Merge remote-tracking branch 'ksat/mueller_framework' into mueller_prototyping

This commit is contained in:
Robin Müller 2020-05-05 15:28:56 +02:00
commit 1e5002c46b
14 changed files with 451 additions and 442 deletions

View File

@ -62,7 +62,7 @@ public:
}
void setEnd() {
this->next = NULL;
this->next = nullptr;
}
LinkedElement* begin() {

View File

@ -34,7 +34,8 @@ ReturnValue_t PoolRawAccessHelper::serialize(uint8_t **buffer, size_t *size,
}
}
if(remainingParametersSize != 0) {
sif::debug << "Pool Raw Access: Remaining parameters size not 0 !" << std::endl;
sif::debug << "PoolRawAccessHelper: "
"Remaining parameters size not 0 !" << std::endl;
result = RETURN_FAILED;
}
return result;
@ -56,7 +57,8 @@ ReturnValue_t PoolRawAccessHelper::serializeWithValidityMask(uint8_t ** buffer,
}
}
if(remainingParametersSize != 0) {
sif::debug << "Pool Raw Access: Remaining parameters size not 0 !" << std::endl;
sif::debug << "PoolRawAccessHelper: Remaining "
"parameters size not 0 !" << std::endl;
result = RETURN_FAILED;
}
@ -73,9 +75,9 @@ ReturnValue_t PoolRawAccessHelper::serializeCurrentPoolEntryIntoBuffer(
uint32_t currentPoolId;
// Deserialize current pool ID from pool ID buffer
ReturnValue_t result = AutoSerializeAdapter::deSerialize(&currentPoolId,
&poolIdBuffer,remainingParameters,true);
&poolIdBuffer,remainingParameters, false);
if(result != RETURN_OK) {
sif::debug << std::hex << "Pool Raw Access Helper: Error deSeralizing "
sif::debug << std::hex << "PoolRawAccessHelper: Error deSeralizing "
"pool IDs" << std::dec << std::endl;
return result;
}
@ -96,7 +98,7 @@ ReturnValue_t PoolRawAccessHelper::handlePoolEntrySerialization(
while(not poolEntrySerialized) {
if(counter > DataSet::DATA_SET_MAX_SIZE) {
sif::error << "Pool Raw Access Helper: Config error, "
sif::error << "PoolRawAccessHelper: Config error, "
"max. number of possible data set variables exceeded"
<< std::endl;
return result;
@ -110,9 +112,8 @@ ReturnValue_t PoolRawAccessHelper::handlePoolEntrySerialization(
result = currentDataSet.read();
if (result != RETURN_OK) {
sif::debug << std::hex << "Pool Raw Access Helper: Error reading raw "
"dataset with returncode 0x"
<< result << std::dec << std::endl;
sif::debug << std::hex << "PoolRawAccessHelper: Error reading raw "
"dataset with returncode 0x" << result << std::dec << std::endl;
return result;
}

View File

@ -6,9 +6,10 @@ PeriodicTask::PeriodicTask(const char *name, TaskPriority setPriority,
TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)()) :
started(false), handle(NULL), period(setPeriod), deadlineMissedFunc(
setDeadlineMissedFunc) {
BaseType_t status = xTaskCreate(taskEntryPoint, name, setStack, this, setPriority, &handle);
setDeadlineMissedFunc)
{
BaseType_t status = xTaskCreate(taskEntryPoint, name,
setStack, this, setPriority, &handle);
if(status != pdPASS){
sif::debug << "PeriodicTask Insufficient heap memory remaining. Status: "
<< status << std::endl;

View File

@ -13,11 +13,9 @@
class ExecutableObjectIF;
/**
* @brief This class represents a specialized task for periodic activities of multiple objects.
*
* @details MultiObjectTask is an extension to ObjectTask in the way that it is able to execute
* multiple objects that implement the ExecutableObjectIF interface. The objects must be
* added prior to starting the task.
* @brief This class represents a specialized task for
* periodic activities of multiple objects.
* @details
*
* @ingroup task_handling
*/
@ -25,21 +23,22 @@ class PeriodicTask: public PeriodicTaskIF {
public:
/**
* @brief Standard constructor of the class.
* @details The class is initialized without allocated objects. These need to be added
* with #addObject.
* In the underlying TaskBase class, a new operating system task is created.
* In addition to the TaskBase parameters, the period, the pointer to the
* aforementioned initialization function and an optional "deadline-missed"
* function pointer is passed.
* @param priority Sets the priority of a task. Values range from a low 0 to a high 99.
* @details
* The class is initialized without allocated objects. These need to be added
* with #addComponent. In the underlying TaskBase class, a new operating
* system task is created. In addition to the TaskBase parameters,
* the period, the pointer to the aforementioned initialization function and
* an optional "deadline-missed" function pointer is passed.
* @param priority Sets the priority of a task. Values depend on
* freeRTOS configuration, high number means high priority.
* @param stack_size The stack size reserved by the operating system for the task.
* @param setPeriod The length of the period with which the task's functionality will be
* executed. It is expressed in clock ticks.
* @param setDeadlineMissedFunc The function pointer to the deadline missed function
* that shall be assigned.
* @param setPeriod The length of the period with which the task's
* functionality will be executed. It is expressed in clock ticks.
* @param setDeadlineMissedFunc
* The function pointer to the deadline missed function that shall be assigned.
*/
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack, TaskPeriod setPeriod,
void (*setDeadlineMissedFunc)());
PeriodicTask(const char *name, TaskPriority setPriority, TaskStackSize setStack,
TaskPeriod setPeriod,void (*setDeadlineMissedFunc)());
/**
* @brief Currently, the executed object's lifetime is not coupled with the task object's
* lifetime, so the destructor is empty.

View File

@ -13,10 +13,7 @@ TaskFactory::~TaskFactory() {
TaskFactory* TaskFactory::instance() {
return TaskFactory::factoryInstance;
}
/***
* Keep in Mind that you need to call before this vTaskStartScheduler()!
* High taskPriority_ number means high priority.
*/
PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
TaskPeriod period_,
@ -24,7 +21,8 @@ PeriodicTaskIF* TaskFactory::createPeriodicTask(TaskName name_,
return (PeriodicTaskIF*) (new PeriodicTask(name_, taskPriority_, stackSize_,
period_, deadLineMissedFunction_));
}
/***
/**
* Keep in Mind that you need to call before this vTaskStartScheduler()!
*/
FixedTimeslotTaskIF* TaskFactory::createFixedTimeslotTask(TaskName name_,

View File

@ -1,16 +1,5 @@
/**
* @file TaskManagement.cpp
*
* @date 26.02.2020
*
*/
#include <framework/osal/FreeRTOS/TaskManagement.h>
extern "C" {
#include "FreeRTOS.h"
#include "task.h"
}
void TaskManagement::requestContextSwitchFromTask() {
vTaskDelay(0);
}
@ -24,5 +13,12 @@ void TaskManagement::requestContextSwitch(CallContext callContext = CallContext:
}
}
TaskHandle_t TaskManagement::getCurrentTaskHandle() {
return xTaskGetCurrentTaskHandle();
}
configSTACK_DEPTH_TYPE TaskManagement::getTaskStackHighWatermark() {
return uxTaskGetStackHighWaterMark(TaskManagement::getCurrentTaskHandle());
}

View File

@ -1,12 +1,14 @@
/**
* @file TaskManagement.h
*
* @date 26.02.2020
*/
#ifndef FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#define FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_
#include <framework/returnvalues/HasReturnvaluesIF.h>
extern "C" {
#include "FreeRTOS.h"
#include "task.h"
}
#include <cstdint>
/**
* Architecture dependant portmacro.h function call.
* Should be implemented in bsp.
@ -40,6 +42,22 @@ public:
* can be requested manually by calling this function.
*/
static void requestContextSwitchFromTask(void);
/**
* @return The current task handle
*/
static TaskHandle_t getCurrentTaskHandle();
/**
* Get returns the minimum amount of remaining stack space in words
* that was a available to the task since the task started executing.
* Please note that the actual value in bytes depends
* on the stack depth type.
* E.g. on a 32 bit machine, a value of 200 means 800 bytes.
* @return Smallest value of stack remaining since the task was started in
* words.
*/
static configSTACK_DEPTH_TYPE getTaskStackHighWatermark();
};
#endif /* FRAMEWORK_OSAL_FREERTOS_TASKMANAGEMENT_H_ */

View File

@ -1,15 +1,6 @@
#ifndef FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
#define FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
/**
* @file LocalPool
*
* @date 02.02.2012
* @author Bastian Baetz
*
* @brief This file contains the definition of the LocalPool class.
*/
#include <framework/objectmanager/SystemObject.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/storagemanager/StorageManagerIF.h>
@ -70,53 +61,21 @@ public:
virtual ~LocalPool(void);
/**
* Add data to local data pool, performs range check
* @param storageId [out] Store ID in which the data will be stored
* @param data
* @param size
* @param ignoreFault
* @return @c RETURN_OK if write was successful
* Documentation: See StorageManagerIF.h
*/
ReturnValue_t addData(store_address_t* storageId, const uint8_t * data,
uint32_t size, bool ignoreFault = false);
/**
* With this helper method, a free element of \c size is reserved.
* @param storageId [out] storeID of the free element
* @param size The minimum packet size that shall be reserved.
* @param p_data [out] pointer to the pointer of free element
* @param ignoreFault
* @return Returns the storage identifier within the storage or
* StorageManagerIF::INVALID_ADDRESS (in raw).
*/
ReturnValue_t getFreeElement(store_address_t* storageId,
const uint32_t size, uint8_t** p_data, bool ignoreFault = false);
/**
* Retrieve data from local pool
* @param packet_id
* @param packet_ptr
* @param size [out] Size of retrieved data
* @return @c RETURN_OK if data retrieval was successfull
*/
size_t size, bool ignoreFault = false) override;
ReturnValue_t getFreeElement(store_address_t* storageId,const size_t size,
uint8_t** p_data, bool ignoreFault = false) override;
ReturnValue_t getData(store_address_t packet_id, const uint8_t** packet_ptr,
size_t * size);
/**
* Modify data by supplying a packet pointer and using that packet pointer
* to access and modify the pool entry (via *pointer call)
* @param packet_id Store ID of data to modify
* @param packet_ptr [out] pointer to the pool entry to modify
* @param size [out] size of pool entry
* @return
*/
size_t * size) override;
ReturnValue_t modifyData(store_address_t packet_id, uint8_t** packet_ptr,
size_t * size);
virtual ReturnValue_t deleteData(store_address_t);
virtual ReturnValue_t deleteData(uint8_t* ptr, uint32_t size,
store_address_t* storeId = NULL);
void clearStore();
ReturnValue_t initialize();
size_t * size) override;
virtual ReturnValue_t deleteData(store_address_t) override;
virtual ReturnValue_t deleteData(uint8_t* ptr, size_t size,
store_address_t* storeId = NULL) override;
void clearStore() override;
ReturnValue_t initialize() override;
protected:
/**
* With this helper method, a free element of \c size is reserved.
@ -125,7 +84,8 @@ protected:
* @return - #RETURN_OK on success,
* - the return codes of #getPoolIndex or #findEmpty otherwise.
*/
virtual ReturnValue_t reserveSpace(const uint32_t size, store_address_t* address, bool ignoreFault);
virtual ReturnValue_t reserveSpace(const uint32_t size,
store_address_t* address, bool ignoreFault);
InternalErrorReporterIF *internalErrorReporter;
private:
@ -166,7 +126,7 @@ private:
* @param data The data to be stored.
* @param size The size of the data to be stored.
*/
void write(store_address_t packet_id, const uint8_t* data, uint32_t size);
void write(store_address_t packet_id, const uint8_t* data, size_t size);
/**
* @brief A helper method to read the element size of a certain pool.
* @param pool_index The pool in which to look.
@ -189,7 +149,8 @@ private:
* @return - #RETURN_OK on success,
* - #DATA_TOO_LARGE otherwise.
*/
ReturnValue_t getPoolIndex(uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex = 0);
ReturnValue_t getPoolIndex(size_t packet_size, uint16_t* poolIndex,
uint16_t startAtIndex = 0);
/**
* @brief This helper method calculates the true array position in store
* of a given packet id.
@ -211,249 +172,6 @@ private:
ReturnValue_t findEmpty(uint16_t pool_index, uint16_t* element);
};
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::findEmpty(uint16_t pool_index,
uint16_t* element) {
ReturnValue_t status = DATA_STORAGE_FULL;
for (uint16_t foundElement = 0; foundElement < n_elements[pool_index];
foundElement++) {
if (size_list[pool_index][foundElement] == STORAGE_FREE) {
*element = foundElement;
status = RETURN_OK;
break;
}
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::write(store_address_t packet_id,
const uint8_t* data, uint32_t size) {
uint8_t* ptr;
uint32_t packet_position = getRawPosition(packet_id);
//check size? -> Not necessary, because size is checked before calling this function.
ptr = &store[packet_id.pool_index][packet_position];
memcpy(ptr, data, size);
size_list[packet_id.pool_index][packet_id.packet_index] = size;
}
//Returns page size of 0 in case store_index is illegal
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getPageSize(uint16_t pool_index) {
if (pool_index < NUMBER_OF_POOLS) {
return element_sizes[pool_index];
} else {
return 0;
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getPoolIndex(
uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex) {
for (uint16_t n = startAtIndex; n < NUMBER_OF_POOLS; n++) {
// debug << "LocalPool " << getObjectId() << "::getPoolIndex: Pool: " << n << ", Element Size: " << element_sizes[n] << std::endl;
if (element_sizes[n] >= packet_size) {
*poolIndex = n;
return RETURN_OK;
}
}
return DATA_TOO_LARGE;
}
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getRawPosition(
store_address_t packet_id) {
return packet_id.packet_index * element_sizes[packet_id.pool_index];
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) {
ReturnValue_t status = getPoolIndex(size, &address->pool_index);
if (status != RETURN_OK) {
sif::error << "LocalPool( " << std::hex << getObjectId() << std::dec
<< " )::reserveSpace: Packet too large." << std::endl;
return status;
}
status = findEmpty(address->pool_index, &address->packet_index);
while (status != RETURN_OK && spillsToHigherPools) {
status = getPoolIndex(size, &address->pool_index, address->pool_index + 1);
if (status != RETURN_OK) {
//We don't find any fitting pool anymore.
break;
}
status = findEmpty(address->pool_index, &address->packet_index);
}
if (status == RETURN_OK) {
// if (getObjectId() == objects::IPC_STORE && address->pool_index >= 3) {
// debug << "Reserve: Pool: " << std::dec << address->pool_index << " Index: " << address->packet_index << std::endl;
// }
size_list[address->pool_index][address->packet_index] = size;
} else {
if (!ignoreFault) {
internalErrorReporter->storeFull();
}
sif::error << "LocalPool( " << std::hex << getObjectId() << std::dec
<< " )::reserveSpace: Packet store is full." << std::endl;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS], bool registered, bool spillsToHigherPools) :
SystemObject(setObjectId, registered), internalErrorReporter(NULL), spillsToHigherPools(spillsToHigherPools){
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
this->element_sizes[n] = element_sizes[n];
this->n_elements[n] = n_elements[n];
store[n] = new uint8_t[n_elements[n] * element_sizes[n]];
size_list[n] = new uint32_t[n_elements[n]];
memset(store[n], 0x00, (n_elements[n] * element_sizes[n]));
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list))); //TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::~LocalPool(void) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
delete[] store[n];
delete[] size_list[n];
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::addData(
store_address_t* storageId, const uint8_t* data, uint32_t size, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
write(*storageId, data, size);
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getFreeElement(
store_address_t* storageId, const uint32_t size, uint8_t** p_data, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
*p_data = &store[storageId->pool_index][getRawPosition(*storageId)];
} else {
*p_data = NULL;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getData(
store_address_t packet_id, const uint8_t** packet_ptr, size_t * size) {
uint8_t* tempData = NULL;
ReturnValue_t status = modifyData(packet_id, &tempData, size);
*packet_ptr = tempData;
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::modifyData(store_address_t packet_id,
uint8_t** packet_ptr, size_t * size) {
ReturnValue_t status = RETURN_FAILED;
if (packet_id.pool_index >= NUMBER_OF_POOLS) {
return ILLEGAL_STORAGE_ID;
}
if ((packet_id.packet_index >= n_elements[packet_id.pool_index])) {
return ILLEGAL_STORAGE_ID;
}
if (size_list[packet_id.pool_index][packet_id.packet_index]
!= STORAGE_FREE) {
uint32_t packet_position = getRawPosition(packet_id);
*packet_ptr = &store[packet_id.pool_index][packet_position];
*size = size_list[packet_id.pool_index][packet_id.packet_index];
status = RETURN_OK;
} else {
status = DATA_DOES_NOT_EXIST;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
// if (getObjectId() == objects::IPC_STORE && packet_id.pool_index >= 3) {
// debug << "Delete: Pool: " << std::dec << packet_id.pool_index << " Index: " << packet_id.packet_index << std::endl;
// }
ReturnValue_t status = RETURN_OK;
uint32_t page_size = getPageSize(packet_id.pool_index);
if ((page_size != 0)
&& (packet_id.packet_index < n_elements[packet_id.pool_index])) {
uint16_t packet_position = getRawPosition(packet_id);
uint8_t* ptr = &store[packet_id.pool_index][packet_position];
memset(ptr, 0, page_size);
//Set free list
size_list[packet_id.pool_index][packet_id.packet_index] = STORAGE_FREE;
} else {
//pool_index or packet_index is too large
sif::error << "LocalPool:deleteData failed." << std::endl;
status = ILLEGAL_STORAGE_ID;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::clearStore() {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list)));//TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(uint8_t* ptr,
uint32_t size, store_address_t* storeId) {
store_address_t localId;
ReturnValue_t result = ILLEGAL_ADDRESS;
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
//Not sure if new allocates all stores in order. so better be careful.
if ((store[n] <= ptr) && (&store[n][n_elements[n]*element_sizes[n]]) > ptr) {
localId.pool_index = n;
uint32_t deltaAddress = ptr - store[n];
//Getting any data from the right "block" is ok. This is necessary, as IF's sometimes don't point to the first element of an object.
localId.packet_index = deltaAddress / element_sizes[n];
result = deleteData(localId);
// if (deltaAddress % element_sizes[n] != 0) {
// error << "Pool::deleteData: address not aligned!" << std::endl;
// }
break;
}
}
if (storeId != NULL) {
*storeId = localId;
}
return result;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return result;
}
internalErrorReporter = objectManager->get<InternalErrorReporterIF>(objects::INTERNAL_ERROR_REPORTER);
if (internalErrorReporter == NULL){
return RETURN_FAILED;
}
//Check if any pool size is large than the maximum allowed.
for (uint8_t count = 0; count < NUMBER_OF_POOLS; count++) {
if (element_sizes[count] >= STORAGE_FREE) {
sif::error
<< "LocalPool::initialize: Pool is too large! Max. allowed size is: "
<< (STORAGE_FREE - 1) << std::endl;
return RETURN_FAILED;
}
}
return RETURN_OK;
}
#include <framework/storagemanager/LocalPool.tpp>
#endif /* FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_ */

View File

@ -0,0 +1,260 @@
#ifndef LOCALPOOL_TPP
#define LOCALPOOL_TPP
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS], bool registered,
bool spillsToHigherPools) :
SystemObject(setObjectId, registered), internalErrorReporter(nullptr),
spillsToHigherPools(spillsToHigherPools)
{
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
this->element_sizes[n] = element_sizes[n];
this->n_elements[n] = n_elements[n];
store[n] = new uint8_t[n_elements[n] * element_sizes[n]];
size_list[n] = new uint32_t[n_elements[n]];
memset(store[n], 0x00, (n_elements[n] * element_sizes[n]));
//TODO checkme
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list)));
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::findEmpty(uint16_t pool_index,
uint16_t* element) {
ReturnValue_t status = DATA_STORAGE_FULL;
for (uint16_t foundElement = 0; foundElement < n_elements[pool_index];
foundElement++) {
if (size_list[pool_index][foundElement] == STORAGE_FREE) {
*element = foundElement;
status = RETURN_OK;
break;
}
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::write(store_address_t packet_id,
const uint8_t* data, size_t size) {
uint8_t* ptr;
uint32_t packet_position = getRawPosition(packet_id);
//check size? -> Not necessary, because size is checked before calling this function.
ptr = &store[packet_id.pool_index][packet_position];
memcpy(ptr, data, size);
size_list[packet_id.pool_index][packet_id.packet_index] = size;
}
//Returns page size of 0 in case store_index is illegal
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getPageSize(uint16_t pool_index) {
if (pool_index < NUMBER_OF_POOLS) {
return element_sizes[pool_index];
} else {
return 0;
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getPoolIndex(
size_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex) {
for (uint16_t n = startAtIndex; n < NUMBER_OF_POOLS; n++) {
//debug << "LocalPool " << getObjectId() << "::getPoolIndex: Pool: " <<
// n << ", Element Size: " << element_sizes[n] << std::endl;
if (element_sizes[n] >= packet_size) {
*poolIndex = n;
return RETURN_OK;
}
}
return DATA_TOO_LARGE;
}
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getRawPosition(
store_address_t packet_id) {
return packet_id.packet_index * element_sizes[packet_id.pool_index];
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) {
ReturnValue_t status = getPoolIndex(size, &address->pool_index);
if (status != RETURN_OK) {
sif::error << "LocalPool( " << std::hex << getObjectId() << std::dec
<< " )::reserveSpace: Packet too large." << std::endl;
return status;
}
status = findEmpty(address->pool_index, &address->packet_index);
while (status != RETURN_OK && spillsToHigherPools) {
status = getPoolIndex(size, &address->pool_index, address->pool_index + 1);
if (status != RETURN_OK) {
//We don't find any fitting pool anymore.
break;
}
status = findEmpty(address->pool_index, &address->packet_index);
}
if (status == RETURN_OK) {
// if (getObjectId() == objects::IPC_STORE && address->pool_index >= 3) {
// debug << "Reserve: Pool: " << std::dec << address->pool_index <<
// " Index: " << address->packet_index << std::endl;
// }
size_list[address->pool_index][address->packet_index] = size;
} else {
if (!ignoreFault and internalErrorReporter != nullptr) {
internalErrorReporter->storeFull();
}
// error << "LocalPool( " << std::hex << getObjectId() << std::dec
// << " )::reserveSpace: Packet store is full." << std::endl;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::~LocalPool(void) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
delete[] store[n];
delete[] size_list[n];
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::addData(store_address_t* storageId,
const uint8_t* data, size_t size, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
write(*storageId, data, size);
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getFreeElement(
store_address_t* storageId, const size_t size,
uint8_t** p_data, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
*p_data = &store[storageId->pool_index][getRawPosition(*storageId)];
} else {
*p_data = NULL;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getData(
store_address_t packet_id, const uint8_t** packet_ptr, size_t* size) {
uint8_t* tempData = NULL;
ReturnValue_t status = modifyData(packet_id, &tempData, size);
*packet_ptr = tempData;
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::modifyData(
store_address_t packet_id, uint8_t** packet_ptr, size_t* size) {
ReturnValue_t status = RETURN_FAILED;
if (packet_id.pool_index >= NUMBER_OF_POOLS) {
return ILLEGAL_STORAGE_ID;
}
if ((packet_id.packet_index >= n_elements[packet_id.pool_index])) {
return ILLEGAL_STORAGE_ID;
}
if (size_list[packet_id.pool_index][packet_id.packet_index]
!= STORAGE_FREE) {
uint32_t packet_position = getRawPosition(packet_id);
*packet_ptr = &store[packet_id.pool_index][packet_position];
*size = size_list[packet_id.pool_index][packet_id.packet_index];
status = RETURN_OK;
} else {
status = DATA_DOES_NOT_EXIST;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
//if (getObjectId() == objects::IPC_STORE && packet_id.pool_index >= 3) {
// debug << "Delete: Pool: " << std::dec << packet_id.pool_index << " Index: "
// << packet_id.packet_index << std::endl;
//}
ReturnValue_t status = RETURN_OK;
uint32_t page_size = getPageSize(packet_id.pool_index);
if ((page_size != 0)
&& (packet_id.packet_index < n_elements[packet_id.pool_index])) {
uint16_t packet_position = getRawPosition(packet_id);
uint8_t* ptr = &store[packet_id.pool_index][packet_position];
memset(ptr, 0, page_size);
//Set free list
size_list[packet_id.pool_index][packet_id.packet_index] = STORAGE_FREE;
} else {
//pool_index or packet_index is too large
sif::error << "LocalPool:deleteData failed." << std::endl;
status = ILLEGAL_STORAGE_ID;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::clearStore() {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
//TODO checkme
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list)));
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(uint8_t* ptr,
size_t size, store_address_t* storeId) {
store_address_t localId;
ReturnValue_t result = ILLEGAL_ADDRESS;
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
//Not sure if new allocates all stores in order. so better be careful.
if ((store[n] <= ptr) && (&store[n][n_elements[n]*element_sizes[n]]) > ptr) {
localId.pool_index = n;
uint32_t deltaAddress = ptr - store[n];
// Getting any data from the right "block" is ok.
// This is necessary, as IF's sometimes don't point to the first
// element of an object.
localId.packet_index = deltaAddress / element_sizes[n];
result = deleteData(localId);
//if (deltaAddress % element_sizes[n] != 0) {
// error << "Pool::deleteData: address not aligned!" << std::endl;
//}
break;
}
}
if (storeId != NULL) {
*storeId = localId;
}
return result;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return result;
}
internalErrorReporter = objectManager->get<InternalErrorReporterIF>(
objects::INTERNAL_ERROR_REPORTER);
if (internalErrorReporter == NULL){
return RETURN_FAILED;
}
//Check if any pool size is large than the maximum allowed.
for (uint8_t count = 0; count < NUMBER_OF_POOLS; count++) {
if (element_sizes[count] >= STORAGE_FREE) {
sif::error << "LocalPool::initialize: Pool is too large! "
"Max. allowed size is: " << (STORAGE_FREE - 1) << std::endl;
return RETURN_FAILED;
}
}
return RETURN_OK;
}
#endif

View File

@ -1,12 +1,3 @@
/**
* @file PoolManager
*
* @date 02.02.2012
* @author Bastian Baetz
*
* @brief This file contains the definition of the PoolManager class.
*/
#ifndef POOLMANAGER_H_
#define POOLMANAGER_H_
@ -17,70 +8,39 @@
/**
* @brief The PoolManager class provides an intermediate data storage with
* a fixed pool size policy for inter-process communication.
* \details Uses local pool, but is thread-safe.
* @details Uses local pool calls but is thread safe by protecting the call
* with a lock.
*/
template <uint8_t NUMBER_OF_POOLS = 5>
class PoolManager : public LocalPool<NUMBER_OF_POOLS> {
protected:
/**
* Overwritten for thread safety.
* Locks during execution.
*/
virtual ReturnValue_t reserveSpace(const uint32_t size, store_address_t* address, bool ignoreFault);
/**
* \brief The mutex is created in the constructor and makes access mutual exclusive.
* \details Locking and unlocking is done during searching for free slots and deleting existing slots.
*/
MutexIF* mutex;
public:
PoolManager( object_id_t setObjectId, const uint16_t element_sizes[NUMBER_OF_POOLS], const uint16_t n_elements[NUMBER_OF_POOLS] );
PoolManager( object_id_t setObjectId, const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS] );
/**
* @brief In the PoolManager's destructor all allocated memory is freed.
*/
virtual ~PoolManager( void );
virtual ~PoolManager();
ReturnValue_t deleteData(store_address_t) override;
ReturnValue_t deleteData(uint8_t* buffer, size_t size,
store_address_t* storeId = NULL) override;
ReturnValue_t modifyData(store_address_t packet_id, uint8_t** packet_ptr,
size_t* size) override;
protected:
ReturnValue_t reserveSpace(const uint32_t size, store_address_t* address,
bool ignoreFault) override;
/**
* Overwritten for thread safety.
* @brief The mutex is created in the constructor and makes
* access mutual exclusive.
* @details Locking and unlocking is done during searching for free slots
* and deleting existing slots.
*/
virtual ReturnValue_t deleteData(store_address_t);
virtual ReturnValue_t deleteData(uint8_t* buffer, uint32_t size, store_address_t* storeId = NULL);
MutexIF* mutex;
};
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::reserveSpace(const uint32_t size, store_address_t* address, bool ignoreFault) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::reserveSpace(size,address,ignoreFault);
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline PoolManager<NUMBER_OF_POOLS>::PoolManager(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS]) : LocalPool<NUMBER_OF_POOLS>(setObjectId, element_sizes, n_elements, true) {
mutex = MutexFactory::instance()->createMutex();
}
template<uint8_t NUMBER_OF_POOLS>
inline PoolManager<NUMBER_OF_POOLS>::~PoolManager(void) {
MutexFactory::instance()->deleteMutex(mutex);
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
// debug << "PoolManager( " << translateObject(getObjectId()) << " )::deleteData from store " << packet_id.pool_index << ". id is " << packet_id.packet_index << std::endl;
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(packet_id);
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(uint8_t* buffer, uint32_t size,
store_address_t* storeId) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(buffer, size, storeId);
return status;
}
#include "PoolManager.tpp"
#endif /* POOLMANAGER_H_ */

View File

@ -0,0 +1,50 @@
template<uint8_t NUMBER_OF_POOLS>
inline PoolManager<NUMBER_OF_POOLS>::PoolManager(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS]) :
LocalPool<NUMBER_OF_POOLS>(setObjectId, element_sizes, n_elements, true) {
mutex = MutexFactory::instance()->createMutex();
}
template<uint8_t NUMBER_OF_POOLS>
inline PoolManager<NUMBER_OF_POOLS>::~PoolManager(void) {
MutexFactory::instance()->deleteMutex(mutex);
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::reserveSpace(size,
address,ignoreFault);
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
// debug << "PoolManager( " << translateObject(getObjectId()) <<
// " )::deleteData from store " << packet_id.pool_index <<
// ". id is "<< packet_id.packet_index << std::endl;
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(packet_id);
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::deleteData(uint8_t* buffer,
size_t size, store_address_t* storeId) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::deleteData(buffer,
size, storeId);
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t PoolManager<NUMBER_OF_POOLS>::modifyData(
store_address_t packet_id, uint8_t** packet_ptr, size_t* size) {
MutexHelper mutexHelper(mutex,MutexIF::NO_TIMEOUT);
ReturnValue_t status = LocalPool<NUMBER_OF_POOLS>::modifyData(packet_id,
packet_ptr, size);
return status;
}

View File

@ -6,9 +6,9 @@
#include <stddef.h>
/**
* This union defines the type that identifies where a data packet is stored in the store.
* It comprises of a raw part to read it as raw value and a structured part to use it in
* pool-like stores.
* This union defines the type that identifies where a data packet is
* stored in the store. It comprises of a raw part to read it as raw value and
* a structured part to use it in pool-like stores.
*/
union store_address_t {
/**
@ -94,7 +94,8 @@ public:
* @li RETURN_FAILED if data could not be added.
* storageId is unchanged then.
*/
virtual ReturnValue_t addData(store_address_t* storageId, const uint8_t * data, uint32_t size, bool ignoreFault = false) = 0;
virtual ReturnValue_t addData(store_address_t* storageId,
const uint8_t * data, size_t size, bool ignoreFault = false) = 0;
/**
* @brief With deleteData, the storageManager frees the memory region
* identified by packet_id.
@ -105,14 +106,16 @@ public:
*/
virtual ReturnValue_t deleteData(store_address_t packet_id) = 0;
/**
* @brief Another deleteData which uses the pointer and size of the stored data to delete the content.
* @brief Another deleteData which uses the pointer and size of the
* stored data to delete the content.
* @param buffer Pointer to the data.
* @param size Size of data to be stored.
* @param storeId Store id of the deleted element (optional)
* @return @li RETURN_OK on success.
* @li failure code if deletion did not work
*/
virtual ReturnValue_t deleteData(uint8_t* buffer, uint32_t size, store_address_t* storeId = NULL) = 0;
virtual ReturnValue_t deleteData(uint8_t* buffer, size_t size,
store_address_t* storeId = nullptr) = 0;
/**
* @brief getData returns an address to data and the size of the data
* for a given packet_id.
@ -125,12 +128,12 @@ public:
* (e.g. an illegal packet_id was passed).
*/
virtual ReturnValue_t getData(store_address_t packet_id,
const uint8_t** packet_ptr, size_t * size) = 0;
const uint8_t** packet_ptr, size_t* size) = 0;
/**
* Same as above, but not const and therefore modifiable.
*/
virtual ReturnValue_t modifyData(store_address_t packet_id,
uint8_t** packet_ptr, size_t * size) = 0;
uint8_t** packet_ptr, size_t* size) = 0;
/**
* This method reserves an element of \c size.
*
@ -145,7 +148,7 @@ public:
* storageId is unchanged then.
*/
virtual ReturnValue_t getFreeElement(store_address_t* storageId,
const uint32_t size, uint8_t** p_data, bool ignoreFault = false ) = 0;
const size_t size, uint8_t** p_data, bool ignoreFault = false ) = 0;
/**
* Clears the whole store.
* Use with care!

View File

@ -1,7 +1,7 @@
#ifndef FRAMEWORK_TASKS_TASKFACTORY_H_
#define FRAMEWORK_TASKS_TASKFACTORY_H_
#include <stdlib.h>
#include <cstdlib>
#include <framework/tasks/FixedTimeslotTaskIF.h>
#include <framework/tasks/Typedef.h>
@ -19,13 +19,16 @@ public:
static TaskFactory* instance();
/**
* Creates a new periodic task and returns the interface pointer.
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack Size of the task
* @param period_ Period of the task
* @param deadLineMissedFunction_ Function to be called if a deadline was missed
* @return PeriodicTaskIF* Pointer to the newly created Task
* Keep in Mind that you need to call before this vTaskStartScheduler()!
* A lot of task parameters are set in "FreeRTOSConfig.h".
* @param name_ Name of the task, lenght limited by configMAX_TASK_NAME_LEN
* @param taskPriority_ Number of priorities specified by
* configMAX_PRIORITIES. High taskPriority_ number means high priority.
* @param stackSize_ Stack size in words (not bytes!).
* Lower limit specified by configMINIMAL_STACK_SIZE
* @param period_ Period in seconds.
* @param deadLineMissedFunction_ Callback if a deadline was missed.
* @return Pointer to the newly created task.
*/
PeriodicTaskIF* createPeriodicTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
@ -33,13 +36,16 @@ public:
TaskDeadlineMissedFunction deadLineMissedFunction_);
/**
*
* @param name_ Name of the task
* @param taskPriority_ Priority of the task
* @param stackSize_ Stack Size of the task
* @param period_ Period of the task
* @param deadLineMissedFunction_ Function to be called if a deadline was missed
* @return FixedTimeslotTaskIF* Pointer to the newly created Task
* Keep in Mind that you need to call before this vTaskStartScheduler()!
* A lot of task parameters are set in "FreeRTOSConfig.h".
* @param name_ Name of the task, lenght limited by configMAX_TASK_NAME_LEN
* @param taskPriority_ Number of priorities specified by
* configMAX_PRIORITIES. High taskPriority_ number means high priority.
* @param stackSize_ Stack size in words (not bytes!).
* Lower limit specified by configMINIMAL_STACK_SIZE
* @param period_ Period in seconds.
* @param deadLineMissedFunction_ Callback if a deadline was missed.
* @return Pointer to the newly created task.
*/
FixedTimeslotTaskIF* createFixedTimeslotTask(TaskName name_,
TaskPriority taskPriority_, TaskStackSize stackSize_,
@ -48,7 +54,8 @@ public:
/**
* Function to be called to delete a task
* @param task The pointer to the task that shall be deleted, NULL specifies current Task
* @param task The pointer to the task that shall be deleted,
* NULL specifies current Task
* @return Success of deletion
*/
static ReturnValue_t deleteTask(PeriodicTaskIF* task = NULL);
@ -59,14 +66,12 @@ public:
* @return Success of deletion
*/
static ReturnValue_t delayTask(uint32_t delayMs);
private:
/**
* External instantiation is not allowed.
*/
TaskFactory();
static TaskFactory* factoryInstance;
};
#endif /* FRAMEWORK_TASKS_TASKFACTORY_H_ */

View File

@ -29,7 +29,7 @@ public:
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in any type, for example float for C° values
* The lower and upper limits can be specified in any type, for example float for C values
* or any other type for raw values.
*/
struct Parameters {
@ -151,7 +151,7 @@ protected:
}
}
//Check is done against raw limits. SHOULDDO: Why? Using °C would be more easy to handle.
//Check is done against raw limits. SHOULDDO: Why? Using <EFBFBD>C would be more easy to handle.
sensorMonitor.doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) {