268 lines
13 KiB
Python
268 lines
13 KiB
Python
from typing import Union
|
|
import numpy as np
|
|
from astropy import units as u
|
|
from .IPSF import IPSF
|
|
from ..sensor.PixelMask import PixelMask
|
|
from scipy.optimize import newton, fmin, bisect
|
|
from scipy.special import j0, j1
|
|
from scipy.signal import fftconvolve
|
|
from scipy.integrate import quad
|
|
from scipy.interpolate import interp1d
|
|
|
|
|
|
class Airy(IPSF):
|
|
"""
|
|
A class for modelling the PSF using an airy disk.
|
|
"""
|
|
|
|
@u.quantity_input(wl="length", d_aperture="length")
|
|
def __init__(self, f_number: float, wl: u.Quantity, d_aperture: u.Quantity, osf: float, pixel_size: u.Quantity):
|
|
"""
|
|
Initialize a new PSF from a airy disk.
|
|
|
|
Parameters
|
|
----------
|
|
f_number : float
|
|
The working focal number of the optical system
|
|
wl : Quantity
|
|
The central wavelength which is used for calculating the PSF
|
|
d_aperture : Quantity
|
|
The diameter of the telescope's aperture.
|
|
osf : float
|
|
The oversampling factor to be used for oversampling the PSF with regards to the pixel size.
|
|
pixel_size : Quantity
|
|
The size of a pixel as length-quantity.
|
|
"""
|
|
self.__f_number = f_number
|
|
self.__wl = wl
|
|
self.__d_aperture = d_aperture
|
|
self.__osf = osf
|
|
self.__pixel_size = pixel_size
|
|
self.__psf_jitter = None
|
|
|
|
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float],
|
|
jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity:
|
|
"""
|
|
Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
|
|
|
|
Parameters
|
|
----------
|
|
contained_energy : Union[str, int, float]
|
|
The percentage of energy to be contained within a circle with the diameter reduced observation angle.
|
|
jitter_sigma : Quantity
|
|
Sigma of the telescope's jitter in arcsec
|
|
obstruction : float
|
|
The central obstruction as ratio A_ob / A_ap
|
|
|
|
Returns
|
|
-------
|
|
reduced_observation_angle: Quantity
|
|
The reduced observation angle in lambda / d_ap
|
|
"""
|
|
# Calculate the reduced observation angle in lambda / D for the given encircled energy
|
|
reduced_observation_angle = 0 * u.dimensionless_unscaled
|
|
if type(contained_energy) == str:
|
|
# Encircled energy is of type string
|
|
if contained_energy.lower() == "peak":
|
|
# For the peak value of the PSF, the observation angle becomes zero which leads to one exposed
|
|
# pixel later in the code
|
|
reduced_observation_angle = 0 * u.dimensionless_unscaled
|
|
elif contained_energy.lower() == "fwhm":
|
|
# Width of the FWHM of the airy disk
|
|
reduced_observation_angle = 1.028
|
|
if not np.isclose(obstruction, 0.0):
|
|
# Use obstructed airy disk
|
|
reduced_observation_angle = newton(lambda y: self.__airy(np.pi * y, np.sqrt(obstruction)) - 0.5,
|
|
reduced_observation_angle / 2) * 2
|
|
contained_energy = "fwhm"
|
|
elif contained_energy.lower() == "min":
|
|
# Width of the first minimum of the airy disk
|
|
reduced_observation_angle = 1.22 * 2
|
|
contained_energy = 0.8377 * u.dimensionless_unscaled
|
|
if not np.isclose(obstruction, 0.0):
|
|
# Use obstructed airy disk
|
|
reduced_observation_angle = fmin(lambda y: self.__airy(np.pi * y, np.sqrt(obstruction)),
|
|
reduced_observation_angle / 2, disp=False)[0] * 2
|
|
contained_energy = self.__airy_int(np.pi * reduced_observation_angle / 2,
|
|
np.sqrt(obstruction)) * u.dimensionless_unscaled
|
|
else:
|
|
# Calculate the width numerically from the integral of the airy disk
|
|
contained_energy = contained_energy / 100 * u.dimensionless_unscaled
|
|
reduced_observation_angle = 2 * bisect(
|
|
lambda y: self.__airy_int(np.pi * y, np.sqrt(obstruction)) - contained_energy.value, 0, 100)
|
|
if jitter_sigma is not None and (isinstance(contained_energy, u.Quantity) or isinstance(contained_energy, str)
|
|
and contained_energy.lower() == "fwhm"):
|
|
# Convert jitter to reduced observation angle in lambda / d_ap
|
|
jitter_sigma = jitter_sigma.to(u.rad).value * self.__d_aperture / self.__wl.to(u.m)
|
|
# Calculate necessary grid length to accommodate the psf and 3-sigma of the gaussian
|
|
grid_width = (reduced_observation_angle / 2 + 3 * jitter_sigma)
|
|
# Calculate the reduced observation angle of a single detector pixel
|
|
reduced_observation_angle_pixel = (self.__pixel_size / (
|
|
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl).decompose()
|
|
# Calculate the width of each grid element
|
|
dx = reduced_observation_angle_pixel.value / self.__osf
|
|
# Calculate the necessary number of points on the grid
|
|
n_points = np.ceil(grid_width / dx).value
|
|
# Calculate the corresponding x-coordinates of each grid element
|
|
x = np.arange(1, n_points + 1) * dx
|
|
# Calculate the psf from an airy disk for each element on the grid
|
|
psf = self.__airy(np.pi * x, np.sqrt(obstruction))
|
|
# Calculate the integral of the undisturbed airy disk in order to scale the result of the convolution
|
|
total = np.sum(psf * x) * dx * 2 * np.pi
|
|
# Mirror the PSF to the negative x-domain
|
|
psf = np.concatenate((np.flip(psf), np.array([1]), psf))
|
|
# Calculate a gaussian kernel
|
|
kernel = 1 / (2 * np.pi * jitter_sigma ** 2) * np.exp(- x ** 2 / (2 * jitter_sigma ** 2))
|
|
# Mirror the kernel to the negative x-domain
|
|
kernel = np.concatenate((np.flip(kernel), np.array([1 / (2 * np.pi * jitter_sigma ** 2)]), kernel))
|
|
# Normalize the kernel
|
|
kernel = kernel / np.sum(kernel)
|
|
# Convolve the PSF with gaussian kernel
|
|
psf = fftconvolve(np.pad(psf, int(n_points), mode="constant", constant_values=0), kernel, mode="same")
|
|
# Reduce the PSF to the positive x-domain
|
|
psf = psf[int((psf.shape[0] - 1) / 2):]
|
|
# Scale the integral of the disturbed PSF equal to the undisturbed PSF
|
|
psf = psf / (np.sum(psf * np.arange(psf.shape[0]) * dx) * dx * 2 * np.pi) * total
|
|
|
|
self.__psf_jitter = psf
|
|
if isinstance(contained_energy, str) and contained_energy.lower() == "fwhm":
|
|
reduced_observation_angle = np.argmax(psf < psf[0] / 2) * reduced_observation_angle_pixel.value / \
|
|
self.__osf * 2
|
|
else:
|
|
# Calculate the rolling integral of the PSF
|
|
psf_int = np.cumsum(psf * np.arange(psf.shape[0]) * dx) * dx * 2 * np.pi
|
|
# Scale the integral of the disturbed PSF equal to the undisturbed PSF
|
|
psf_int = psf_int / (4 / np.pi) * (1 - obstruction)
|
|
# Calculate the reduced observation angle
|
|
reduced_observation_angle = np.argmax(
|
|
psf_int > contained_energy) * reduced_observation_angle_pixel.value / self.__osf * 2
|
|
|
|
return reduced_observation_angle * u.dimensionless_unscaled
|
|
|
|
@staticmethod
|
|
def __airy(x: Union[float, np.ndarray], obstruction: float = None) -> Union[float, np.ndarray]:
|
|
"""
|
|
Calculate function values of the airy disk
|
|
|
|
Parameters
|
|
----------
|
|
x : Union[float, np.ndarray]
|
|
radial coordinate to calculate the function value for.
|
|
obstruction : float
|
|
The linear central obstruction ratio of the aperture.
|
|
|
|
Returns
|
|
-------
|
|
res : Union[float, np.ndarray]
|
|
The function values of the airy disk at the given coordinates
|
|
"""
|
|
# Standardize input values
|
|
if not isinstance(x, np.ndarray):
|
|
x = np.array([x])
|
|
# Initialize return values and assign values for the singularity at x=0
|
|
res = np.zeros(x.shape)
|
|
res[np.isclose(x, 0.0)] = 1.0
|
|
x_temp = x[np.invert(np.isclose(x, 0.0))]
|
|
if obstruction and not np.isclose(obstruction, 0.0):
|
|
# Use obstructed airy disk
|
|
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
|
|
res[np.invert(np.isclose(x, 0.0))] = 1 / (1 - obstruction ** 2) ** 2 * (
|
|
2 * (j1(x_temp) - obstruction * j1(obstruction * x_temp)) / x_temp) ** 2
|
|
else:
|
|
# Use unobstructed airy disk
|
|
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
|
|
res[np.invert(np.isclose(x, 0.0))] = (2 * j1(x_temp) / x_temp) ** 2
|
|
# Unbox arrays of length 1
|
|
if len(res.shape) == 1 and len(res) == 1:
|
|
res = res[0]
|
|
return res
|
|
|
|
@staticmethod
|
|
def __airy_int(x: float, obstruction: float = None) -> float:
|
|
"""
|
|
Calculate the integral of the airy disk from 0 to x.
|
|
|
|
Parameters
|
|
----------
|
|
x : float
|
|
The upper limit for the integration.
|
|
obstruction : float
|
|
The linear central obstruction ratio of the aperture.
|
|
|
|
Returns
|
|
-------
|
|
res : float
|
|
The integral of the airy disk.
|
|
"""
|
|
if np.isclose(x, 0.0):
|
|
# Short circuit for an integration-range of length 0
|
|
return 0.
|
|
else:
|
|
if obstruction and not np.isclose(obstruction, 0.0):
|
|
# Use integral of obstructed airy disk
|
|
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
|
|
return 1 / (1 - obstruction ** 2) * (1 - j0(x) ** 2 - j1(x) ** 2 + obstruction ** 2 * (
|
|
1 - j0(obstruction * x) ** 2 - j1(obstruction * x) ** 2) - 4 * obstruction * quad(
|
|
lambda y: j1(y) * j1(obstruction * y) / y, 0, x, limit=100, epsrel=1e-6)[0])
|
|
else:
|
|
# Use unobstructed airy disk
|
|
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
|
|
return 1 - j0(x) ** 2 - j1(x) ** 2
|
|
|
|
def mapToPixelMask(self, mask: PixelMask, jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> PixelMask:
|
|
"""
|
|
Map the integrated PSF values to a sensor grid.
|
|
|
|
Parameters
|
|
----------
|
|
obstruction
|
|
mask : PixelMask
|
|
The pixel mask to map the values to. The values will only be mapped onto entries with the value 1.
|
|
jitter_sigma : Quantity
|
|
Sigma of the telescope's jitter in arcsec
|
|
obstruction : float
|
|
The central obstruction as ratio A_ob / A_ap
|
|
|
|
Returns
|
|
-------
|
|
mask : PixelMask
|
|
The pixel mask with the integrated PSF values mapped onto each pixel.
|
|
"""
|
|
# Calculate the indices of all non-zero elements of the mask
|
|
y_ind, x_ind = np.nonzero(mask)
|
|
# Extract a rectangle containing all non-zero values of the mask
|
|
mask_red = mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)]
|
|
# Calculate the new PSF-center indices of the reduced mask
|
|
psf_center_ind = [mask.psf_center_ind[0] - y_ind.min(), mask.psf_center_ind[1] - x_ind.min()]
|
|
# Oversample the reduced mask
|
|
mask_red_os = self._rebin(mask_red, self.__osf).view(PixelMask)
|
|
# Calculate the new PSF-center indices of the reduced mask
|
|
psf_center_ind = [(x + 0.5) * self.__osf - 0.5 for x in psf_center_ind]
|
|
|
|
reduced_observation_angle_pixel = (mask.pixel_size / (
|
|
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl).decompose()
|
|
x_mesh, y_mesh = np.meshgrid(
|
|
(np.arange(mask_red_os.shape[1]) - psf_center_ind[
|
|
1]) * reduced_observation_angle_pixel.value / self.__osf,
|
|
(np.arange(mask_red_os.shape[0]) - psf_center_ind[
|
|
0]) * reduced_observation_angle_pixel.value / self.__osf)
|
|
dist = np.sqrt(x_mesh ** 2 + y_mesh ** 2)
|
|
if jitter_sigma is None:
|
|
res = self.__airy(dist * np.pi, np.sqrt(obstruction))
|
|
else:
|
|
if self.__psf_jitter is None:
|
|
self.calcReducedObservationAngle("fwhm", jitter_sigma, obstruction)
|
|
psf_jitter = self.__psf_jitter
|
|
x = np.arange(psf_jitter.shape[0]) * reduced_observation_angle_pixel.value / self.__osf
|
|
psf_interp = interp1d(x=x, y=psf_jitter, kind='cubic', copy=False, bounds_error=False,
|
|
fill_value="extrapolate")
|
|
res = psf_interp(dist)
|
|
|
|
res = self._rebin(res, 1 / self.__osf)
|
|
res = (mask_red * res).view(np.ndarray)
|
|
# Integrate the reduced mask and divide by the indefinite integral to get relative intensities
|
|
res = res * (reduced_observation_angle_pixel.value / self.__osf) ** 2 / (4 / np.pi) * (1 - obstruction)
|
|
# reintegrate the reduced mask into the complete mask
|
|
mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)] = res
|
|
return mask
|