testArduino/fsfw/thermal/CoreComponent.cpp

258 lines
7.4 KiB
C++
Raw Permalink Normal View History

2021-06-21 15:04:15 +02:00
#include "CoreComponent.h"
CoreComponent::CoreComponent(object_id_t reportingObjectId, uint8_t domainId,
uint32_t temperaturePoolId, uint32_t targetStatePoolId,
uint32_t currentStatePoolId, uint32_t requestPoolId, DataSet* dataSet,
AbstractTemperatureSensor* sensor,
AbstractTemperatureSensor* firstRedundantSensor,
AbstractTemperatureSensor* secondRedundantSensor,
ThermalModuleIF* thermalModule, Parameters parameters,
Priority priority, StateRequest initialTargetState) :
sensor(sensor), firstRedundantSensor(firstRedundantSensor), secondRedundantSensor(
secondRedundantSensor), thermalModule(thermalModule), temperature(
temperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE), targetState(
targetStatePoolId, dataSet, PoolVariableIF::VAR_READ), currentState(
currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE), heaterRequest(
requestPoolId, dataSet, PoolVariableIF::VAR_WRITE), isHeating(
false), isSafeComponent(priority == SAFE), minTemp(999), maxTemp(
AbstractTemperatureSensor::ZERO_KELVIN_C), parameters(
parameters), temperatureMonitor(reportingObjectId,
domainId + 1,
DataPool::poolIdAndPositionToPid(temperaturePoolId, 0),
COMPONENT_TEMP_CONFIRMATION), domainId(domainId) {
if (thermalModule != NULL) {
thermalModule->registerComponent(this, priority);
}
//Set thermal state once, then leave to operator.
DataSet mySet;
PoolVariable<int8_t> writableTargetState(targetStatePoolId, &mySet,
PoolVariableIF::VAR_WRITE);
writableTargetState = initialTargetState;
mySet.commit(PoolVariableIF::VALID);
}
CoreComponent::~CoreComponent() {
}
ThermalComponentIF::HeaterRequest CoreComponent::performOperation(uint8_t opCode) {
HeaterRequest request = HEATER_DONT_CARE;
//SHOULDDO: Better pass db_float_t* to getTemperature and set it invalid if invalid.
temperature = getTemperature();
updateMinMaxTemp();
if ((temperature != INVALID_TEMPERATURE)) {
temperature.setValid(PoolVariableIF::VALID);
State state = getState(temperature, getParameters(), targetState);
currentState = state;
checkLimits(state);
request = getHeaterRequest(targetState, temperature, getParameters());
} else {
temperatureMonitor.setToInvalid();
temperature.setValid(PoolVariableIF::INVALID);
currentState = UNKNOWN;
request = HEATER_DONT_CARE;
}
currentState.setValid(PoolVariableIF::VALID);
heaterRequest = request;
heaterRequest.setValid(PoolVariableIF::VALID);
return request;
}
void CoreComponent::markStateIgnored() {
currentState = getIgnoredState(currentState);
}
object_id_t CoreComponent::getObjectId() {
return temperatureMonitor.getReporterId();
}
float CoreComponent::getLowerOpLimit() {
return parameters.lowerOpLimit;
}
ReturnValue_t CoreComponent::setTargetState(int8_t newState) {
DataSet mySet;
PoolVariable<int8_t> writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_READ_WRITE);
mySet.read();
if ((writableTargetState == STATE_REQUEST_OPERATIONAL)
&& (newState != STATE_REQUEST_IGNORE)) {
return HasReturnvaluesIF::RETURN_FAILED;
}
switch (newState) {
case STATE_REQUEST_HEATING:
case STATE_REQUEST_IGNORE:
case STATE_REQUEST_OPERATIONAL:
writableTargetState = newState;
break;
case STATE_REQUEST_NON_OPERATIONAL:
default:
return INVALID_TARGET_STATE;
}
mySet.commit(PoolVariableIF::VALID);
return HasReturnvaluesIF::RETURN_OK;
}
void CoreComponent::setOutputInvalid() {
temperature = INVALID_TEMPERATURE;
temperature.setValid(PoolVariableIF::INVALID);
currentState.setValid(PoolVariableIF::INVALID);
heaterRequest = HEATER_DONT_CARE;
heaterRequest.setValid(PoolVariableIF::INVALID);
temperatureMonitor.setToUnchecked();
}
float CoreComponent::getTemperature() {
if ((sensor != NULL) && (sensor->isValid())) {
return sensor->getTemperature();
}
if ((firstRedundantSensor != NULL) && (firstRedundantSensor->isValid())) {
return firstRedundantSensor->getTemperature();
}
if ((secondRedundantSensor != NULL) && (secondRedundantSensor->isValid())) {
return secondRedundantSensor->getTemperature();
}
if (thermalModule != NULL) {
float temperature = thermalModule->getTemperature();
if (temperature != ThermalModuleIF::INVALID_TEMPERATURE) {
return temperature;
} else {
return INVALID_TEMPERATURE;
}
} else {
return INVALID_TEMPERATURE;
}
}
ThermalComponentIF::State CoreComponent::getState(float temperature,
Parameters parameters, int8_t targetState) {
ThermalComponentIF::State state;
if (temperature < parameters.lowerOpLimit) {
state = NON_OPERATIONAL_LOW;
} else if (temperature < parameters.upperOpLimit) {
state = OPERATIONAL;
} else {
state = NON_OPERATIONAL_HIGH;
}
if (targetState == STATE_REQUEST_IGNORE) {
state = getIgnoredState(state);
}
return state;
}
void CoreComponent::checkLimits(ThermalComponentIF::State state) {
//Checks operational limits only.
temperatureMonitor.translateState(state, temperature.value,
getParameters().lowerOpLimit, getParameters().upperOpLimit);
}
ThermalComponentIF::HeaterRequest CoreComponent::getHeaterRequest(
int8_t targetState, float temperature, Parameters parameters) {
if (targetState == STATE_REQUEST_IGNORE) {
isHeating = false;
return HEATER_DONT_CARE;
}
if (temperature > parameters.upperOpLimit - parameters.heaterSwitchoff) {
isHeating = false;
return HEATER_REQUEST_EMERGENCY_OFF;
}
float opHeaterLimit = parameters.lowerOpLimit + parameters.heaterOn;
if (isHeating) {
opHeaterLimit += parameters.hysteresis;
}
if (temperature < opHeaterLimit) {
isHeating = true;
return HEATER_REQUEST_EMERGENCY_ON;
}
isHeating = false;
return HEATER_DONT_CARE;
}
ThermalComponentIF::State CoreComponent::getIgnoredState(int8_t state) {
switch (state) {
case NON_OPERATIONAL_LOW:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH:
return NON_OPERATIONAL_HIGH_IGNORED;
case NON_OPERATIONAL_LOW_IGNORED:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL_IGNORED:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH_IGNORED:
return NON_OPERATIONAL_HIGH_IGNORED;
default:
case UNKNOWN:
return UNKNOWN;
}
}
void CoreComponent::updateMinMaxTemp() {
if (temperature == INVALID_TEMPERATURE) {
return;
}
if (temperature < minTemp) {
minTemp = temperature;
}
if (temperature > maxTemp) {
maxTemp = temperature;
}
}
uint8_t CoreComponent::getDomainId() const {
return domainId;
}
CoreComponent::Parameters CoreComponent::getParameters() {
return parameters;
}
ReturnValue_t CoreComponent::getParameter(uint8_t domainId,
uint16_t parameterId, ParameterWrapper* parameterWrapper,
const ParameterWrapper* newValues, uint16_t startAtIndex) {
ReturnValue_t result = temperatureMonitor.getParameter(domainId,
parameterId, parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) {
return result;
}
if (domainId != this->domainId) {
return INVALID_DOMAIN_ID;
}
switch (parameterId) {
case 0:
parameterWrapper->set(parameters.heaterOn);
break;
case 1:
parameterWrapper->set(parameters.hysteresis);
break;
case 2:
parameterWrapper->set(parameters.heaterSwitchoff);
break;
case 3:
parameterWrapper->set(minTemp);
break;
case 4:
parameterWrapper->set(maxTemp);
break;
case 10:
parameterWrapper->set(parameters.lowerOpLimit);
break;
case 11:
parameterWrapper->set(parameters.upperOpLimit);
break;
default:
return INVALID_MATRIX_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}