Code has been cleaned and documented. The saving of data to datapool in the InterpreteDeviceReply has been fixed.
This commit is contained in:
@ -1,26 +1,14 @@
|
||||
/*
|
||||
* ArduinoComIF.cpp
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* Title: ArduinoComIF.cpp
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
#include <mission/DeviceHandler/ArduinoComIF.h>
|
||||
#include <mission/DeviceHandler/ArduinoCookie.h>
|
||||
#include <fsfw/serialize/SerializeAdapter.h>
|
||||
#include <fsfw/tmtcservices/CommandingServiceBase.h>
|
||||
#include <fsfw/tmtcpacket/pus/TmPacketStored.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
// Linux headers
|
||||
#include <fcntl.h> // Contains file controls like O_RDWR
|
||||
#include <errno.h> // Error integer and strerror() function
|
||||
#include <termios.h> // Contains POSIX terminal control definitions
|
||||
#include <unistd.h> // write(), read(), close()
|
||||
|
||||
ArduinoComIF::ArduinoComIF(object_id_t objectId) :
|
||||
SystemObject(objectId) {
|
||||
@ -30,22 +18,25 @@ ArduinoComIF::~ArduinoComIF() {
|
||||
}
|
||||
|
||||
ReturnValue_t ArduinoComIF::initializeInterface(CookieIF *cookie) {
|
||||
|
||||
ArduinoCookie *Cookie = dynamic_cast<ArduinoCookie*>(cookie);
|
||||
|
||||
// The Arduino device which manage the sensors of temperature,
|
||||
// environmental data and acceleration, sends through serial
|
||||
// output these data employing a USB port.
|
||||
// Here it is then set-up the interface to manage this communication.
|
||||
//
|
||||
// In typical UNIX style, serial ports are represented by files
|
||||
// within the operating system.
|
||||
// These files usually pop-up in /dev/, and begin with the name tty*.
|
||||
//
|
||||
// To write/read to a serial port, you write/read to the file.
|
||||
// Here the serial port parameters are defined exploiting a
|
||||
// special tty configuration struct.
|
||||
/* The Arduino device which manage the sensors of temperature,
|
||||
* environmental data and orientation, sends through serial
|
||||
* output these data employing a USB port.
|
||||
* Here it is then set-up the interface to manage this communication.
|
||||
*
|
||||
* In typical UNIX style, serial ports are represented by files
|
||||
* within the operating system.
|
||||
* These files usually pop-up in /dev/, and begin with the name tty*.
|
||||
*
|
||||
* To write/read to a serial port, you write/read to the file.
|
||||
* Here the serial port parameters are defined exploiting a
|
||||
* special tty configuration struct.
|
||||
*/
|
||||
|
||||
// Open the serial port. Change device path as needed (see README in InterfaceCode/testArduino/testArduino/ ).
|
||||
// Set-up of the Linux serial port.
|
||||
// The serial port is here opened. Change device path as needed.
|
||||
int serial_port = open("/dev/ttyACM0", O_RDWR);
|
||||
|
||||
// Create new termios struc, we call it 'tty' for convention.
|
||||
@ -64,15 +55,13 @@ ReturnValue_t ArduinoComIF::initializeInterface(CookieIF *cookie) {
|
||||
tty.c_cflag |= CS8; // 8 bits per byte (most common)
|
||||
tty.c_cflag &= ~CRTSCTS; // Disable RTS/CTS hardware flow control (most common)
|
||||
tty.c_cflag |= CREAD | CLOCAL; // Turn on READ & ignore ctrl lines (CLOCAL = 1)
|
||||
|
||||
tty.c_lflag &= ~ICANON;
|
||||
tty.c_lflag &= ~ICANON; //Canonical mode is disabled
|
||||
tty.c_lflag &= ~ECHO; // Disable echo
|
||||
tty.c_lflag &= ~ECHOE; // Disable erasure
|
||||
tty.c_lflag &= ~ECHONL; // Disable new-line echo
|
||||
tty.c_lflag &= ~ISIG; // Disable interpretation of INTR, QUIT and SUSP
|
||||
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // Turn off s/w flow ctrl
|
||||
tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL); // Disable any special handling of received bytes
|
||||
|
||||
tty.c_oflag &= ~OPOST; // Prevent special interpretation of output bytes (e.g. newline chars)
|
||||
tty.c_oflag &= ~ONLCR; // Prevent conversion of newline to carriage return/line feed
|
||||
|
||||
@ -83,16 +72,23 @@ ReturnValue_t ArduinoComIF::initializeInterface(CookieIF *cookie) {
|
||||
cfsetispeed(&tty, B115200);
|
||||
cfsetospeed(&tty, B115200);
|
||||
|
||||
// Save tty settings, also checking for error.
|
||||
// Save tty settings, also checking for error
|
||||
if (tcsetattr(serial_port, TCSANOW, &tty) != 0) {
|
||||
printf("Error %i from tcsetattr: %s\n", errno, strerror(errno));
|
||||
return 1;
|
||||
}
|
||||
|
||||
printf(
|
||||
"***********************************************************************************************\n");
|
||||
printf(
|
||||
"***********************************************************************************************\n");
|
||||
printf("\nSerial port set. \n");
|
||||
|
||||
// End of Linux serial port set-up.
|
||||
|
||||
/* The serial port number is saved in the cookie such that it can
|
||||
* be exploited from other functionalities or components.
|
||||
*/
|
||||
Cookie->Serial_port_number = serial_port;
|
||||
|
||||
return RETURN_OK;
|
||||
@ -116,119 +112,113 @@ ReturnValue_t ArduinoComIF::readReceivedMessage(CookieIF *cookie,
|
||||
uint8_t **buffer, size_t *size) {
|
||||
ArduinoCookie *Cookie = dynamic_cast<ArduinoCookie*>(cookie);
|
||||
|
||||
/* Afterward, the buffer array to store the data read are initialized.
|
||||
* The whole data packet to be read is 2580 bytes, the limit for one reading (VMAX) is 255 bytes.
|
||||
* In order to avoid problems during the acquisition of data in the framework, the buffer is set to
|
||||
* be 3 times the needed dimension: 7740 bytes.
|
||||
* Exploiting then some control loop, the beginning of a full and complete buffer is identified.
|
||||
* Since the acquisition limit for one reading is of 255 bytes, as mentioned above,
|
||||
* the reading is divided in 31 separate stages which employ 31 different buffer array.
|
||||
* At the end these 31 arrays are concatenated in the main buffer array read_buf.
|
||||
*/
|
||||
uint8_t read_buf[7740]; // 7740 bytes from SPC serial output
|
||||
// Intermediate buffers (limit for one single read call is 255 bytes)
|
||||
uint8_t read_buf1[255]; uint8_t read_buf2[255]; uint8_t read_buf3[255];
|
||||
uint8_t read_buf4[255]; uint8_t read_buf5[255]; uint8_t read_buf6[255];
|
||||
uint8_t read_buf7[255]; uint8_t read_buf8[255]; uint8_t read_buf9[255];
|
||||
uint8_t read_buf10[255]; uint8_t read_buf11[255]; uint8_t read_buf12[255];
|
||||
uint8_t read_buf13[255]; uint8_t read_buf14[255]; uint8_t read_buf15[255];
|
||||
uint8_t read_buf16[255]; uint8_t read_buf17[255]; uint8_t read_buf18[255];
|
||||
uint8_t read_buf19[255]; uint8_t read_buf20[255]; uint8_t read_buf21[255];
|
||||
uint8_t read_buf22[255]; uint8_t read_buf23[255]; uint8_t read_buf24[255];
|
||||
uint8_t read_buf25[255]; uint8_t read_buf26[255]; uint8_t read_buf27[255];
|
||||
uint8_t read_buf28[255]; uint8_t read_buf29[255]; uint8_t read_buf30[255];
|
||||
uint8_t read_buf31[90];
|
||||
|
||||
// The buffer elements are initially set to 0.
|
||||
// The buffer elements are set to 0 at the beginning of each read-loop.
|
||||
memset(&read_buf, '\0', sizeof(read_buf));
|
||||
memset(&read_buf1, '\0', 255); memset(&read_buf2, '\0', 255); memset(&read_buf3, '\0', 255);
|
||||
memset(&read_buf4, '\0', 255); memset(&read_buf5, '\0', 255); memset(&read_buf6, '\0', 255);
|
||||
memset(&read_buf7, '\0', 255); memset(&read_buf8, '\0', 255); memset(&read_buf9, '\0', 255);
|
||||
memset(&read_buf10, '\0', 255); memset(&read_buf11, '\0', 255); memset(&read_buf12, '\0', 255);
|
||||
memset(&read_buf13, '\0', 255); memset(&read_buf14, '\0', 255); memset(&read_buf15, '\0', 255);
|
||||
memset(&read_buf16, '\0', 255); memset(&read_buf17, '\0', 255); memset(&read_buf18, '\0', 255);
|
||||
memset(&read_buf19, '\0', 255); memset(&read_buf20, '\0', 255); memset(&read_buf21, '\0', 255);
|
||||
memset(&read_buf22, '\0', 255); memset(&read_buf23, '\0', 255); memset(&read_buf24, '\0', 255);
|
||||
memset(&read_buf25, '\0', 255); memset(&read_buf26, '\0', 255); memset(&read_buf27, '\0', 255);
|
||||
memset(&read_buf28, '\0', 255); memset(&read_buf29, '\0', 255); memset(&read_buf30, '\0', 255);
|
||||
memset(&read_buf1, '\0', 255);
|
||||
memset(&read_buf2, '\0', 255);
|
||||
memset(&read_buf3, '\0', 255);
|
||||
memset(&read_buf4, '\0', 255);
|
||||
memset(&read_buf5, '\0', 255);
|
||||
memset(&read_buf6, '\0', 255);
|
||||
memset(&read_buf7, '\0', 255);
|
||||
memset(&read_buf8, '\0', 255);
|
||||
memset(&read_buf9, '\0', 255);
|
||||
memset(&read_buf10, '\0', 255);
|
||||
memset(&read_buf11, '\0', 255);
|
||||
memset(&read_buf12, '\0', 255);
|
||||
memset(&read_buf13, '\0', 255);
|
||||
memset(&read_buf14, '\0', 255);
|
||||
memset(&read_buf15, '\0', 255);
|
||||
memset(&read_buf16, '\0', 255);
|
||||
memset(&read_buf17, '\0', 255);
|
||||
memset(&read_buf18, '\0', 255);
|
||||
memset(&read_buf19, '\0', 255);
|
||||
memset(&read_buf20, '\0', 255);
|
||||
memset(&read_buf21, '\0', 255);
|
||||
memset(&read_buf22, '\0', 255);
|
||||
memset(&read_buf23, '\0', 255);
|
||||
memset(&read_buf24, '\0', 255);
|
||||
memset(&read_buf25, '\0', 255);
|
||||
memset(&read_buf26, '\0', 255);
|
||||
memset(&read_buf27, '\0', 255);
|
||||
memset(&read_buf28, '\0', 255);
|
||||
memset(&read_buf29, '\0', 255);
|
||||
memset(&read_buf30, '\0', 255);
|
||||
memset(&read_buf31, '\0', 90);
|
||||
/*memset(&read_buf, '\0', sizeof(read_buf));
|
||||
memset(&read_buf1, '\0', 255); memset(&read_buf2, '\0', 255); memset(&read_buf3, '\0', 255);
|
||||
memset(&read_buf4, '\0', 255); memset(&read_buf5, '\0', 255); memset(&read_buf6, '\0', 255);
|
||||
memset(&read_buf7, '\0', 255); memset(&read_buf8, '\0', 255); memset(&read_buf9, '\0', 255);
|
||||
memset(&read_buf10, '\0', 255); memset(&read_buf11, '\0', 255); memset(&read_buf12, '\0', 255);
|
||||
memset(&read_buf13, '\0', 255); memset(&read_buf14, '\0', 255); memset(&read_buf15, '\0', 255);
|
||||
memset(&read_buf16, '\0', 255); memset(&read_buf17, '\0', 255); memset(&read_buf18, '\0', 255);
|
||||
memset(&read_buf19, '\0', 255); memset(&read_buf20, '\0', 255); memset(&read_buf21, '\0', 60);*/
|
||||
|
||||
// Read bytes. The behaviour of read() (e.g. does it block?, how long does it block for?)
|
||||
// depends on the configuration settings above, specifically VMIN and VTIME.
|
||||
int num_bytes1 = read(Cookie->Serial_port_number, &read_buf1, sizeof(read_buf1));
|
||||
int num_bytes2 = read(Cookie->Serial_port_number, &read_buf2, sizeof(read_buf2));
|
||||
int num_bytes3 = read(Cookie->Serial_port_number, &read_buf3, sizeof(read_buf3));
|
||||
int num_bytes4 = read(Cookie->Serial_port_number, &read_buf4, sizeof(read_buf4));
|
||||
int num_bytes5 = read(Cookie->Serial_port_number, &read_buf5, sizeof(read_buf5));
|
||||
int num_bytes6 = read(Cookie->Serial_port_number, &read_buf6, sizeof(read_buf6));
|
||||
int num_bytes7 = read(Cookie->Serial_port_number, &read_buf7, sizeof(read_buf7));
|
||||
int num_bytes8 = read(Cookie->Serial_port_number, &read_buf8, sizeof(read_buf8));
|
||||
int num_bytes9 = read(Cookie->Serial_port_number, &read_buf9, sizeof(read_buf9));
|
||||
int num_bytes10 = read(Cookie->Serial_port_number, &read_buf10, sizeof(read_buf10));
|
||||
int num_bytes11 = read(Cookie->Serial_port_number, &read_buf11, sizeof(read_buf11));
|
||||
int num_bytes12 = read(Cookie->Serial_port_number, &read_buf12, sizeof(read_buf12));
|
||||
int num_bytes13 = read(Cookie->Serial_port_number, &read_buf13, sizeof(read_buf13));
|
||||
int num_bytes14 = read(Cookie->Serial_port_number, &read_buf14, sizeof(read_buf14));
|
||||
int num_bytes15 = read(Cookie->Serial_port_number, &read_buf15, sizeof(read_buf15));
|
||||
int num_bytes16 = read(Cookie->Serial_port_number, &read_buf16, sizeof(read_buf16));
|
||||
int num_bytes17 = read(Cookie->Serial_port_number, &read_buf17, sizeof(read_buf17));
|
||||
int num_bytes18 = read(Cookie->Serial_port_number, &read_buf18, sizeof(read_buf18));
|
||||
int num_bytes19 = read(Cookie->Serial_port_number, &read_buf19, sizeof(read_buf19));
|
||||
int num_bytes20 = read(Cookie->Serial_port_number, &read_buf20, sizeof(read_buf20));
|
||||
int num_bytes21 = read(Cookie->Serial_port_number, &read_buf21, sizeof(read_buf21));
|
||||
int num_bytes22 = read(Cookie->Serial_port_number, &read_buf22, sizeof(read_buf22));
|
||||
int num_bytes23 = read(Cookie->Serial_port_number, &read_buf23, sizeof(read_buf23));
|
||||
int num_bytes24 = read(Cookie->Serial_port_number, &read_buf24, sizeof(read_buf24));
|
||||
int num_bytes25 = read(Cookie->Serial_port_number, &read_buf25, sizeof(read_buf25));
|
||||
int num_bytes26 = read(Cookie->Serial_port_number, &read_buf26, sizeof(read_buf26));
|
||||
int num_bytes27 = read(Cookie->Serial_port_number, &read_buf27, sizeof(read_buf27));
|
||||
int num_bytes28 = read(Cookie->Serial_port_number, &read_buf28, sizeof(read_buf28));
|
||||
int num_bytes29 = read(Cookie->Serial_port_number, &read_buf29, sizeof(read_buf29));
|
||||
int num_bytes30 = read(Cookie->Serial_port_number, &read_buf30, sizeof(read_buf30));
|
||||
int num_bytes31 = read(Cookie->Serial_port_number, &read_buf31, sizeof(read_buf31));
|
||||
/* Read bytes. The behaviour of read() depends on the configuration
|
||||
* settings in initializeInterface, specifically VMIN and VTIME.
|
||||
*/
|
||||
int num_bytes1 = read(Cookie->Serial_port_number, &read_buf1,
|
||||
sizeof(read_buf1));
|
||||
int num_bytes2 = read(Cookie->Serial_port_number, &read_buf2,
|
||||
sizeof(read_buf2));
|
||||
int num_bytes3 = read(Cookie->Serial_port_number, &read_buf3,
|
||||
sizeof(read_buf3));
|
||||
int num_bytes4 = read(Cookie->Serial_port_number, &read_buf4,
|
||||
sizeof(read_buf4));
|
||||
int num_bytes5 = read(Cookie->Serial_port_number, &read_buf5,
|
||||
sizeof(read_buf5));
|
||||
int num_bytes6 = read(Cookie->Serial_port_number, &read_buf6,
|
||||
sizeof(read_buf6));
|
||||
int num_bytes7 = read(Cookie->Serial_port_number, &read_buf7,
|
||||
sizeof(read_buf7));
|
||||
int num_bytes8 = read(Cookie->Serial_port_number, &read_buf8,
|
||||
sizeof(read_buf8));
|
||||
int num_bytes9 = read(Cookie->Serial_port_number, &read_buf9,
|
||||
sizeof(read_buf9));
|
||||
int num_bytes10 = read(Cookie->Serial_port_number, &read_buf10,
|
||||
sizeof(read_buf10));
|
||||
int num_bytes11 = read(Cookie->Serial_port_number, &read_buf11,
|
||||
sizeof(read_buf11));
|
||||
int num_bytes12 = read(Cookie->Serial_port_number, &read_buf12,
|
||||
sizeof(read_buf12));
|
||||
int num_bytes13 = read(Cookie->Serial_port_number, &read_buf13,
|
||||
sizeof(read_buf13));
|
||||
int num_bytes14 = read(Cookie->Serial_port_number, &read_buf14,
|
||||
sizeof(read_buf14));
|
||||
int num_bytes15 = read(Cookie->Serial_port_number, &read_buf15,
|
||||
sizeof(read_buf15));
|
||||
int num_bytes16 = read(Cookie->Serial_port_number, &read_buf16,
|
||||
sizeof(read_buf16));
|
||||
int num_bytes17 = read(Cookie->Serial_port_number, &read_buf17,
|
||||
sizeof(read_buf17));
|
||||
int num_bytes18 = read(Cookie->Serial_port_number, &read_buf18,
|
||||
sizeof(read_buf18));
|
||||
int num_bytes19 = read(Cookie->Serial_port_number, &read_buf19,
|
||||
sizeof(read_buf19));
|
||||
int num_bytes20 = read(Cookie->Serial_port_number, &read_buf20,
|
||||
sizeof(read_buf20));
|
||||
int num_bytes21 = read(Cookie->Serial_port_number, &read_buf21,
|
||||
sizeof(read_buf21));
|
||||
int num_bytes22 = read(Cookie->Serial_port_number, &read_buf22,
|
||||
sizeof(read_buf22));
|
||||
int num_bytes23 = read(Cookie->Serial_port_number, &read_buf23,
|
||||
sizeof(read_buf23));
|
||||
int num_bytes24 = read(Cookie->Serial_port_number, &read_buf24,
|
||||
sizeof(read_buf24));
|
||||
int num_bytes25 = read(Cookie->Serial_port_number, &read_buf25,
|
||||
sizeof(read_buf25));
|
||||
int num_bytes26 = read(Cookie->Serial_port_number, &read_buf26,
|
||||
sizeof(read_buf26));
|
||||
int num_bytes27 = read(Cookie->Serial_port_number, &read_buf27,
|
||||
sizeof(read_buf27));
|
||||
int num_bytes28 = read(Cookie->Serial_port_number, &read_buf28,
|
||||
sizeof(read_buf28));
|
||||
int num_bytes29 = read(Cookie->Serial_port_number, &read_buf29,
|
||||
sizeof(read_buf29));
|
||||
int num_bytes30 = read(Cookie->Serial_port_number, &read_buf30,
|
||||
sizeof(read_buf30));
|
||||
int num_bytes31 = read(Cookie->Serial_port_number, &read_buf31,
|
||||
sizeof(read_buf31));
|
||||
int num_bytes = num_bytes1 + num_bytes2 + num_bytes3 + num_bytes4
|
||||
+ num_bytes5 + num_bytes6 + num_bytes7 + num_bytes8
|
||||
+ num_bytes9 + num_bytes10 + num_bytes11 + num_bytes12
|
||||
+ num_bytes13 + num_bytes14 + num_bytes15 + num_bytes16
|
||||
+ num_bytes17 + num_bytes18 + num_bytes19 + num_bytes20
|
||||
+ num_bytes21 + num_bytes22 + num_bytes23 + num_bytes24
|
||||
+ num_bytes25 + num_bytes26 + num_bytes27 + num_bytes28
|
||||
+ num_bytes29 + num_bytes30 + num_bytes31;
|
||||
/*int num_bytes1 = read(Cookie->Serial_port_number, &read_buf1, sizeof(read_buf1));
|
||||
int num_bytes2 = read(Cookie->Serial_port_number, &read_buf2, sizeof(read_buf2));
|
||||
int num_bytes3 = read(Cookie->Serial_port_number, &read_buf3, sizeof(read_buf3));
|
||||
int num_bytes4 = read(Cookie->Serial_port_number, &read_buf4, sizeof(read_buf4));
|
||||
int num_bytes5 = read(Cookie->Serial_port_number, &read_buf5, sizeof(read_buf5));
|
||||
int num_bytes6 = read(Cookie->Serial_port_number, &read_buf6, sizeof(read_buf6));
|
||||
int num_bytes7 = read(Cookie->Serial_port_number, &read_buf7, sizeof(read_buf7));
|
||||
int num_bytes8 = read(Cookie->Serial_port_number, &read_buf8, sizeof(read_buf8));
|
||||
int num_bytes9 = read(Cookie->Serial_port_number, &read_buf9, sizeof(read_buf9));
|
||||
int num_bytes10 = read(Cookie->Serial_port_number, &read_buf10, sizeof(read_buf10));
|
||||
int num_bytes11 = read(Cookie->Serial_port_number, &read_buf11, sizeof(read_buf11));
|
||||
int num_bytes12 = read(Cookie->Serial_port_number, &read_buf12, sizeof(read_buf12));
|
||||
int num_bytes13 = read(Cookie->Serial_port_number, &read_buf13, sizeof(read_buf13));
|
||||
int num_bytes14 = read(Cookie->Serial_port_number, &read_buf14, sizeof(read_buf14));
|
||||
int num_bytes15 = read(Cookie->Serial_port_number, &read_buf15, sizeof(read_buf15));
|
||||
int num_bytes16 = read(Cookie->Serial_port_number, &read_buf16, sizeof(read_buf16));
|
||||
int num_bytes17 = read(Cookie->Serial_port_number, &read_buf17, sizeof(read_buf17));
|
||||
int num_bytes18 = read(Cookie->Serial_port_number, &read_buf18, sizeof(read_buf18));
|
||||
int num_bytes19 = read(Cookie->Serial_port_number, &read_buf19, sizeof(read_buf19));
|
||||
int num_bytes20 = read(Cookie->Serial_port_number, &read_buf20, sizeof(read_buf20));
|
||||
int num_bytes21 = read(Cookie->Serial_port_number, &read_buf21, sizeof(read_buf21));
|
||||
int num_bytes = num_bytes1 + num_bytes2 + num_bytes3 + num_bytes4
|
||||
+ num_bytes5 + num_bytes6 + num_bytes7 + num_bytes8
|
||||
+ num_bytes9 + num_bytes10 + num_bytes11 + num_bytes12
|
||||
+ num_bytes13 + num_bytes14 + num_bytes15 + num_bytes16
|
||||
+ num_bytes17 + num_bytes18 + num_bytes19 + num_bytes20
|
||||
+ num_bytes21;*/
|
||||
+ num_bytes5 + num_bytes6 + num_bytes7 + num_bytes8 + num_bytes9
|
||||
+ num_bytes10 + num_bytes11 + num_bytes12 + num_bytes13
|
||||
+ num_bytes14 + num_bytes15 + num_bytes16 + num_bytes17
|
||||
+ num_bytes18 + num_bytes19 + num_bytes20 + num_bytes21
|
||||
+ num_bytes22 + num_bytes23 + num_bytes24 + num_bytes25
|
||||
+ num_bytes26 + num_bytes27 + num_bytes28 + num_bytes29
|
||||
+ num_bytes30 + num_bytes31;
|
||||
|
||||
// The 11 buffer arrays are here concatenated in one single vector.
|
||||
std::copy(read_buf1, read_buf1 + 255, read_buf);
|
||||
@ -262,27 +252,6 @@ ReturnValue_t ArduinoComIF::readReceivedMessage(CookieIF *cookie,
|
||||
std::copy(read_buf29, read_buf29 + 255, read_buf + 28 * 255);
|
||||
std::copy(read_buf30, read_buf30 + 255, read_buf + 29 * 255);
|
||||
std::copy(read_buf31, read_buf31 + 90, read_buf + 30 * 255);
|
||||
/*std::copy(read_buf1, read_buf1 + 255, read_buf);
|
||||
std::copy(read_buf2, read_buf2 + 255, read_buf + 255);
|
||||
std::copy(read_buf3, read_buf3 + 255, read_buf + 2 * 255);
|
||||
std::copy(read_buf4, read_buf4 + 255, read_buf + 3 * 255);
|
||||
std::copy(read_buf5, read_buf5 + 255, read_buf + 4 * 255);
|
||||
std::copy(read_buf6, read_buf6 + 255, read_buf + 5 * 255);
|
||||
std::copy(read_buf7, read_buf7 + 255, read_buf + 6 * 255);
|
||||
std::copy(read_buf8, read_buf8 + 255, read_buf + 7 * 255);
|
||||
std::copy(read_buf9, read_buf9 + 255, read_buf + 8 * 255);
|
||||
std::copy(read_buf10, read_buf10 + 255, read_buf + 9 * 255);
|
||||
std::copy(read_buf11, read_buf11 + 255, read_buf + 10 * 255);
|
||||
std::copy(read_buf12, read_buf12 + 255, read_buf + 11 * 255);
|
||||
std::copy(read_buf13, read_buf13 + 255, read_buf + 12 * 255);
|
||||
std::copy(read_buf14, read_buf14 + 255, read_buf + 13 * 255);
|
||||
std::copy(read_buf15, read_buf15 + 255, read_buf + 14 * 255);
|
||||
std::copy(read_buf16, read_buf16 + 255, read_buf + 15 * 255);
|
||||
std::copy(read_buf17, read_buf17 + 255, read_buf + 16 * 255);
|
||||
std::copy(read_buf18, read_buf18 + 255, read_buf + 17 * 255);
|
||||
std::copy(read_buf19, read_buf19 + 255, read_buf + 18 * 255);
|
||||
std::copy(read_buf20, read_buf20 + 255, read_buf + 19 * 255);
|
||||
std::copy(read_buf21, read_buf21 + 60, read_buf + 20 * 255);*/
|
||||
|
||||
// num_bytes is the number of bytes read (n=0: no bytes received, n=-1: error).
|
||||
if (num_bytes < 0) {
|
||||
@ -293,16 +262,35 @@ ReturnValue_t ArduinoComIF::readReceivedMessage(CookieIF *cookie,
|
||||
printf("Read %i bytes.\n", num_bytes);
|
||||
|
||||
// Loop to define the adress of the buffer start
|
||||
/*
|
||||
* Here it is performed a control loop in order to ensure the identification
|
||||
* of a full and not-corrupted array of measurement in the buffer defined above.
|
||||
* The index related to the first byte of the array is saved in the
|
||||
* variable first_index which is given as output.
|
||||
* It will then will be exploited in the device handler by ScanForReply and
|
||||
* InterpreteForReply.
|
||||
*/
|
||||
int first_index = 0;
|
||||
while (first_index < 7740) {
|
||||
if (read_buf[first_index] == 91){
|
||||
// start character: '['
|
||||
if (read_buf[first_index] == 91) {
|
||||
// fourth character: 'S' (First variable is the char [ChStr])
|
||||
if (read_buf[first_index + 3] == 83) {
|
||||
// first channel must be channel 1 (SPCChNumber: 1)
|
||||
if (read_buf[first_index + 9] == 1) {
|
||||
if (read_buf[first_index + 27*35 + 9] == 39) {
|
||||
if (read_buf[first_index + 27*35 + 22] == 69) {
|
||||
if (read_buf[first_index + 27*45 + 91*13 + 9] == 122) {
|
||||
if (read_buf[first_index + 27*45 + 91*14 + 9] == 123) {
|
||||
if (read_buf[first_index + 27*45 + 91*14 + 86] == 69) {
|
||||
// last channel of temperature board must be channel 39 (SPCChNumber: 39)
|
||||
if (read_buf[first_index + 27 * 35 + 9] == 39) {
|
||||
// 22nd character of last channel of temperature board: 'E' ([ChEnd])
|
||||
if (read_buf[first_index + 27 * 35 + 22] == 69) {
|
||||
// second to last channel of orientation board must be channel 122 (SPCChNumber: 122)
|
||||
if (read_buf[first_index + 27 * 45 + 91 * 13 + 9]
|
||||
== 122) {
|
||||
// last channel of orientation board must be channel 123 (SPCChNumber: 123)
|
||||
if (read_buf[first_index + 27 * 45 + 91 * 14 + 9]
|
||||
== 123) {
|
||||
// 69th character of last channel of orientation board: 'E' ([ChEnd])
|
||||
if (read_buf[first_index + 27 * 45 + 91 * 14
|
||||
+ 86] == 69) {
|
||||
break;
|
||||
} else {
|
||||
first_index++;
|
||||
@ -330,11 +318,10 @@ ReturnValue_t ArduinoComIF::readReceivedMessage(CookieIF *cookie,
|
||||
}
|
||||
}
|
||||
|
||||
// Definition of buffer array and buffer size to return after reading.
|
||||
// Definition of buffer size and buffer array start to return after reading.
|
||||
*size = num_bytes;
|
||||
*buffer = &read_buf[first_index];
|
||||
|
||||
|
||||
return RETURN_OK;
|
||||
|
||||
}
|
||||
|
@ -1,8 +1,17 @@
|
||||
/*
|
||||
* Title: ArduinoComIF.h
|
||||
* Title: ArduinoComIF.h
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* @ brief: Used to initialize the communication Interface (USB connector, serial port) and
|
||||
* to perform the 4 periodical function described in the DeviceCommunicationIF
|
||||
* (child of DeviceCommunicationIF).
|
||||
* In this case sendMessage, getSendSuccess and requestReceiveMessage are
|
||||
* just returning RETURN_OK.
|
||||
* @ details: The ArduinoComIF is instantiated in the generic factory.
|
||||
* @ ingroup: mission/DeviceHandler
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
@ -13,28 +22,29 @@
|
||||
#include <fsfw/objectmanager/SystemObject.h>
|
||||
#include <fsfw/ipc/MessageQueueIF.h>
|
||||
#include <fsfw/tmtcservices/AcceptsTelemetryIF.h>
|
||||
#include <fsfw/serialize/SerializeAdapter.h>
|
||||
#include <fsfw/tmtcservices/CommandingServiceBase.h>
|
||||
#include <fsfw/tmtcpacket/pus/TmPacketStored.h>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
|
||||
/**
|
||||
* @brief Used to initialize the communication Interface (USB connector, serial port) and
|
||||
* to perform the 4 periodical function described in the DeviceCommunicationIF.
|
||||
* In this case sendMessage, getSendSuccess and requestReceiveMessage are
|
||||
* just returning RETURN_OK.
|
||||
* @details The ArduinoComIF is instantiated in the generic factory.
|
||||
* @author: Marco Modè
|
||||
* @ingroup mission/DeviceHandler
|
||||
*/
|
||||
#include <algorithm>
|
||||
// Linux headers
|
||||
#include <fcntl.h> // Contains file controls like O_RDWR
|
||||
#include <errno.h> // Error integer and strerror() function
|
||||
#include <termios.h> // Contains POSIX terminal control definitions
|
||||
#include <unistd.h> // write(), read(), close()
|
||||
|
||||
class ArduinoComIF: public DeviceCommunicationIF, public SystemObject {
|
||||
public:
|
||||
|
||||
ArduinoComIF(object_id_t objectId);
|
||||
virtual ~ArduinoComIF();
|
||||
|
||||
// DeviceCommunicationIF inherited functions.
|
||||
ReturnValue_t initializeInterface(CookieIF *cookie) override;
|
||||
ReturnValue_t sendMessage(CookieIF *cookie, const uint8_t *sendData,
|
||||
size_t sendLen) override;
|
||||
@ -44,6 +54,51 @@ public:
|
||||
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
|
||||
size_t *size) override;
|
||||
|
||||
protected:
|
||||
|
||||
/* The buffer array to store the data read are initialized.
|
||||
* The whole data packet to be read is 2580 bytes, the limit for one reading (VMAX) is 255 bytes.
|
||||
* In order to avoid problems during the acquisition of data in the framework, the buffer is set to
|
||||
* be 3 times the needed dimension: 7740 bytes.
|
||||
* Exploiting then some control loop, the beginning of a full and complete buffer is identified.
|
||||
* Since the acquisition limit for one reading is of 255 bytes, as mentioned above,
|
||||
* the reading is divided in 31 separate stages which employ 31 different buffer array.
|
||||
* At the end these 31 arrays are concatenated in the main buffer array read_buf.
|
||||
*/
|
||||
uint8_t read_buf[7740]; // 7740 bytes from SPC serial output
|
||||
// Intermediate buffers (limit for one single read call is 255 bytes)
|
||||
uint8_t read_buf1[255];
|
||||
uint8_t read_buf2[255];
|
||||
uint8_t read_buf3[255];
|
||||
uint8_t read_buf4[255];
|
||||
uint8_t read_buf5[255];
|
||||
uint8_t read_buf6[255];
|
||||
uint8_t read_buf7[255];
|
||||
uint8_t read_buf8[255];
|
||||
uint8_t read_buf9[255];
|
||||
uint8_t read_buf10[255];
|
||||
uint8_t read_buf11[255];
|
||||
uint8_t read_buf12[255];
|
||||
uint8_t read_buf13[255];
|
||||
uint8_t read_buf14[255];
|
||||
uint8_t read_buf15[255];
|
||||
uint8_t read_buf16[255];
|
||||
uint8_t read_buf17[255];
|
||||
uint8_t read_buf18[255];
|
||||
uint8_t read_buf19[255];
|
||||
uint8_t read_buf20[255];
|
||||
uint8_t read_buf21[255];
|
||||
uint8_t read_buf22[255];
|
||||
uint8_t read_buf23[255];
|
||||
uint8_t read_buf24[255];
|
||||
uint8_t read_buf25[255];
|
||||
uint8_t read_buf26[255];
|
||||
uint8_t read_buf27[255];
|
||||
uint8_t read_buf28[255];
|
||||
uint8_t read_buf29[255];
|
||||
uint8_t read_buf30[255];
|
||||
uint8_t read_buf31[90];
|
||||
|
||||
};
|
||||
|
||||
#endif /* MISSION_DEVICEHANDLER_ARDUINOCOMIF_H_ */
|
||||
|
@ -1,16 +1,19 @@
|
||||
/*
|
||||
* ArduinoCookie.cpp
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* Title: ArduinoCookie.cpp
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
#include <mission/DeviceHandler/ArduinoCookie.h>
|
||||
|
||||
//The cookie tells to device handler which is the device to communicate with, if more
|
||||
// devices are connected. In this case only one device, the Arduino board, is
|
||||
// connected.
|
||||
/*In this case only one device is connected to the controller,
|
||||
* for this reason the adress is unique and there is no need
|
||||
* to define it to distinguish with others.
|
||||
* The constructor is therefore empty.
|
||||
*/
|
||||
|
||||
ArduinoCookie::ArduinoCookie() {
|
||||
}
|
||||
|
@ -1,8 +1,17 @@
|
||||
/*
|
||||
* ArduinoCookie.h
|
||||
* Title: ArduinoCookie.h
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* @ brief: Simple cookie which initializes the variables
|
||||
* for the Linux serial port.
|
||||
* The cookie tells to device handler which is the device
|
||||
* to communicate with, if more devices are connected.
|
||||
* In this case only one device, the Arduino board, is connected.
|
||||
* @ details: The ArduinoCookie is instantiated in the generic factory.
|
||||
* @ ingroup: mission/DeviceHandler
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
@ -12,20 +21,15 @@
|
||||
#include <fsfw/devicehandlers/CookieIF.h>
|
||||
#include <cstddef>
|
||||
|
||||
/**
|
||||
* @brief Simple cookie which initialize the variables
|
||||
* for the Linux serial port.
|
||||
* @details The ArduinoCookie is instantiated in the generic factory.
|
||||
* @author: Marco Modè
|
||||
* @ingroup mission/DeviceHandler
|
||||
*/
|
||||
|
||||
class ArduinoCookie: public CookieIF {
|
||||
public:
|
||||
ArduinoCookie();
|
||||
virtual ~ArduinoCookie();
|
||||
|
||||
// Serial port for the communication with Arduino board is here initialized.
|
||||
// It will be exploited in the ComIF to manage the computer serial port.
|
||||
/* Serial port for the communication with Arduino board is here initialized.
|
||||
* It will be exploited in the ComIF and DH to manage the computer serial port.
|
||||
*/
|
||||
int Serial_port_number;
|
||||
};
|
||||
|
||||
|
@ -1,35 +1,31 @@
|
||||
/*
|
||||
* DeviceHandler.cpp
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* Title: ArduinoDeviceHandler.cpp
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
#include <mission/DeviceHandler/ArduinoDeviceHandler.h>
|
||||
#include <OBSWConfig.h>
|
||||
#include <fsfw/datapool/DataSet.h>
|
||||
#include <fsfw/datapool/PoolVector.h>
|
||||
#include <bsp_linux/fsfwconfig/datapool/dataPoolInit.h>
|
||||
#include <cstdlib>
|
||||
#include <map>
|
||||
//#include <iostream>
|
||||
|
||||
|
||||
ArduinoDH::ArduinoDH(object_id_t objectId, object_id_t comIF, CookieIF *cookie) :
|
||||
DeviceHandlerBase(objectId, comIF, cookie) {
|
||||
mode = _MODE_START_UP;
|
||||
DeviceHandlerBase(objectId, comIF, cookie),
|
||||
TempValueVec(datapool::Temperature_value, &ArduinoDataSet, PoolVariableIF::VAR_WRITE),
|
||||
TempTimeVec(datapool::Temperature_Timestamp, &ArduinoDataSet, PoolVariableIF::VAR_WRITE) {
|
||||
mode = _MODE_START_UP;
|
||||
}
|
||||
ArduinoDH::~ArduinoDH() {
|
||||
}
|
||||
ArduinoDH::~ArduinoDH() {}
|
||||
|
||||
void ArduinoDH::doStartUp() {
|
||||
std::cout<<"Arduino device -> Switching-ON"<<std::endl;
|
||||
std::cout << "Arduino device -> Switching-ON" << std::endl;
|
||||
setMode(_MODE_TO_ON);
|
||||
return;
|
||||
}
|
||||
|
||||
void ArduinoDH::doShutDown() {
|
||||
std::cout<<"Arduino device -> Switching-OFF"<<std::endl;
|
||||
std::cout << "Arduino device -> Switching-OFF" << std::endl;
|
||||
setMode(_MODE_SHUT_DOWN);
|
||||
return;
|
||||
}
|
||||
@ -44,7 +40,7 @@ ReturnValue_t ArduinoDH::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
|
||||
void ArduinoDH::doTransition(Mode_t modeFrom, Submode_t submodeFrom) {
|
||||
if (mode == _MODE_TO_NORMAL) {
|
||||
setMode(_MODE_TO_NORMAL);
|
||||
std::cout<<"Arduino device is in Normal mode"<<std::endl;
|
||||
std::cout << "Arduino device is in Normal mode" << std::endl;
|
||||
} else {
|
||||
setMode(_MODE_TO_NORMAL);
|
||||
}
|
||||
@ -56,53 +52,40 @@ ReturnValue_t ArduinoDH::buildCommandFromCommand(
|
||||
return HasActionsIF::EXECUTION_FINISHED;
|
||||
}
|
||||
|
||||
void ArduinoDH::fillCommandAndReplyMap() {}
|
||||
void ArduinoDH::fillCommandAndReplyMap() {
|
||||
}
|
||||
|
||||
ReturnValue_t ArduinoDH::scanForReply(const uint8_t *start, size_t len,
|
||||
DeviceCommandId_t *foundId, size_t *foundLen) {
|
||||
|
||||
// In this case the data are sent from the Arduino board without any command.
|
||||
// No replies of data received are required.
|
||||
// This function checks the validity of the data packet received.
|
||||
/* In this case the data are sent from the Arduino board without any command.
|
||||
* No replies of data received are required.
|
||||
* This function checks the validity of the data packet received.
|
||||
*/
|
||||
|
||||
//*foundLen = 2580;
|
||||
//*foundId = 0xFFFFFF; // assigned here as test
|
||||
*foundLen = len;
|
||||
//DeviceCommandId_t *foundId = 0xFFFFFF;
|
||||
std::map <DeviceCommandId_t, size_t> id {{*foundId, len}};
|
||||
//*foundId = id;
|
||||
// The ID is defined as a macro. It includes info about the array size.
|
||||
std::map<DeviceCommandId_t, size_t> id { { *foundId, len } };
|
||||
|
||||
// check validity
|
||||
if (len == *foundLen){
|
||||
// start character: '['
|
||||
if (*start == 91 ){
|
||||
// fourth character: 'S' (First variable is the char [ChStr])
|
||||
if (*(start + 3) == 83) {
|
||||
// first channel must be channel 1 (SPCChNumber: 1)
|
||||
if (*(start + 9) == 1) {
|
||||
return APERIODIC_REPLY;
|
||||
} else {
|
||||
return DeviceHandlerIF::LENGTH_MISSMATCH;
|
||||
}
|
||||
} else {
|
||||
return DeviceHandlerIF::LENGTH_MISSMATCH;
|
||||
}
|
||||
} else {
|
||||
return DeviceHandlerIF::LENGTH_MISSMATCH;
|
||||
}
|
||||
/* Check validity of the packet in terms of length (the data have
|
||||
* been already checked in ArduinoComIF.cpp in order to provide the
|
||||
* start of the data buffer.
|
||||
*/
|
||||
if (*foundLen == 7740) {
|
||||
return APERIODIC_REPLY;
|
||||
} else {
|
||||
return IGNORE_REPLY_DATA;
|
||||
return DeviceHandlerIF::LENGTH_MISSMATCH;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
const uint8_t *packet) {
|
||||
|
||||
DataSet ArduinoDataSet;
|
||||
|
||||
//sif::debug<<"DEBUG_DH: interprete for reply"<<std::endl;
|
||||
// The data stored in the read buffer are here copied in the variables with the SPC format.
|
||||
// After copying, the data of temperature, environment and accelerometer are stored in three separated vectors.
|
||||
/* The data stored in the read buffer are here copied in the variables with the SPC format.
|
||||
* (The structures are defined in the header)
|
||||
* The data of temperature, environment and orientation are then stored in three separated vectors.
|
||||
* These vectors will be then saved in the framework datapool in order to be used by the controller.
|
||||
*/
|
||||
printf(
|
||||
"\n***********************************************************************************************\n");
|
||||
printf("TEMPERATURE parameters are: ");
|
||||
@ -114,6 +97,11 @@ ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
memcpy(&Temp_ch.temperature, &packet[27 * i + 11], 4);
|
||||
memcpy(&Temp_ch.Timestamp, &packet[27 * i + 15], 4);
|
||||
memcpy(&Temp_ch.end_string, &packet[27 * i + 19], 8);
|
||||
/* The data (temperature, timestamp) are here saved in the datapool.
|
||||
* They will be exploited by the thermal controller.
|
||||
*/
|
||||
memcpy(&TempValueVec[i], &Temp_ch.temperature, 4);
|
||||
memcpy(&TempTimeVec[i], &Temp_ch.Timestamp, 4);
|
||||
// The data are here printed (useful for tests).
|
||||
printf("\n\nStart: %7s", Temp_ch.start_string);
|
||||
printf("\nTyp: %u", Temp_ch.Typ);
|
||||
@ -124,10 +112,16 @@ ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
printf("\nEnd: %7s", Temp_ch.end_string);
|
||||
vecTemp.emplace_back(Temp_ch);
|
||||
}
|
||||
printf(
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
/* The environment and orientation data reading and printing
|
||||
* are currently commented out because they are not needed.
|
||||
* Anyway they are available and they can be used if necessary.
|
||||
*/
|
||||
|
||||
/*printf(
|
||||
"\n\n***********************************************************************************************\n");
|
||||
printf("ENVIRONMENTAL parameters are: ");
|
||||
for (int j = 0; j < 9; j++) {
|
||||
for (int j = 0; j < 9; j++) {
|
||||
memcpy(&Env_ch.start_string, &packet[27 * (36 + j) + 0], 8);
|
||||
memcpy(&Env_ch.Typ, &packet[27 * (36 + j) + 8], 1);
|
||||
memcpy(&Env_ch.SPCChNumber, &packet[27 * (36 + j) + 9], 1);
|
||||
@ -136,13 +130,11 @@ ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
memcpy(&Env_ch.Timestamp, &packet[27 * (36 + j) + 15], 4);
|
||||
memcpy(&Env_ch.end_string, &packet[27 * (36 + j) + 19], 8);
|
||||
// The data are here printed (useful for tests).
|
||||
if (j == 0 || j == 3 || j == 6){
|
||||
if (j == 0 || j == 3 || j == 6) {
|
||||
printf("\n\nHUMIDITY: ");
|
||||
}
|
||||
else if (j == 1 || j == 4 || j == 7) {
|
||||
} else if (j == 1 || j == 4 || j == 7) {
|
||||
printf("\n\nPRESSURE: ");
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
printf("\n\nTEMPERATURE: ");
|
||||
}
|
||||
printf("\n\nStart: %7s", Env_ch.start_string);
|
||||
@ -183,13 +175,11 @@ ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
printf("\n\nEULER ANGLES: ");
|
||||
break;
|
||||
}
|
||||
if (k == 0 || k == 3 || k == 6 || k == 9 || k == 12){
|
||||
if (k == 0 || k == 3 || k == 6 || k == 9 || k == 12) {
|
||||
printf("\n\nX ==> ");
|
||||
}
|
||||
else if (k == 1 || k == 4 || k == 7 || k == 10 || k == 13) {
|
||||
} else if (k == 1 || k == 4 || k == 7 || k == 10 || k == 13) {
|
||||
printf("\n\nY ==> ");
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
printf("\n\nZ ==> ");
|
||||
}
|
||||
printf("\nStart: %7s", Ornt_ch.start_string);
|
||||
@ -207,54 +197,8 @@ ReturnValue_t ArduinoDH::interpretDeviceReply(DeviceCommandId_t id,
|
||||
|
||||
std::cout << "\n\nEnd reading data.\n" << std::endl;
|
||||
|
||||
// The data are here written to the data pool where they would be available to be used for other objects
|
||||
|
||||
/*PoolVector <float, 36> TempValueVec(datapool::Temperature_value, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int i = 0; i < 36; i++) {
|
||||
memcpy(&TempValueVec[i], &vecTemp[i].temperature, 4);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);*/
|
||||
|
||||
|
||||
/*PoolVector <unsigned int, 36> TempTimeVec(datapool::Temperature_Timestamp, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int i = 0; i < 36; i++) {
|
||||
memcpy(&TempTimeVec[i], &vecTemp[i].Timestamp, 4);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
|
||||
sif::debug<<"\nDEBUG_DHi: End of copy to datapool"<<std::endl;
|
||||
|
||||
PoolVector <float, 9> EnvValueVec(datapool::Environmental_value, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int j = 0; j < 9; j++) {
|
||||
memcpy(&EnvValueVec[j], &vecEnv[j].Value, 4);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
|
||||
PoolVector <unsigned int, 9> EnvTimeVec(datapool::Environmental_Timestamp, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int j = 0; j < 9; j++) {
|
||||
memcpy(&EnvTimeVec[j], &vecEnv[j].Timestamp, 4);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
|
||||
sif::debug<<"\nDEBUG_DHj: End of copy to datapool"<<std::endl;
|
||||
|
||||
PoolVector <float, 15> AccValueVec(datapool::Accelerometer_value, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int k = 0; k < 15; k++) {
|
||||
memcpy(&AccValueVec[k], &vecOrnt[k].Value, 36);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
sif::debug<<"\nDEBUG_DHk1: End of copy to datapool"<<std::endl;
|
||||
|
||||
PoolVector <unsigned int, 15> AccTimeVec(datapool::Accelerometer_Timestamp, &ArduinoDataSet, PoolVariableIF::VAR_WRITE);
|
||||
for (int k = 0; k < 15; k++) {
|
||||
memcpy(&AccTimeVec[k], &vecOrnt[k].Timestamp, 36);
|
||||
}
|
||||
ArduinoDataSet.commit(PoolVariableIF::VALID);
|
||||
sif::debug<<"\nDEBUG_DHk2: End of copy to datapool"<<std::endl;*/
|
||||
|
||||
sif::debug<<"DEBUG_DH: End of copy to datapool"<<std::endl;
|
||||
|
||||
return RETURN_OK;
|
||||
}
|
||||
|
||||
void ArduinoDH::setNormalDatapoolEntriesInvalid() {}
|
||||
void ArduinoDH::setNormalDatapoolEntriesInvalid() {
|
||||
}
|
||||
|
@ -1,28 +1,85 @@
|
||||
/*
|
||||
* DeviceHandler.h
|
||||
* Title: ArduinoDeviceHandler.h
|
||||
* Author: Marco Modè
|
||||
* Last version: 24/09/2021
|
||||
* Project: ESBO-DS
|
||||
*
|
||||
* Last Modify: 20/09/2021
|
||||
* Author: Marco Modè
|
||||
* @ brief: Basic device handler to manage the communication with the Arduino sensor board.
|
||||
* The data are sent to the serial port of the computer from the Arduino board.
|
||||
* The device handler read and manages these data exploiting the ComIF and the
|
||||
* DeviceHandlerBase functions.
|
||||
* @ details: The ArduinoDH object is instantiated in the generic factory.
|
||||
* @ author: Marco Modè
|
||||
* @ ingroup: mission/DeviceHandler
|
||||
*-------------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* The structure of data sent is in SPC format, required by the
|
||||
* On-Board Computer.
|
||||
* The structure format is defined below in the class.
|
||||
*
|
||||
* Hereafter, the sensor boards connected to the Arduino Micro are described
|
||||
* with board name, associated pin on the Arduino board and related channels.
|
||||
* This is done to give a clearer understanding of the reading process.
|
||||
*
|
||||
* TEMPERATURE DATA - STRUCTURE
|
||||
* TMB 1, SS = pin 4
|
||||
* Temperature Temp_ch1; Temperature Temp_ch2; Temperature Temp_ch3;
|
||||
* Temperature Temp_ch4; Temperature Temp_ch5; Temperature Temp_ch6;
|
||||
* Temperature Temp_ch7; Temperature Temp_ch8; Temperature Temp_ch9;
|
||||
* TMB 2, SS = pin 5
|
||||
* Temperature Temp_ch11; Temperature Temp_ch12; Temperature Temp_ch13;
|
||||
* Temperature Temp_ch14; Temperature Temp_ch15; Temperature Temp_ch16;
|
||||
* Temperature Temp_ch17; Temperature Temp_ch18; Temperature Temp_ch19;
|
||||
* TMB 3, SS = pin 6
|
||||
* Temperature Temp_ch21; Temperature Temp_ch22; Temperature Temp_ch23;
|
||||
* Temperature Temp_ch24; Temperature Temp_ch25; Temperature Temp_ch26;
|
||||
* Temperature Temp_ch27; Temperature Temp_ch28; Temperature Temp_ch29;
|
||||
* TMB 4, SS = pin 7
|
||||
* Temperature Temp_ch31; Temperature Temp_ch32; Temperature Temp_ch33;
|
||||
* Temperature Temp_ch34; Temperature Temp_ch35; Temperature Temp_ch36;
|
||||
* Temperature Temp_ch37; Temperature Temp_ch38; Temperature Temp_ch39;
|
||||
*
|
||||
* ENVIRONMENTAL DATA - STRUCTURE
|
||||
* BME280_1, SS = pin 8 (pressure, humidity, temperature)
|
||||
* Environmental Env_ch41; Environmental Env_ch42; Environmental Env_ch43;
|
||||
* BME280_2, SS = pin 9 (pressure, humidity, temperature)
|
||||
* Environmental Env_ch51; Environmental Env_ch52; Environmental Env_ch53;
|
||||
* BME280_3, SS = pin 10 (pressure, humidity, temperature)
|
||||
* Environmental Env_ch61; Environmental Env_ch62; Environmental Env_ch63;
|
||||
*
|
||||
* ORIENTATION DATA - STRUCTURE
|
||||
* BNO055_1
|
||||
* ACCELERATION
|
||||
* Orientation Ornt_ch81; Orientation Ornt_ch82; Orientation Ornt_ch83;
|
||||
* GYROSCOPE
|
||||
* Orientation Ornt_ch91; Orientation Ornt_ch92; Orientation Ornt_ch93;
|
||||
* MAGNETOMETER
|
||||
* Orientation Ornt_ch101; Orientation Ornt_ch102; Orientation Ornt_ch103;
|
||||
* LINEAR ACCELERATION
|
||||
* Orientation Ornt_ch111; Orientation Ornt_ch112; Orientation Ornt_ch113;
|
||||
* EULER ANGLES
|
||||
* Orientation Ornt_ch121; Orientation Ornt_ch122; Orientation Ornt_ch123;
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef MISSION_DEVICEHANDLER_ARDUINODEVICEHANDLER_H_
|
||||
#define MISSION_DEVICEHANDLER_ARDUINODEVICEHANDLER_H_
|
||||
|
||||
#include <vector>
|
||||
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
|
||||
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
|
||||
#include <fsfw/timemanager/Countdown.h>
|
||||
#include <fsfw/datapool/DataSet.h>
|
||||
#include <fsfw/datapool/PoolVector.h>
|
||||
#include <bsp_linux/fsfwconfig/datapool/dataPoolInit.h>
|
||||
#include <OBSWConfig.h>
|
||||
#include <vector>
|
||||
#include <cstdlib>
|
||||
#include <map>
|
||||
|
||||
|
||||
/**
|
||||
* @brief Basic device handler to manage the communication with the Arduino sensor board.
|
||||
* The data are sent to the serial port of the computer from the Arduino board.
|
||||
* The device handler read and manages these data exploiting the ComIF and the
|
||||
* DeviceHandlerBase functions.
|
||||
* @details The ArduinoDH object is instantiated in the generic factory.
|
||||
* @author Marco Modè
|
||||
* @ingroup mission/DeviceHandler
|
||||
*/
|
||||
class ArduinoDH: public DeviceHandlerBase {
|
||||
public:
|
||||
/**
|
||||
@ -31,13 +88,18 @@ public:
|
||||
* @param comIF The ID of the Communication IF used by test device handler.
|
||||
* @param cookie Cookie object used by the test device handler. This is
|
||||
* also used and passed to the comIF object.
|
||||
* @param onImmediately This will start a transition to MODE_ON immediately
|
||||
* so the device handler jumps into #doStartUp. Should only be used
|
||||
* in development to reduce need of commanding while debugging.
|
||||
*/
|
||||
ArduinoDH(object_id_t objectId, object_id_t comIF, CookieIF *cookie);
|
||||
virtual ~ ArduinoDH();
|
||||
|
||||
/* This header code contains the definition of the structures of data
|
||||
* (Temperature, Environemntal, Orientation) in which the sensors data are stored.
|
||||
* These structures are defined in the Arduino IDE code developed for the sensor board.
|
||||
* The Arduino is the responsible of the management of sensors devices and data.
|
||||
* Furthermore, the vectors and arrays necessary for the code execution are here
|
||||
* defined.
|
||||
*/
|
||||
|
||||
/* Definiton of data structure for SPC communication. Three different structures are defined for measurements of:
|
||||
* - Temperature data,
|
||||
* - Environmental data,
|
||||
@ -99,26 +161,26 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
// Three vectors are defined to store the three type of classes sequentially
|
||||
// during the phase of reading copying data from the buffers
|
||||
/* Three vectors are defined to store the three type of classes sequentially
|
||||
* during the phase of reading copying data from the buffers
|
||||
*/
|
||||
std::vector<Temperature> vecTemp;
|
||||
std::vector<Environmental> vecEnv;
|
||||
std::vector<Orientation> vecOrnt;
|
||||
|
||||
// Three dummy child structures are defined. They are used to store the three
|
||||
// different types of data during the measurement loop and then the data are
|
||||
// copied in the vectors above.
|
||||
// Then, they are overwritten by the data of next iteration and the process is
|
||||
// repeated ,until all the data from the buffer are copied to the three vectors
|
||||
// using the three different structures.
|
||||
/* Three dummy child structures are defined. They are used to store the three
|
||||
* different types of data during the measurement loop and then the data are
|
||||
* copied in the vectors above.
|
||||
* Then, they are overwritten by the data of next iteration and the process is
|
||||
* repeated ,until all the data from the buffer are copied to the three vectors
|
||||
* using the three different structures.
|
||||
*/
|
||||
Temperature Temp_ch;
|
||||
Environmental Env_ch;
|
||||
Orientation Ornt_ch;
|
||||
|
||||
protected:
|
||||
|
||||
//#define BUFFER_ID(id, value, msg);
|
||||
|
||||
// DeviceHandlerBase inherited functions.
|
||||
virtual void doStartUp() override;
|
||||
virtual void doShutDown() override;
|
||||
@ -137,6 +199,11 @@ protected:
|
||||
const uint8_t *packet) override;
|
||||
virtual void setNormalDatapoolEntriesInvalid() override;
|
||||
|
||||
// Dataset initialized. It is used for copying the data to the datapool.
|
||||
DataSet ArduinoDataSet;
|
||||
// Here the datapool variables are defined. The needed data will be stored inside them.
|
||||
PoolVector <float, 36> TempValueVec;
|
||||
PoolVector <unsigned int, 36> TempTimeVec;
|
||||
};
|
||||
|
||||
#endif /* MISSION_DEVICEHANDLER_ARDUINODEVICEHANDLER_H_ */
|
||||
|
Reference in New Issue
Block a user