fsfw-example-hosted/README-host.md

6.0 KiB

FSFW demo with Host OSAL on Windows or Linux

This demo has been tested for Windows and Linux. It uses the host abstraction layer of the FSFW.

General Information

This demo provides the opportunity to to test functionality of the FSFW on a host computer without the need of setting up external embedded hardware.

Prerequisites

  1. Makefile build: make installed (bundled with MSYS2 on Windows or via xPacks Windows Build Tools). Natively installed on Linux.
  2. Recommended for application code development: Eclipse for C/C++ . Project files and launch configuration are provided for Eclipse to ease development. Visual Studio support might follow soon following CMake implementation.
  3. CMake Build: Correct CMake installation.

Windows - MinGW64 build

  1. MSYS2 and MinGW64 installed

  2. Update MSYS2 by opening it and running

    pacman -Syuuu
    

    After that, the gcc toolchain, git, make and CMake should be installed with

    pacman -S git mingw-w64-x86_64-gcc mingw-w64-x86_64-gdb mingw-w64-x86_64-make mingw-w64-x86_64-cmake
    

    You can install a full development environment with

    pacman -S base-devel
    

    or install gcc, gdb and mingw32-make with the following command

    pacman -S mingw-w64-x86_64-toolchain
    

    It is recommended to set up aliases to get to the example directory quickly.

  3. It is recommended to add the MinGW64 bit binaries to the system path so Eclipse can use them. It is also recommended to run git config --global core.autocrlf true when using MinGW64 to have consistent line endings on Windows systems.

Linux - Enabling RTOS functionalities

The last chapter in the Linux README specifies some steps required to cleanly run the FSFW on a (host) Linux system.

Building the Software with CMake

CMake should be installed first. More detailed information on the CMake build process and options can be found in the CMake README. Readers unfamiliar with CMake should read this first. The following steps will show to to build the Debug executable using either the "Unix Makefiles" generator on Linux or the "MinGW Makefiles" generator in Windows in the command line to be as generic as possible.

Linux Build

  1. Create a new folder for the executable.

    mkdir Debug
    cd Debug
    
  2. Configure the build system

    cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host ..
    
  3. Build the software

    cmake --build . -j
    
  4. The binary will be located inside the Debug folder and can be run there

    ./fsfw-example
    

MinGW64 Build

Set up MinGW64 like explained previously.

The CMake build can be generated either with the CMake GUI tool or with the MinGW64 command line. Steps will be shown with the MinGW64 command line tool, but the CMake GUI can be used on Windows as well to have a convenient way to configure the CMake build.

  1. Open the MinGW64 terminal and navigate to the fsfw_example folder

  2. Create a new folder for the executable.

    mkdir Debug
    cd Debug
    

    The build options can be displayed with cmake -L .

  3. Configure the project and generate the native MinGW64 buildsystem

    cmake -G "MinGW Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host ..
    

    The build configuration can also be performed with the shell scripts located inside cmake/scripts/Host or the Python helper script cmake_build_config.py inside cmake/scripts. The configured build options can now be shown with cmake -L.

  4. Call the build system (Make)

    cmake --build . -j
    
  5. Like already mentioned, it is recommended to run the binary directly as an executable by double-clicking it or in the Windows Terminal.

Setting up Eclipse for CMake projects

The separate Eclipse README specifies how to set up Eclipse to build CMake projects. Separate project files and launch configurations for the MinGW build were provided.

Building the Software with Makefiles

The Makefile is able to determine the OS and supply additonal required libraries, but this has only been tested for Windows 10 and Linux (Ubuntu 20.04)

  1. Clone this repository

    git clone https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example.git
    
  2. Set up submodules

    git submodule init
    git submodule update
    
  3. Copy the Makefile-Hosted file in the make folder into the cloned folder root and rename it to Makefile

  4. Once all the prerequisites have been met. the binary can be built with the following command. Replace debug with release to build the optimized binary.

    make debug -j
    

Setting up Eclipse for CMake projects

The separate Eclipse README specifies how to set up Eclipse to build CMake projects. Separate project files and launch configurations for the MinGW build were provided. The debug output is colored by default. It is recommended to install the ANSI Escape in Console plugin in Eclipse so the coloring works in the Eclipse console.

Running or Debugging the Software - Makefile

Linux

The Makefile binary will be generated in the _bin folder and can be run in Linux directly from the console.

Windows

On Windows, it is recommended to run the binary in the command line or as a regular executable (double-click) to get the full debug outpu because there seem to be issues with the MinGW output. The Windows Terminal can be opened in Eclipse by right clicking on the _bin folder in the project explorer and clicking Show in Local Terminal

Setting up Eclipse - Makefile

The separate Eclipse README specifies how to set up Eclipse. Separate project files and launch configurations for the MinGW build were provided.