179 lines
7.3 KiB
Markdown
179 lines
7.3 KiB
Markdown
<img align="center" src="https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common/raw/branch/master/doc/images/FSFW_Logo_V3_bw.png" width="50%">
|
|
|
|
# <a id="top"></a> <a name="linux"></a> FSFW Example Application
|
|
|
|
This repository features a demo application. The example has been run successfully on the following
|
|
platforms:
|
|
|
|
- Linux host machine with the Linux OSAL or the Host OSAL
|
|
- Windows with the Host OSAL
|
|
- STM32H743ZI-Nucleo with the FreeRTOS OSAL
|
|
- Raspberry Pi with the Linux OSAL
|
|
- STM32H743ZI-Nucleo with the RTEMS OSAL
|
|
|
|
The purpose of this example is to provide a demo of the FSFW capabilities.
|
|
However, it can also be used as a starting point to set up a repository for
|
|
new flight software. It also aims to provide developers with practical examples
|
|
of how the FSFW is inteded to be used and how project using the FSFW should or can be
|
|
set up and it might serve as a basic test platform for the FSFW as well to ensure all OSALs
|
|
are compiling and running as expected.
|
|
|
|
The repository contains a Python TMTC program which can be used to showcase
|
|
the TMTC capabilities of the FSFW (currently, using the ECSS PUS packet standard).
|
|
|
|
# Configuring the Example
|
|
|
|
The build system will copy three configuration files into the build directory:
|
|
|
|
1. `commonConfig.h` which contains common configuration parameters
|
|
2. `OBSWConfig.h` which can contain machine and architecture specific configuration options
|
|
3. `FSFWConfig.h` which contains the configuration for the flight software framework
|
|
|
|
These files can be edited manually after `CMake` build generation.
|
|
|
|
# Index
|
|
|
|
[Getting started with Eclipse for C/C++](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common/src/branch/master/doc/README-eclipse.md)<br>
|
|
[Getting started with CMake](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common/src/branch/master/doc/README-cmake.md)<br>
|
|
|
|
[Getting started with the Hosted OSAL](#this)<br>
|
|
[Getting started with the FreeRTOS OSAL on a STM32](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-freertos)<br>
|
|
[Getting started with the RTEMS OSAL on a STM32](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-rtems)<br>
|
|
[Getting started with the Raspberry Pi](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu)<br>
|
|
[Getting started with the Beagle Bone Black](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu)<br>
|
|
|
|
# <a id="this"></a> FSFW demo with Host OSAL on Windows or Linux
|
|
|
|
This demo has been tested for Windows and Linux. It uses
|
|
the host abstraction layer of the FSFW.
|
|
|
|
## General Information
|
|
|
|
This demo provides the opportunity to to test functionality of the
|
|
FSFW on a host computer without the need of setting up external embedded hardware.
|
|
|
|
## Prerequisites
|
|
1. Makefile build: make installed (bundled with MSYS2 on Windows or via [xPacks Windows Build Tools](https://xpack.github.io/windows-build-tools/install/)). Natively installed on Linux.
|
|
2. Recommended for application code development: [Eclipse for C/C++](https://www.eclipse.org/downloads/packages/) .
|
|
Project files and launch configuration are provided for Eclipse to ease development.
|
|
Visual Studio support might follow soon following CMake implementation.
|
|
3. CMake Build: Correct CMake installation.
|
|
|
|
### Windows - MinGW64 build
|
|
|
|
1. [MSYS2 and MinGW64](https://www.msys2.org/) installed
|
|
2. Update MSYS2 by opening it and running
|
|
```sh
|
|
pacman -Syuuu
|
|
```
|
|
|
|
After that, the gcc toolchain, git, make and CMake should be installed with
|
|
```sh
|
|
pacman -S git mingw-w64-x86_64-gcc mingw-w64-x86_64-gdb mingw-w64-x86_64-make mingw-w64-x86_64-cmake
|
|
```
|
|
|
|
You can install a full development environment with
|
|
```sh
|
|
pacman -S base-devel
|
|
```
|
|
|
|
or install `gcc`, `gdb` and `mingw32-make` with the following command
|
|
|
|
```sh
|
|
pacman -S mingw-w64-x86_64-toolchain
|
|
```
|
|
|
|
It is recommended to set up aliases to get to the example directory
|
|
quickly.
|
|
|
|
3. It is recommended to add the MinGW64 bit binaries to the system path so Eclipse can use
|
|
them. It is also recommended to run `git config --global core.autocrlf true` when using MinGW64
|
|
to have consistent line endings on Windows systems.
|
|
|
|
### Linux - Enabling RTOS functionalities
|
|
|
|
The dedicated [Linux README](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu/src/branch/mueller/master/doc/README-linux.md#top)
|
|
specifies some steps required to cleanly run the FSFW.
|
|
|
|
## Building the Software with CMake
|
|
|
|
CMake should be [installed](https://cmake.org/install/) first.
|
|
More detailed information on the CMake build process and options
|
|
can be found in the [CMake README](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common/src/branch/master/doc/README-cmake.md).
|
|
Readers unfamiliar with CMake should read this first. The following steps will show to to build
|
|
the Debug executable using either the `"Unix Makefiles"` generator on Linux or
|
|
the `"MinGW Makefiles"` generator in Windows in the command line to be as generic as possible.
|
|
|
|
You can also install [Ninja](https://ninja-build.org/) and then supply `-G "Ninja"` to the build
|
|
generation as a cross-platform solution.
|
|
|
|
### Linux Build
|
|
|
|
1. Create a new folder for the executable.
|
|
```sh
|
|
mkdir build-Debug
|
|
cd build-Debug
|
|
```
|
|
|
|
2. Configure the build system
|
|
```sh
|
|
cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host ..
|
|
```
|
|
|
|
You can also use `-DOS_FSFW=linux` to use the Linux OSAL of the FSFW.
|
|
|
|
3. Build the software
|
|
```sh
|
|
cmake --build . -j
|
|
```
|
|
|
|
4. The binary will be located inside the Debug folder and can be run there
|
|
```sh
|
|
./fsfw-example
|
|
```
|
|
|
|
### MinGW64 Build
|
|
|
|
Set up MinGW64 like explained previously.
|
|
|
|
The CMake build can be generated either with the CMake GUI tool or with the MinGW64 command line.
|
|
Steps will be shown with the MinGW64 command line tool, but the CMake GUI can be used on Windows
|
|
as well to have a convenient way to configure the CMake build.
|
|
|
|
1. Open the MinGW64 terminal and navigate to the `fsfw_example` folder
|
|
2. Create a new folder for the executable.
|
|
```sh
|
|
mkdir build-Debug
|
|
cd build-Debug
|
|
```
|
|
|
|
The build options can be displayed with `cmake -L` .
|
|
|
|
3. Configure the project and generate the native MinGW64 buildsystem
|
|
```sh
|
|
cmake -G "MinGW Makefiles" -DCMAKE_BUILD_TYPE=Debug -DOS_FSFW=host ..
|
|
```
|
|
|
|
The build configuration can also be performed with the shell scripts located
|
|
inside `cmake/scripts/Host` or the Python helper script `cmake_build_config.py`
|
|
inside `cmake/scripts`. The configured build options can now be shown with `cmake -L`.
|
|
|
|
4. Call the build system (Make)
|
|
```
|
|
cmake --build . -j
|
|
```
|
|
|
|
5. Like already mentioned, it is recommended to run the binary directly as an executable by
|
|
double-clicking it or in the Windows Terminal.
|
|
|
|
## Setting up Eclipse for CMake projects
|
|
|
|
The separate [Eclipse README](https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-common/src/branch/master/doc/README-eclipse.md) specifies how to set up Eclipse to build CMake
|
|
projects. Separate project files and launch configurations for the MinGW build were provided.
|
|
The debug output is colored by default. It is recommended to install the
|
|
`ANSI Escape in Console` plugin in Eclipse so the coloring works in the Eclipse console. On Windows,
|
|
it is recommended to run the applicaton with the Windows command line for the printout to work
|
|
properly. You can do this by simply double-clicking the binary or using `start <Exe>` in the
|
|
Windows command line
|
|
|