fsfw/thermal/ThermalComponentCore.cpp

282 lines
8.0 KiB
C++

#include "ThermalComponentCore.h"
ThermalComponentCore::ThermalComponentCore(object_id_t reportingObjectId,
uint8_t domainId, gp_id_t temperaturePoolId,
gp_id_t targetStatePoolId, gp_id_t currentStatePoolId,
gp_id_t requestPoolId, LocalPoolDataSetBase* dataSet,
Parameters parameters, StateRequest initialTargetState) :
temperature(temperaturePoolId, dataSet, PoolVariableIF::VAR_WRITE),
targetState(targetStatePoolId, dataSet, PoolVariableIF::VAR_READ),
currentState(currentStatePoolId, dataSet, PoolVariableIF::VAR_WRITE),
heaterRequest(requestPoolId, dataSet, PoolVariableIF::VAR_WRITE),
parameters(parameters), domainId(domainId) {
//temperatureMonitor(reportingObjectId, domainId + 1,
// GlobalDataPool::poolIdAndPositionToPid(temperaturePoolId, 0),
// COMPONENT_TEMP_CONFIRMATION), domainId(domainId) {
//Set thermal state once, then leave to operator.
//GlobDataSet mySet;
//gp_uint8_t writableTargetState(targetStatePoolId, &mySet,
// PoolVariableIF::VAR_WRITE);
//writableTargetState = initialTargetState;
//mySet.commit(PoolVariableIF::VALID);
}
void ThermalComponentCore::addSensor(AbstractTemperatureSensor* sensor) {
this->sensor = sensor;
}
void ThermalComponentCore::addFirstRedundantSensor(
AbstractTemperatureSensor *firstRedundantSensor) {
this->firstRedundantSensor = firstRedundantSensor;
}
void ThermalComponentCore::addSecondRedundantSensor(
AbstractTemperatureSensor *secondRedundantSensor) {
this->secondRedundantSensor = secondRedundantSensor;
}
void ThermalComponentCore::addThermalModule(ThermalModule *thermalModule,
Priority priority) {
this->thermalModule = thermalModule;
if(thermalModule != nullptr) {
thermalModule->registerComponent(this, priority);
}
}
void ThermalComponentCore::setPriority(Priority priority) {
if(priority == SAFE) {
this->isSafeComponent = true;
}
}
ThermalComponentCore::~ThermalComponentCore() {
}
ThermalComponentIF::HeaterRequest ThermalComponentCore::performOperation(
uint8_t opCode) {
HeaterRequest request = HEATER_DONT_CARE;
//SHOULDDO: Better pass db_float_t* to getTemperature and set it invalid if invalid.
temperature = getTemperature();
//updateMinMaxTemp();
//if ((temperature != INVALID_TEMPERATURE)) {
//temperature.setValid(PoolVariableIF::VALID);
//State state = getState(temperature, getParameters(), targetState);
//currentState = state;
//checkLimits(state);
//request = getHeaterRequest(targetState, temperature, getParameters());
//} else {
// temperatureMonitor.setToInvalid();
// temperature.setValid(PoolVariableIF::INVALID);
// currentState = UNKNOWN;
// request = HEATER_DONT_CARE;
//}
currentState.setValid(PoolVariableIF::VALID);
heaterRequest = request;
heaterRequest.setValid(PoolVariableIF::VALID);
return request;
}
void ThermalComponentCore::markStateIgnored() {
//currentState = getIgnoredState(currentState);
}
object_id_t ThermalComponentCore::getObjectId() {
//return temperatureMonitor.getReporterId();
return 0;
}
float ThermalComponentCore::getLowerOpLimit() {
return parameters.lowerOpLimit;
}
ReturnValue_t ThermalComponentCore::setTargetState(int8_t newState) {
GlobDataSet mySet;
gp_uint8_t writableTargetState(targetState.getDataPoolId(),
&mySet, PoolVariableIF::VAR_READ_WRITE);
mySet.read();
if ((writableTargetState == STATE_REQUEST_OPERATIONAL)
&& (newState != STATE_REQUEST_IGNORE)) {
return HasReturnvaluesIF::RETURN_FAILED;
}
switch (newState) {
case STATE_REQUEST_HEATING:
case STATE_REQUEST_IGNORE:
case STATE_REQUEST_OPERATIONAL:
writableTargetState = newState;
break;
case STATE_REQUEST_NON_OPERATIONAL:
default:
return INVALID_TARGET_STATE;
}
mySet.commit(PoolVariableIF::VALID);
return HasReturnvaluesIF::RETURN_OK;
}
void ThermalComponentCore::setOutputInvalid() {
temperature = INVALID_TEMPERATURE;
temperature.setValid(PoolVariableIF::INVALID);
currentState.setValid(PoolVariableIF::INVALID);
heaterRequest = HEATER_DONT_CARE;
heaterRequest.setValid(PoolVariableIF::INVALID);
//temperatureMonitor.setToUnchecked();
}
float ThermalComponentCore::getTemperature() {
if ((sensor != nullptr) && (sensor->isValid())) {
return sensor->getTemperature();
}
if ((firstRedundantSensor != nullptr) &&
(firstRedundantSensor->isValid())) {
return firstRedundantSensor->getTemperature();
}
if ((secondRedundantSensor != nullptr) &&
(secondRedundantSensor->isValid())) {
return secondRedundantSensor->getTemperature();
}
if (thermalModule != nullptr) {
float temperature = thermalModule->getTemperature();
if (temperature != ThermalModuleIF::INVALID_TEMPERATURE) {
return temperature;
} else {
return INVALID_TEMPERATURE;
}
} else {
return INVALID_TEMPERATURE;
}
}
ThermalComponentIF::State ThermalComponentCore::getState(float temperature,
Parameters parameters, int8_t targetState) {
ThermalComponentIF::State state;
if (temperature < parameters.lowerOpLimit) {
state = NON_OPERATIONAL_LOW;
} else if (temperature < parameters.upperOpLimit) {
state = OPERATIONAL;
} else {
state = NON_OPERATIONAL_HIGH;
}
if (targetState == STATE_REQUEST_IGNORE) {
state = getIgnoredState(state);
}
return state;
}
void ThermalComponentCore::checkLimits(ThermalComponentIF::State state) {
//Checks operational limits only.
//temperatureMonitor.translateState(state, temperature.value,
// getParameters().lowerOpLimit, getParameters().upperOpLimit);
}
ThermalComponentIF::HeaterRequest ThermalComponentCore::getHeaterRequest(
int8_t targetState, float temperature, Parameters parameters) {
if (targetState == STATE_REQUEST_IGNORE) {
isHeating = false;
return HEATER_DONT_CARE;
}
if (temperature > parameters.upperOpLimit - parameters.heaterSwitchoff) {
isHeating = false;
return HEATER_REQUEST_EMERGENCY_OFF;
}
float opHeaterLimit = parameters.lowerOpLimit + parameters.heaterOn;
if (isHeating) {
opHeaterLimit += parameters.hysteresis;
}
if (temperature < opHeaterLimit) {
isHeating = true;
return HEATER_REQUEST_EMERGENCY_ON;
}
isHeating = false;
return HEATER_DONT_CARE;
}
ThermalComponentIF::State ThermalComponentCore::getIgnoredState(int8_t state) {
switch (state) {
case NON_OPERATIONAL_LOW:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH:
return NON_OPERATIONAL_HIGH_IGNORED;
case NON_OPERATIONAL_LOW_IGNORED:
return NON_OPERATIONAL_LOW_IGNORED;
case OPERATIONAL_IGNORED:
return OPERATIONAL_IGNORED;
case NON_OPERATIONAL_HIGH_IGNORED:
return NON_OPERATIONAL_HIGH_IGNORED;
default:
case UNKNOWN:
return UNKNOWN;
}
}
//void ThermalComponentCore::updateMinMaxTemp() {
// if (temperature == INVALID_TEMPERATURE) {
// return;
// }
// if (temperature < minTemp) {
// minTemp = temperature;
// }
// if (temperature > maxTemp) {
// maxTemp = temperature;
// }
//}
uint8_t ThermalComponentCore::getDomainId() const {
return domainId;
}
ThermalComponentCore::Parameters ThermalComponentCore::getParameters() {
return parameters;
}
ReturnValue_t ThermalComponentCore::getParameter(uint8_t domainId,
uint16_t parameterId, ParameterWrapper* parameterWrapper,
const ParameterWrapper* newValues, uint16_t startAtIndex) {
//ReturnValue_t result = temperatureMonitor.getParameter(domainId,
// parameterId, parameterWrapper, newValues, startAtIndex);
// if (result != INVALID_DOMAIN_ID) {
// return result;
// }
// if (domainId != this->domainId) {
// return INVALID_DOMAIN_ID;
// }
// switch (parameterId) {
// case 0:
// parameterWrapper->set(parameters.heaterOn);
// break;
// case 1:
// parameterWrapper->set(parameters.hysteresis);
// break;
// case 2:
// parameterWrapper->set(parameters.heaterSwitchoff);
// break;
// case 3:
// parameterWrapper->set(minTemp);
// break;
// case 4:
// parameterWrapper->set(maxTemp);
// break;
// case 10:
// parameterWrapper->set(parameters.lowerOpLimit);
// break;
// case 11:
// parameterWrapper->set(parameters.upperOpLimit);
// break;
// default:
// return INVALID_IDENTIFIER_ID;
// }
return HasReturnvaluesIF::RETURN_OK;
}