fsfw/thermal/TemperatureSensor.h

223 lines
7.2 KiB
C++
Raw Blame History

#ifndef TEMPERATURESENSOR_H_
#define TEMPERATURESENSOR_H_
#include "../thermal/AbstractTemperatureSensor.h"
#include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/GlobalPoolVariable.h"
#include "../monitoring/LimitMonitor.h"
/**
* @brief This building block handles non-linear value conversion and
* range checks for analog temperature sensors.
* @details This class can be used to perform all necessary tasks for temperature sensors.
* A sensor can be instantiated by calling the constructor.
* The temperature is calculated from an input value with
* the calculateOutputTemperature() function. Range checking and
* limit monitoring is performed automatically.
* The inputType specifies the type of the raw input while the
* limitType specifies the type of the upper and lower limit to check against.
* @ingroup thermal
*/
template<typename inputType, typename limitType = inputType>
class TemperatureSensor: public AbstractTemperatureSensor {
public:
/**
* This structure contains parameters required for range checking
* and the conversion from the input value to the output temperature.
* a, b and c can be any parameters required to calculate the output
* temperature from the input value, depending on the formula used.
*
* The parameters a,b and c are used in the calculateOutputTemperature() call.
*
* The lower and upper limits can be specified in any type, for example float for C values
* or any other type for raw values.
*/
struct Parameters {
float a;
float b;
float c;
limitType lowerLimit;
limitType upperLimit;
float maxGradient;
};
/**
* Forward declaration for explicit instantiation of used parameters.
*/
struct UsedParameters {
UsedParameters(Parameters parameters) :
a(parameters.a), b(parameters.b), c(parameters.c),
gradient(parameters.maxGradient) {}
float a;
float b;
float c;
float gradient;
};
/**
* Instantiate Temperature Sensor Object.
* @param setObjectid objectId of the sensor object
* @param inputValue Input value which is converted to a temperature
* @param poolVariable Pool Variable to store the temperature value
* @param vectorIndex Vector Index for the sensor monitor
* @param parameters Calculation parameters, temperature limits, gradient limit
* @param datapoolId Datapool ID of the output temperature
* @param outputSet Output dataset for the output temperature to fetch it with read()
* @param thermalModule respective thermal module, if it has one
*/
TemperatureSensor(object_id_t setObjectid,
inputType *inputValue, PoolVariableIF *poolVariable,
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0, 0, 0},
GlobDataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
inputValue(inputValue), poolVariable(poolVariable),
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
GlobalDataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit, parameters.upperLimit,
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
}
protected:
/**
* This formula is used to calculate the temperature from an input value
* with an arbitrary type.
* A default implementation is provided but can be replaced depending
* on the required calculation.
* @param inputTemperature
* @return
*/
virtual float calculateOutputTemperature(inputType inputValue) {
return parameters.a * inputValue * inputValue
+ parameters.b * inputValue + parameters.c;
}
private:
void setInvalid() {
outputTemperature = INVALID_TEMPERATURE;
outputTemperature.setValid(false);
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
sensorMonitor.setToInvalid();
}
protected:
static const int32_t INVALID_UPTIME = 0;
UsedParameters parameters;
inputType * inputValue;
PoolVariableIF *poolVariable;
gp_float_t outputTemperature;
LimitMonitor<limitType> sensorMonitor;
float oldTemperature;
timeval uptimeOfOldTemperature;
void doChildOperation() {
if (!poolVariable->isValid()
|| !healthHelper.healthTable->isHealthy(getObjectId())) {
setInvalid();
return;
}
outputTemperature = calculateOutputTemperature(*inputValue);
outputTemperature.setValid(PoolVariableIF::VALID);
timeval uptime;
Clock::getUptime(&uptime);
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
//In theory, we could use an AbsValueMonitor to monitor the gradient.
//But this would require storing the maxGradient in DP and quite some overhead.
//The concept of delta limits is a bit strange anyway.
float deltaTime;
float deltaTemp;
deltaTime = (uptime.tv_sec + uptime.tv_usec / 1000000.)
- (uptimeOfOldTemperature.tv_sec
+ uptimeOfOldTemperature.tv_usec / 1000000.);
deltaTemp = oldTemperature - outputTemperature;
if (deltaTemp < 0) {
deltaTemp = -deltaTemp;
}
if (parameters.gradient < deltaTemp / deltaTime) {
triggerEvent(TEMP_SENSOR_GRADIENT);
//Don't set invalid, as we did not recognize it as invalid with full authority, let FDIR handle it
}
}
//Check is done against raw limits. SHOULDDO: Why? Using <20>C would be more easy to handle.
sensorMonitor.doCheck(outputTemperature.value);
if (sensorMonitor.isOutOfLimits()) {
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
outputTemperature.setValid(PoolVariableIF::INVALID);
outputTemperature = INVALID_TEMPERATURE;
} else {
oldTemperature = outputTemperature;
uptimeOfOldTemperature = uptime;
}
}
public:
float getTemperature() {
return outputTemperature;
}
bool isValid() {
return outputTemperature.isValid();
}
static const uint16_t ADDRESS_A = 0;
static const uint16_t ADDRESS_B = 1;
static const uint16_t ADDRESS_C = 2;
static const uint16_t ADDRESS_GRADIENT = 3;
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
static const uint8_t DOMAIN_ID_SENSOR = 1;
virtual ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) {
ReturnValue_t result = sensorMonitor.getParameter(domainId, uniqueId,
parameterWrapper, newValues, startAtIndex);
if (result != INVALID_DOMAIN_ID) {
return result;
}
if (domainId != this->DOMAIN_ID_BASE) {
return INVALID_DOMAIN_ID;
}
switch (uniqueId) {
case ADDRESS_A:
parameterWrapper->set(parameters.a);
break;
case ADDRESS_B:
parameterWrapper->set(parameters.b);
break;
case ADDRESS_C:
parameterWrapper->set(parameters.c);
break;
case ADDRESS_GRADIENT:
parameterWrapper->set(parameters.gradient);
break;
default:
return INVALID_IDENTIFIER_ID;
}
return HasReturnvaluesIF::RETURN_OK;
}
virtual void resetOldState() {
sensorMonitor.setToUnchecked();
}
};
#endif /* TEMPERATURESENSOR_H_ */