_lim = snr * (snr + np.sqrt( signal_current_lim = snr * (snr + np.sqrt(
snr ** 2 + 4 * (exp_time * (background_current.sum() + dark_current.sum()) + (read_noise ** 2).sum()))) / ( snr ** 2 + 4 * (exp_time * (background_current.sum() + dark_current.sum()) +
2 * exp_time) (read_noise ** 2).sum()))) / (2 * exp_time)
self.__calcSNR(signal_current_lim * exp_time, background_current * exp_time, read_noise, for snr_, exp_time_, signal_current_lim_ in zip(snr, exp_time, signal_current_lim):
dark_current * exp_time) # Print information
self.__printDetails(signal_current_lim_ * exp_time_, background_current * exp_time_, read_noise,
dark_current * exp_time_,
"SNR=%.2f t_exp=%.2f s: " % (snr_.value, exp_time_.value))
return target_brightness - 2.5 * np.log10(signal_current_lim / signal_current.sum()) * u.mag return target_brightness - 2.5 * np.log10(signal_current_lim / signal_current.sum()) * u.mag
@u.quantity_input(signal=u.electron, background=u.electron, read_noise=u.electron ** 0.5, dark=u.electron) @u.quantity_input(signal=u.electron, background=u.electron, read_noise=u.electron ** 0.5, dark=u.electron)
def __calcSNR(self, signal: u.Quantity, background: u.Quantity, read_noise: u.Quantity, def __printDetails(self, signal: u.Quantity, background: u.Quantity, read_noise: u.Quantity,
dark: u.Quantity) -> u.dimensionless_unscaled: dark: u.Quantity, prefix: str = ""):
""" """
Calculate the signal to noise ratio (SNR) of the given electron counts. Calculate the signal to noise ratio (SNR) of the given electron counts.
@ -198,8 +207,6 @@ class Imager(ASensor):
Returns Returns
------- -------
snr : Quantity
The signal to noise ration as dimensionless quantity
""" """
# Calculate the total collected electrons per pixel # Calculate the total collected electrons per pixel
total = signal + background + dark total = signal + background + dark
@ -207,16 +214,12 @@ class Imager(ASensor):
overexposed = total > self.__well_capacity overexposed = total > self.__well_capacity
if np.any(overexposed): if np.any(overexposed):
# Show a warning for the overexposed pixels # Show a warning for the overexposed pixels
warning(str(np.count_nonzero(overexposed)) + " pixels are overexposed.") warning(prefix + str(np.count_nonzero(overexposed)) + " pixels are overexposed.")
info("Collected electrons from target: %1.2e electrons" % signal.sum().value) info(prefix + "Collected electrons from target: %1.2e electrons" % signal.sum().value)
info("Collected electrons from background: %1.2e electrons" % background.sum().value) info(prefix + "Collected electrons from background: %1.2e electrons" % background.sum().value)
info("Electrons from dark current: %1.2e electrons" % dark.sum().value) info(prefix + "Electrons from dark current: %1.2e electrons" % dark.sum().value)
info("Read noise: %1.2e electrons" % (read_noise ** 2).sum().value) info(prefix + "Read noise: %1.2e electrons" % (read_noise ** 2).sum().value)
info("Total collected electrons: %1.2e electrons" % total.sum().value) info(prefix + "Total collected electrons: %1.2e electrons" % total.sum().value)
# Calculate the SNR using the CCD-equation
snr = signal.sum() / np.sqrt(total.sum() + (read_noise ** 2).sum())
# Return the value of the SNR, ignoring the physical units (electrons^0.5)
return snr.value * u.dimensionless_unscaled
def __exposePixels(self) -> Tuple[u.Quantity, u.Quantity, u.Quantity, u.Quantity]: def __exposePixels(self) -> Tuple[u.Quantity, u.Quantity, u.Quantity, u.Quantity]:
""" """

View File

@ -2,6 +2,7 @@ import esbo_etc as eetc
import argparse import argparse
import logging import logging
import sys import sys
import numpy as np
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(prog="esbo_etc/esbo-etc.py", description='Exposure time calculator for ESBO-DS') parser = argparse.ArgumentParser(prog="esbo_etc/esbo-etc.py", description='Exposure time calculator for ESBO-DS')
@ -26,10 +27,10 @@ if __name__ == "__main__":
if hasattr(conf.common, "exposure_time") and hasattr(conf.common, "snr"): if hasattr(conf.common, "exposure_time") and hasattr(conf.common, "snr"):
sensitivity = imager.getSensitivity(conf.common.exposure_time(), conf.common.snr(), conf.astroscene.target.mag) sensitivity = imager.getSensitivity(conf.common.exposure_time(), conf.common.snr(), conf.astroscene.target.mag)
print("The limiting apparent magnitude is: %.2f mag." % sensitivity.value) print("The limiting apparent magnitude is: " + str(np.array2string(sensitivity.value, precision=2)) + " mag.")
elif hasattr(conf.common, "exposure_time"): elif hasattr(conf.common, "exposure_time"):
snr = imager.getSNR(conf.common.exposure_time()) snr = imager.getSNR(conf.common.exposure_time())
print("The SNR is: %.2f." % snr.value) print("The SNR is: " + str(np.array2string(snr.value, precision=2)) + ".")
elif hasattr(conf.common, "snr"): elif hasattr(conf.common, "snr"):
exp_time = imager.getExpTime(conf.common.snr()) exp_time = imager.getExpTime(conf.common.snr())
print("The necessary exposure time is: %.2f s." % exp_time.value) print("The necessary exposure time is: " + str(np.array2string(exp_time.value, precision=2)) + " s.")