testArduino/fsfw/tmtcpacket/pus/TmPacketStored.h

109 lines
4.0 KiB
C
Raw Normal View History

2021-06-21 15:04:15 +02:00
#ifndef TMTCPACKET_PUS_TMPACKETSTORED_H_
#define TMTCPACKET_PUS_TMPACKETSTORED_H_
#include "TmPacketBase.h"
#include "../../serialize/SerializeIF.h"
#include "../../storagemanager/StorageManagerIF.h"
#include "../../internalError/InternalErrorReporterIF.h"
#include "../../ipc/MessageQueueSenderIF.h"
/**
* This class generates a ECSS PUS Telemetry packet within a given
* intermediate storage.
* As most packets are passed between tasks with the help of a storage
* anyway, it seems logical to create a Packet-In-Storage access class
* which saves the user almost all storage handling operation.
* Packets can both be newly created with the class and be "linked" to
* packets in a store with the help of a storeAddress.
* @ingroup tmtcpackets
*/
class TmPacketStored : public TmPacketBase {
public:
/**
* This is a default constructor which does not set the data pointer.
* However, it does try to set the packet store.
*/
TmPacketStored( store_address_t setAddress );
/**
* With this constructor, new space is allocated in the packet store and
* a new PUS Telemetry Packet is created there.
* Packet Application Data passed in data is copied into the packet.
* The Application data is passed in two parts, first a header, then a
* data field. This allows building a Telemetry Packet from two separate
* data sources.
* @param apid Sets the packet's APID field.
* @param service Sets the packet's Service ID field.
* This specifies the source service.
* @param subservice Sets the packet's Service Subtype field.
* This specifies the source sub-service.
* @param packet_counter Sets the Packet counter field of this packet
* @param data The payload data to be copied to the
* Application Data Field
* @param size The amount of data to be copied.
* @param headerData The header Data of the Application field,
* will be copied in front of data
* @param headerSize The size of the headerDataF
*/
TmPacketStored( uint16_t apid, uint8_t service, uint8_t subservice,
uint8_t packet_counter = 0, const uint8_t* data = nullptr,
uint32_t size = 0, const uint8_t* headerData = nullptr,
uint32_t headerSize = 0);
/**
* Another ctor to directly pass structured content and header data to the
* packet to avoid additional buffers.
*/
TmPacketStored( uint16_t apid, uint8_t service, uint8_t subservice,
uint8_t packet_counter, SerializeIF* content,
SerializeIF* header = nullptr);
/**
* This is a getter for the current store address of the packet.
* @return The current store address. The (raw) value is
* @c StorageManagerIF::INVALID_ADDRESS if
* the packet is not linked.
*/
store_address_t getStoreAddress();
/**
* With this call, the packet is deleted.
* It removes itself from the store and sets its data pointer to NULL.
*/
void deletePacket();
/**
* With this call, a packet can be linked to another store. This is useful
* if the packet is a class member and used for more than one packet.
* @param setAddress The new packet id to link to.
*/
void setStoreAddress( store_address_t setAddress );
ReturnValue_t sendPacket( MessageQueueId_t destination,
MessageQueueId_t sentFrom, bool doErrorReporting = true );
private:
/**
* This is a pointer to the store all instances of the class use.
* If the store is not yet set (i.e. @c store is NULL), every constructor
* call tries to set it and throws an error message in case of failures.
* The default store is objects::TM_STORE.
*/
static StorageManagerIF* store;
static InternalErrorReporterIF *internalErrorReporter;
/**
* The address where the packet data of the object instance is stored.
*/
store_address_t storeAddress;
/**
* A helper method to check if a store is assigned to the class.
* If not, the method tries to retrieve the store from the global
* ObjectManager.
* @return @li @c true if the store is linked or could be created.
* @li @c false otherwise.
*/
bool checkAndSetStore();
void checkAndReportLostTm();
};
#endif /* TMTCPACKET_PUS_TMPACKETSTORED_H_ */