testArduino/fsfw/osal/linux/Clock.cpp

222 lines
5.9 KiB
C++

#include "../../serviceinterface/ServiceInterfaceStream.h"
#include "../../timemanager/Clock.h"
#include <sys/time.h>
#include <sys/sysinfo.h>
#include <linux/sysinfo.h>
#include <time.h>
#include <unistd.h>
#include <fstream>
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = NULL;
uint32_t Clock::getTicksPerSecond(void){
uint32_t ticks = sysconf(_SC_CLK_TCK);
return ticks;
}
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
timespec timeUnix;
timeval timeTimeval;
convertTimeOfDayToTimeval(time,&timeTimeval);
timeUnix.tv_sec = timeTimeval.tv_sec;
timeUnix.tv_nsec = (__syscall_slong_t) timeTimeval.tv_usec * 1000;
int status = clock_settime(CLOCK_REALTIME,&timeUnix);
if(status!=0){
//TODO errno
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setClock(const timeval* time) {
timespec timeUnix;
timeUnix.tv_sec = time->tv_sec;
timeUnix.tv_nsec = (__syscall_slong_t) time->tv_usec * 1000;
int status = clock_settime(CLOCK_REALTIME,&timeUnix);
if(status!=0){
//TODO errno
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getClock_timeval(timeval* time) {
timespec timeUnix;
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
if(status!=0){
return HasReturnvaluesIF::RETURN_FAILED;
}
time->tv_sec = timeUnix.tv_sec;
time->tv_usec = timeUnix.tv_nsec / 1000.0;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
timeval timeVal;
ReturnValue_t result = getClock_timeval(&timeVal);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
*time = (uint64_t)timeVal.tv_sec*1e6 + timeVal.tv_usec;
return HasReturnvaluesIF::RETURN_OK;
}
timeval Clock::getUptime() {
timeval uptime;
auto result = getUptime(&uptime);
if(result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "Clock::getUptime: Error getting uptime" << std::endl;
}
return uptime;
}
ReturnValue_t Clock::getUptime(timeval* uptime) {
//TODO This is not posix compatible and delivers only seconds precision
// is the OS not called Linux?
//Linux specific file read but more precise
double uptimeSeconds;
if(std::ifstream("/proc/uptime",std::ios::in) >> uptimeSeconds){
uptime->tv_sec = uptimeSeconds;
uptime->tv_usec = uptimeSeconds *(double) 1e6 - (uptime->tv_sec *1e6);
}
//TODO This is not posix compatible and delivers only seconds precision
// I suggest this is moved into another clock function which will
// deliver second precision later.
// struct sysinfo sysInfo;
// int result = sysinfo(&sysInfo);
// if(result != 0){
// return HasReturnvaluesIF::RETURN_FAILED;
// }
// return sysInfo.uptime;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
timeval uptime;
ReturnValue_t result = getUptime(&uptime);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
*uptimeMs = uptime.tv_sec * 1e3 + uptime.tv_usec / 1e3;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
timespec timeUnix;
int status = clock_gettime(CLOCK_REALTIME,&timeUnix);
if(status != 0){
//TODO errno
return HasReturnvaluesIF::RETURN_FAILED;
}
struct tm* timeInfo;
timeInfo = gmtime(&timeUnix.tv_sec);
time->year = timeInfo->tm_year + 1900;
time->month = timeInfo->tm_mon+1;
time->day = timeInfo->tm_mday;
time->hour = timeInfo->tm_hour;
time->minute = timeInfo->tm_min;
time->second = timeInfo->tm_sec;
time->usecond = timeUnix.tv_nsec / 1000.0;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
timeval* to) {
tm fromTm;
//Note: Fails for years before AD
fromTm.tm_year = from->year - 1900;
fromTm.tm_mon = from->month - 1;
fromTm.tm_mday = from->day;
fromTm.tm_hour = from->hour;
fromTm.tm_min = from->minute;
fromTm.tm_sec = from->second;
to->tv_sec = mktime(&fromTm);
to->tv_usec = from->usecond;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
/ 3600.;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
//SHOULDDO: works not for dates in the past (might have less leap seconds)
if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = { 0, 0 };
leapSeconds_timeval.tv_sec = leapSeconds;
//initial offset between UTC and TAI
timeval UTCtoTAI1972 = { 10, 0 };
timeval TAItoTT = { 32, 184000 };
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
leapSeconds = leapSeconds_;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if(timeMutex==NULL){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::BLOCKING);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*leapSeconds_ = leapSeconds;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::checkOrCreateClockMutex(){
if(timeMutex==NULL){
MutexFactory* mutexFactory = MutexFactory::instance();
if (mutexFactory == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}