ESBO-ETC/esbo_etc/classes/psf/Airy.py

215 lines
9.9 KiB
Python

from typing import Union
import numpy as np
from astropy import units as u
from .IPSF import IPSF
from scipy.optimize import newton, fmin, bisect
from scipy.special import j0, j1
from scipy.signal import fftconvolve
from scipy.integrate import quad
class Airy(IPSF):
"""
A class for modelling the PSF using an airy disk.
"""
@u.quantity_input(wl="length", d_aperture="length")
def __init__(self, f_number: float, wl: u.Quantity, d_aperture: u.Quantity, osf: float, pixel_size: u.Quantity):
"""
Initialize a new PSF from a airy disk.
Parameters
----------
f_number : float
The working focal number of the optical system
wl : Quantity
The central wavelength which is used for calculating the PSF
d_aperture : Quantity
The diameter of the telescope's aperture.
osf : float
The oversampling factor to be used for oversampling the PSF with regards to the pixel size.
pixel_size : Quantity
The size of a pixel as length-quantity.
"""
self.__f_number = f_number
self.__wl = wl
self.__d_aperture = d_aperture
self.__osf = osf
self.__pixel_size = pixel_size
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float],
jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity:
"""
Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
Parameters
----------
contained_energy : Union[str, int, float]
The percentage of energy to be contained within a circle with the diameter reduced observation angle.
jitter_sigma : Quantity
Sigma of the telescope's jitter in arcsec
obstruction : float
The central obstruction as ratio A_ob / A_ap
Returns
-------
reduced_observation_angle: Quantity
The reduced observation angle in lambda / d_ap
"""
# Calculate the reduced observation angle in lambda / D for the given encircled energy
reduced_observation_angle = 0 * u.dimensionless_unscaled
if type(contained_energy) == str:
# Encircled energy is of type string
if contained_energy.lower() == "peak":
# For the peak value of the PSF, the observation angle becomes zero which leads to one exposed
# pixel later in the code
reduced_observation_angle = 0 * u.dimensionless_unscaled
elif contained_energy.lower() == "fwhm":
# Width of the FWHM of the airy disk
reduced_observation_angle = 1.028
contained_energy = 0.4738 * u.dimensionless_unscaled
if not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
reduced_observation_angle = newton(lambda y: self.airy(np.pi * y, np.sqrt(obstruction)) - 0.5,
reduced_observation_angle / 2) * 2
contained_energy = self.airy_int(np.pi * reduced_observation_angle / 2, np.sqrt(obstruction))
elif contained_energy.lower() == "min":
# Width of the first minimum of the airy disk
reduced_observation_angle = 1.22 * 2
contained_energy = 0.8377 * u.dimensionless_unscaled
if not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
reduced_observation_angle = fmin(lambda y: self.airy(np.pi * y, np.sqrt(obstruction)),
reduced_observation_angle / 2, disp=False)[0] * 2
contained_energy = self.airy_int(np.pi * reduced_observation_angle / 2, np.sqrt(obstruction))
else:
# Calculate the width numerically from the integral of the airy disk
contained_energy = contained_energy / 100 * u.dimensionless_unscaled
reduced_observation_angle = 2 * bisect(
lambda y: self.airy_int(np.pi * y, np.sqrt(obstruction)) - contained_energy.value, 0, 100)
if jitter_sigma is not None:
# Convert jitter to reduced observation angle in lambda / d_ap
jitter_sigma = jitter_sigma.to(u.rad).value * self.__d_aperture / self.__wl.to(u.m)
# Calculate necessary grid length to accommodate the psf and 3-sigma of the gaussian
grid_width = (reduced_observation_angle / 2 + 3 * jitter_sigma)
# Calculate the reduced observation angle of a single detector pixel
reduced_observation_angle_pixel = (self.__pixel_size / (
self.__f_number * self.__d_aperture) * self.__d_aperture / self.__wl)
# Calculate the width of each grid element
dx = reduced_observation_angle_pixel / self.__osf
# Calculate the necessary number of points on the grid
n_points = np.ceil(grid_width / dx).value
# Calculate the corresponding x-coordinates of each grid element
x = np.arange(1, n_points + 1) * dx
# Calculate the psf from an airy disk for each element on the grid
psf = self.airy(np.pi * x, np.sqrt(obstruction))
# Calculate the integral of the undisturbed airy disk in order to scale the result of the convolution
total = np.sum(psf * x) * dx * 2 * np.pi
# Mirror the PSF to the negative x-domain
psf = np.concatenate((np.flip(psf), np.array([1]), psf))
# Calculate a gaussian kernel
kernel = 1 / (2 * np.pi * jitter_sigma ** 2) * np.exp(
- np.concatenate((np.flip(x), np.array([0]), x)) ** 2 / (2 * jitter_sigma ** 2))
# Normalize the kernel
kernel = kernel / np.sum(kernel)
# Convolve the PSF with gaussian kernel
psf = fftconvolve(np.pad(psf, int(n_points), mode="constant", constant_values=0),
kernel, mode="same")
# Reduce the PSF to the positive x-domain
psf = psf[int((psf.shape[0] - 1) / 2):]
# Calculate the rolling integral of the PSF
psf_int = np.cumsum(psf * np.arange(psf.shape[0])) * reduced_observation_angle_pixel.value / self.__osf
# Scale the integral of the disturbed PSF equal to the undisturbed PSF
psf_int = psf_int / psf_int[-1] * total / (4 / np.pi)
# Calculate the reduced observation angle
reduced_observation_angle = np.argmax(
psf_int > contained_energy) * reduced_observation_angle_pixel.value / self.__osf * 2
return reduced_observation_angle * u.dimensionless_unscaled
@staticmethod
def airy(x: Union[float, np.ndarray], obstruction: float = None):
"""
Calculate function values of the airy disk
Parameters
----------
x : Union[float, np.ndarray]
radial coordinate to calculate the function value for.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : Union[float, np.ndarray]
The function values of the airy disk at the given coordinates
"""
# Standardize input values
if not isinstance(x, np.ndarray):
x = np.array([x])
# Initialize return values and assign values for the singularity at x=0
res = np.zeros(len(x))
res[np.isclose(x, 0.0)] = 1.0
x_temp = x[np.invert(np.isclose(x, 0.0))]
if obstruction and not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
res[np.invert(np.isclose(x, 0.0))] = 1 / (1 - obstruction ** 2) ** 2 * (
2 * (j1(x_temp) - obstruction * j1(obstruction * x_temp)) / x_temp) ** 2
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
res[np.invert(np.isclose(x, 0.0))] = (2 * j1(x_temp) / x_temp) ** 2
# Unbox arrays of length 1
if len(res) == 1:
res = res[0]
return res
@staticmethod
def airy_int(x: float, obstruction: float = None):
"""
Calculate the integral of the airy disk from 0 to x.
Parameters
----------
x : float
The upper limit for the integration.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : float
The integral of the airy disk.
"""
if np.isclose(x, 0.0):
# Short circuit for an integration-range of length 0
return 0.
else:
if obstruction and not np.isclose(obstruction, 0.0):
# Use integral of obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
return 1 / (1 - obstruction ** 2) * (1 - j0(x) ** 2 - j1(x) ** 2 + obstruction ** 2 * (
1 - j0(obstruction * x) ** 2 - j1(obstruction * x) ** 2) - 4 * obstruction * quad(
lambda y: j1(y) * j1(obstruction * y) / y, 0, x, limit=100, epsrel=1e-6)[0])
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
return 1 - j0(x) ** 2 - j1(x) ** 2
def mapToGrid(self, grid: np.ndarray) -> np.ndarray:
"""
Map the integrated PSF values to a sensor grid.
Parameters
----------
grid : ndarray
The grid to map the values to. The values will only be mapped onto entries with the value 1.
Returns
-------
grid : ndarray
The grid with the mapped values.
"""
pass