1
0
forked from ROMEO/nexosim

Merge pull request #6 from asynchronics/feature/periodic-events

Feature/periodic events
This commit is contained in:
Serge Barral
2023-08-14 14:23:44 +02:00
committed by GitHub
9 changed files with 1449 additions and 355 deletions

View File

@ -17,6 +17,7 @@ A high performance asychronous compute framework for system simulation.
"""
categories = ["simulation", "aerospace", "science"]
keywords = ["simulation", "discrete-event", "systems", "cyberphysical", "real-time"]
autotests = false
[features]
# API-unstable public exports meant for external test/benchmarking; development only.
@ -44,3 +45,7 @@ waker-fn = "1.1"
futures-util = "0.3"
futures-channel = "0.3"
futures-executor = "0.3"
[[test]]
name = "integration"
path = "tests/tests.rs"

View File

@ -104,7 +104,7 @@ impl Controller {
if state == WaterSenseState::Empty && self.water_sense == WaterSenseState::NotEmpty {
// If a brew was ongoing, we must cancel it.
if let Some(key) = self.stop_brew_key.take() {
key.cancel_event();
key.cancel();
self.pump_cmd.send(PumpCommand::Off).await;
}
}
@ -128,7 +128,7 @@ impl Controller {
self.pump_cmd.send(PumpCommand::Off).await;
// Abort the scheduled call to `stop_brew()`.
key.cancel_event();
key.cancel();
return;
}
@ -204,7 +204,7 @@ impl Tank {
// schedule a new update.
if let Some(state) = self.dynamic_state.take() {
// Abort the scheduled call to `set_empty()`.
state.set_empty_key.cancel_event();
state.set_empty_key.cancel();
// Update the volume, saturating at 0 in case of rounding errors.
let time = scheduler.time();
@ -237,7 +237,7 @@ impl Tank {
// If the flow rate was non-zero up to now, update the volume.
if let Some(state) = self.dynamic_state.take() {
// Abort the scheduled call to `set_empty()`.
state.set_empty_key.cancel_event();
state.set_empty_key.cancel();
// Update the volume, saturating at 0 in case of rounding errors.
let elapsed_time = time.duration_since(state.last_volume_update).as_secs_f64();

View File

@ -353,13 +353,11 @@
//! process `M1` before `M3`.
//!
//! The first guarantee (and only the first) also extends to events scheduled
//! from a simulation with
//! [`Simulation::schedule_event_in()`](simulation::Simulation::schedule_event_in)
//! or
//! [`Simulation::schedule_event_at()`](simulation::Simulation::schedule_event_at):
//! if the scheduler contains several events to be delivered at the same time to
//! the same model, these events will always be processed in the order in which
//! they were scheduled.
//! from a simulation with a
//! [`Simulation::schedule_*()`](simulation::Simulation::schedule_event_at)
//! method: if the scheduler contains several events to be delivered at the same
//! time to the same model, these events will always be processed in the order
//! in which they were scheduled.
//!
//! [actor_model]: https://en.wikipedia.org/wiki/Actor_model
//! [pony]: https://www.ponylang.io/

View File

@ -136,8 +136,10 @@ use recycle_box::{coerce_box, RecycleBox};
use crate::executor::Executor;
use crate::model::{InputFn, Model, ReplierFn};
use crate::time::{self, MonotonicTime, TearableAtomicTime};
use crate::time::{EventKey, ScheduledTimeError, SchedulerQueue};
use crate::time::{
self, EventKey, MonotonicTime, ScheduledEvent, SchedulerQueue, SchedulingError,
TearableAtomicTime,
};
use crate::util::futures::SeqFuture;
use crate::util::slot;
use crate::util::sync_cell::SyncCell;
@ -152,10 +154,10 @@ use crate::util::sync_cell::SyncCell;
/// A [`Simulation`] object also manages an event scheduling queue and
/// simulation time. The scheduling queue can be accessed from the simulation
/// itself, but also from models via the optional
/// [`&Scheduler`][crate::time::Scheduler] argument of input and replier port
/// methods. Likewise, simulation time can be accessed with the
/// [`Simulation::time()`] method, or from models with the
/// [`Scheduler::time()`](crate::time::Scheduler::time) method.
/// [`&Scheduler`][time::Scheduler] argument of input and replier port methods.
/// Likewise, simulation time can be accessed with the [`Simulation::time()`]
/// method, or from models with the
/// [`Scheduler::time()`](time::Scheduler::time) method.
///
/// Events and queries can be scheduled immediately, *i.e.* for the current
/// simulation time, using [`send_event()`](Simulation::send_event) and
@ -163,9 +165,8 @@ use crate::util::sync_cell::SyncCell;
/// until all computations triggered by such event or query have completed. In
/// the case of queries, the response is returned.
///
/// Events can also be scheduled at a future simulation time using
/// [`schedule_event_in()`](Simulation::schedule_event_in) or
/// [`schedule_event_at()`](Simulation::schedule_event_at). These methods queue
/// Events can also be scheduled at a future simulation time using one of the
/// [`schedule_*()`](Simulation::schedule_event_at) method. These methods queue
/// an event without blocking.
///
/// Finally, the [`Simulation`] instance manages simulation time. Calling
@ -229,66 +230,138 @@ impl Simulation {
/// This method may block. Once it returns, it is guaranteed that (i) all
/// events scheduled up to the specified target time have completed and (ii)
/// the final simulation time matches the target time.
pub fn step_until(&mut self, target_time: MonotonicTime) -> Result<(), ScheduledTimeError<()>> {
pub fn step_until(&mut self, target_time: MonotonicTime) -> Result<(), SchedulingError> {
if self.time.read() >= target_time {
return Err(ScheduledTimeError(()));
return Err(SchedulingError::InvalidScheduledTime);
}
self.step_until_unchecked(target_time);
Ok(())
}
/// Schedules an event at the lapse of the specified duration.
/// Schedules an event at a future time.
///
/// An error is returned if the specified duration is null.
/// An error is returned if the specified time is not in the future of the
/// current simulation time.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
pub fn schedule_event_in<M, F, T, S>(
///
/// See also: [`time::Scheduler::schedule_event_at`].
pub fn schedule_event_at<M, F, T, S>(
&mut self,
duration: Duration,
time: MonotonicTime,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<(), ScheduledTimeError<T>>
) -> Result<(), SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + Clone + 'static,
S: Send + 'static,
{
if duration.is_zero() {
return Err(ScheduledTimeError(arg));
if self.time.read() >= time {
return Err(SchedulingError::InvalidScheduledTime);
}
let time = self.time.read() + duration;
time::schedule_event_at_unchecked(time, func, arg, address.into().0, &self.scheduler_queue);
Ok(())
}
/// Schedules an event at the lapse of the specified duration.
///
/// An error is returned if the specified delay is null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
///
/// See also: [`time::Scheduler::schedule_event_in`].
pub fn schedule_event_in<M, F, T, S>(
&mut self,
delay: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<(), SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + Clone + 'static,
S: Send + 'static,
{
if delay.is_zero() {
return Err(SchedulingError::InvalidScheduledTime);
}
let time = self.time.read() + delay;
time::schedule_event_at_unchecked(time, func, arg, address.into().0, &self.scheduler_queue);
Ok(())
}
/// Schedules an event at the lapse of the specified duration and returns an
/// event key.
/// Schedules a cancellable event at a future time and returns an event key.
///
/// An error is returned if the specified duration is null.
/// An error is returned if the specified time is not in the future of the
/// current simulation time.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
pub fn schedule_keyed_event_in<M, F, T, S>(
///
/// See also: [`time::Scheduler::schedule_keyed_event_at`].
pub fn schedule_keyed_event_at<M, F, T, S>(
&mut self,
duration: Duration,
time: MonotonicTime,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<EventKey, ScheduledTimeError<T>>
) -> Result<EventKey, SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + Clone + 'static,
S: Send + 'static,
{
if duration.is_zero() {
return Err(ScheduledTimeError(arg));
if self.time.read() >= time {
return Err(SchedulingError::InvalidScheduledTime);
}
let time = self.time.read() + duration;
let event_key = time::schedule_keyed_event_at_unchecked(
time,
func,
arg,
address.into().0,
&self.scheduler_queue,
);
Ok(event_key)
}
/// Schedules a cancellable event at the lapse of the specified duration and
/// returns an event key.
///
/// An error is returned if the specified delay is null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
///
/// See also: [`time::Scheduler::schedule_keyed_event_in`].
pub fn schedule_keyed_event_in<M, F, T, S>(
&mut self,
delay: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<EventKey, SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
T: Send + Clone + 'static,
S: Send + 'static,
{
if delay.is_zero() {
return Err(SchedulingError::InvalidScheduledTime);
}
let time = self.time.read() + delay;
let event_key = time::schedule_keyed_event_at_unchecked(
time,
@ -301,57 +374,168 @@ impl Simulation {
Ok(event_key)
}
/// Schedules an event at a future time.
/// Schedules a periodically recurring event at a future time.
///
/// An error is returned if the specified time is not in the future of the
/// current simulation time.
/// current simulation time or if the specified period is null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
pub fn schedule_event_at<M, F, T, S>(
///
/// See also: [`time::Scheduler::schedule_periodic_event_at`].
pub fn schedule_periodic_event_at<M, F, T, S>(
&mut self,
time: MonotonicTime,
period: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<(), ScheduledTimeError<T>>
) -> Result<(), SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + Clone + 'static,
S: Send + 'static,
{
if self.time.read() >= time {
return Err(ScheduledTimeError(arg));
return Err(SchedulingError::InvalidScheduledTime);
}
time::schedule_event_at_unchecked(time, func, arg, address.into().0, &self.scheduler_queue);
if period.is_zero() {
return Err(SchedulingError::NullRepetitionPeriod);
}
time::schedule_periodic_event_at_unchecked(
time,
period,
func,
arg,
address.into().0,
&self.scheduler_queue,
);
Ok(())
}
/// Schedules an event at a future time and returns an event key.
/// Schedules a periodically recurring event at the lapse of the specified
/// duration.
///
/// An error is returned if the specified time is not in the future of the
/// current simulation time.
/// An error is returned if the specified delay or the specified period are
/// null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
pub fn schedule_keyed_event_at<M, F, T, S>(
///
/// See also: [`time::Scheduler::schedule_periodic_event_in`].
pub fn schedule_periodic_event_in<M, F, T, S>(
&mut self,
time: MonotonicTime,
delay: Duration,
period: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<EventKey, ScheduledTimeError<T>>
) -> Result<(), SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S>,
F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + Clone + 'static,
S: Send + 'static,
{
if delay.is_zero() {
return Err(SchedulingError::InvalidScheduledTime);
}
if period.is_zero() {
return Err(SchedulingError::NullRepetitionPeriod);
}
let time = self.time.read() + delay;
time::schedule_periodic_event_at_unchecked(
time,
period,
func,
arg,
address.into().0,
&self.scheduler_queue,
);
Ok(())
}
/// Schedules a cancellable, periodically recurring event at a future time
/// and returns an event key.
///
/// An error is returned if the specified time is not in the future of the
/// current simulation time or if the specified period is null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
///
/// See also: [`time::Scheduler::schedule_periodic_keyed_event_at`].
pub fn schedule_periodic_keyed_event_at<M, F, T, S>(
&mut self,
time: MonotonicTime,
period: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<EventKey, SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + Clone + 'static,
S: Send + 'static,
{
if self.time.read() >= time {
return Err(ScheduledTimeError(arg));
return Err(SchedulingError::InvalidScheduledTime);
}
let event_key = time::schedule_keyed_event_at_unchecked(
if period.is_zero() {
return Err(SchedulingError::NullRepetitionPeriod);
}
let event_key = time::schedule_periodic_keyed_event_at_unchecked(
time,
period,
func,
arg,
address.into().0,
&self.scheduler_queue,
);
Ok(event_key)
}
/// Schedules a cancellable, periodically recurring event at the lapse of
/// the specified duration and returns an event key.
///
/// An error is returned if the specified delay or the specified period are
/// null.
///
/// Events scheduled for the same time and targeting the same model are
/// guaranteed to be processed according to the scheduling order.
///
/// See also: [`time::Scheduler::schedule_periodic_keyed_event_in`].
pub fn schedule_periodic_keyed_event_in<M, F, T, S>(
&mut self,
delay: Duration,
period: Duration,
func: F,
arg: T,
address: impl Into<Address<M>>,
) -> Result<EventKey, SchedulingError>
where
M: Model,
F: for<'a> InputFn<'a, M, T, S> + Clone,
T: Send + Clone + 'static,
S: Send + 'static,
{
if delay.is_zero() {
return Err(SchedulingError::InvalidScheduledTime);
}
if period.is_zero() {
return Err(SchedulingError::NullRepetitionPeriod);
}
let time = self.time.read() + delay;
let event_key = time::schedule_periodic_keyed_event_at_unchecked(
time,
period,
func,
arg,
address.into().0,
@ -441,9 +625,22 @@ impl Simulation {
/// If at least one event was found that satisfied the time bound, the
/// corresponding new simulation time is returned.
fn step_to_next_bounded(&mut self, upper_time_bound: MonotonicTime) -> Option<MonotonicTime> {
// Function pulling the next event. If the event is periodic, it is
// immediately cloned and re-scheduled.
fn pull_next_event(
scheduler_queue: &mut MutexGuard<SchedulerQueue>,
) -> Box<dyn ScheduledEvent> {
let ((time, channel_id), event) = scheduler_queue.pull().unwrap();
if let Some((event_clone, period)) = event.next() {
scheduler_queue.insert((time + period, channel_id), event_clone);
}
event
}
// Closure returning the next key which time stamp is no older than the
// upper bound, if any. Cancelled events are discarded.
let get_next_key = |scheduler_queue: &mut MutexGuard<SchedulerQueue>| {
// upper bound, if any. Cancelled events are pulled and discarded.
let peek_next_key = |scheduler_queue: &mut MutexGuard<SchedulerQueue>| {
loop {
match scheduler_queue.peek() {
Some((&k, t)) if k.0 <= upper_time_bound => {
@ -460,34 +657,32 @@ impl Simulation {
// Move to the next scheduled time.
let mut scheduler_queue = self.scheduler_queue.lock().unwrap();
let mut current_key = get_next_key(&mut scheduler_queue)?;
let mut current_key = peek_next_key(&mut scheduler_queue)?;
self.time.write(current_key.0);
loop {
let event = scheduler_queue.pull().unwrap().1;
let mut next_key = get_next_key(&mut scheduler_queue);
let event = pull_next_event(&mut scheduler_queue);
let mut next_key = peek_next_key(&mut scheduler_queue);
if next_key != Some(current_key) {
// Since there are no other events targeting the same mailbox
// and the same time, the event is spawned immediately.
self.executor.spawn_and_forget(Box::into_pin(event));
event.spawn_and_forget(&self.executor);
} else {
// To ensure that their relative order of execution is
// preserved, all event targeting the same mailbox are executed
// sequentially within a single compound future.
let mut event_sequence = SeqFuture::new();
event_sequence.push(Box::into_pin(event));
event_sequence.push(event.into_future());
loop {
let event = scheduler_queue.pull().unwrap().1;
event_sequence.push(Box::into_pin(event));
next_key = get_next_key(&mut scheduler_queue);
let event = pull_next_event(&mut scheduler_queue);
event_sequence.push(event.into_future());
next_key = peek_next_key(&mut scheduler_queue);
if next_key != Some(current_key) {
break;
}
}
// Spawn a parent event that sequentially polls all events
// Spawn a compound future that sequentially polls all events
// targeting the same mailbox.
self.executor.spawn_and_forget(event_sequence);
}

View File

@ -51,6 +51,8 @@ mod scheduler;
pub(crate) use monotonic_time::TearableAtomicTime;
pub use monotonic_time::{MonotonicTime, SystemTimeError};
pub(crate) use scheduler::{
schedule_event_at_unchecked, schedule_keyed_event_at_unchecked, SchedulerQueue,
schedule_event_at_unchecked, schedule_keyed_event_at_unchecked,
schedule_periodic_event_at_unchecked, schedule_periodic_keyed_event_at_unchecked,
ScheduledEvent, SchedulerQueue,
};
pub use scheduler::{EventKey, ScheduledTimeError, Scheduler};
pub use scheduler::{EventKey, Scheduler, SchedulingError};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,233 @@
//! Event scheduling within `Model` input methods.
use std::time::Duration;
use asynchronix::model::{Model, Output};
use asynchronix::simulation::{Mailbox, SimInit};
use asynchronix::time::{EventKey, MonotonicTime, Scheduler};
#[test]
fn model_schedule_event() {
#[derive(Default)]
struct TestModel {
output: Output<()>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(2), Self::action, ())
.unwrap();
}
async fn action(&mut self) {
self.output.send(()).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
simu.step();
assert!(output.next().is_none());
}
#[test]
fn model_cancel_future_keyed_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(1), Self::action1, ())
.unwrap();
self.key = scheduler
.schedule_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Self::action2,
(),
)
.ok();
}
async fn action1(&mut self) {
self.output.send(1).await;
// Cancel the call to `action2`.
self.key.take().unwrap().cancel();
}
async fn action2(&mut self) {
self.output.send(2).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert_eq!(output.next(), Some(1));
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert!(output.next().is_none());
}
#[test]
fn model_cancel_same_time_keyed_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event_at(scheduler.time() + Duration::from_secs(2), Self::action1, ())
.unwrap();
self.key = scheduler
.schedule_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Self::action2,
(),
)
.ok();
}
async fn action1(&mut self) {
self.output.send(1).await;
// Cancel the call to `action2`.
self.key.take().unwrap().cancel();
}
async fn action2(&mut self) {
self.output.send(2).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert_eq!(output.next(), Some(1));
assert!(output.next().is_none());
simu.step();
assert!(output.next().is_none());
}
#[test]
fn model_schedule_periodic_event() {
#[derive(Default)]
struct TestModel {
output: Output<i32>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_periodic_event_at(
scheduler.time() + Duration::from_secs(2),
Duration::from_secs(3),
Self::action,
42,
)
.unwrap();
}
async fn action(&mut self, payload: i32) {
self.output.send(payload).await;
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
// Move to the next events at t0 + 2s + k*3s.
for k in 0..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(2) + k * Duration::from_secs(3)
);
assert_eq!(output.next(), Some(42));
assert!(output.next().is_none());
}
}
#[test]
fn model_cancel_periodic_event() {
#[derive(Default)]
struct TestModel {
output: Output<()>,
key: Option<EventKey>,
}
impl TestModel {
fn trigger(&mut self, _: (), scheduler: &Scheduler<Self>) {
self.key = scheduler
.schedule_periodic_keyed_event_at(
scheduler.time() + Duration::from_secs(2),
Duration::from_secs(3),
Self::action,
(),
)
.ok();
}
async fn action(&mut self) {
self.output.send(()).await;
// Cancel the next events.
self.key.take().unwrap().cancel();
}
}
impl Model for TestModel {}
let mut model = TestModel::default();
let mbox = Mailbox::new();
let mut output = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let mut simu = SimInit::new().add_model(model, mbox).init(t0);
simu.send_event(TestModel::trigger, (), addr);
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
assert!(output.next().is_none());
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_none());
}

View File

@ -0,0 +1,199 @@
//! Event scheduling from a `Simulation` instance.
use std::time::Duration;
use asynchronix::model::{Model, Output};
use asynchronix::simulation::{Address, EventStream, Mailbox, SimInit, Simulation};
use asynchronix::time::MonotonicTime;
// Simple input-to-output pass-through model.
struct PassThroughModel<T: Clone + Send + 'static> {
pub output: Output<T>,
}
impl<T: Clone + Send + 'static> PassThroughModel<T> {
pub fn new() -> Self {
Self {
output: Output::default(),
}
}
pub async fn input(&mut self, arg: T) {
self.output.send(arg).await;
}
}
impl<T: Clone + Send + 'static> Model for PassThroughModel<T> {}
/// A simple bench containing a single pass-through model (input forwarded to
/// output).
fn simple_bench<T: Clone + Send + 'static>() -> (
Simulation,
MonotonicTime,
Address<PassThroughModel<T>>,
EventStream<T>,
) {
// Bench assembly.
let mut model = PassThroughModel::new();
let mbox = Mailbox::new();
let out_stream = model.output.connect_stream().0;
let addr = mbox.address();
let t0 = MonotonicTime::EPOCH;
let simu = SimInit::new().add_model(model, mbox).init(t0);
(simu, t0, addr, out_stream)
}
#[test]
fn simulation_schedule_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 events at t0+3s and t0+2s, in reverse order.
simu.schedule_event_in(Duration::from_secs(3), PassThroughModel::input, (), &addr)
.unwrap();
simu.schedule_event_at(
t0 + Duration::from_secs(2),
PassThroughModel::input,
(),
&addr,
)
.unwrap();
// Move to the 1st event at t0+2s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert!(output.next().is_some());
// Schedule another event in 4s (at t0+6s).
simu.schedule_event_in(Duration::from_secs(4), PassThroughModel::input, (), &addr)
.unwrap();
// Move to the 2nd event at t0+3s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
assert!(output.next().is_some());
// Move to the 3rd event at t0+6s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(6));
assert!(output.next().is_some());
assert!(output.next().is_none());
}
#[test]
fn simulation_schedule_keyed_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
let event_t1 = simu
.schedule_keyed_event_at(
t0 + Duration::from_secs(1),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
let event_t2_1 = simu
.schedule_keyed_event_in(Duration::from_secs(2), PassThroughModel::input, 21, &addr)
.unwrap();
simu.schedule_event_in(Duration::from_secs(2), PassThroughModel::input, 22, &addr)
.unwrap();
// Move to the 1st event at t0+1.
simu.step();
// Try to cancel the 1st event after it has already taken place and check
// that the cancellation had no effect.
event_t1.cancel();
assert_eq!(simu.time(), t0 + Duration::from_secs(1));
assert_eq!(output.next(), Some(1));
// Cancel the second event (t0+2) before it is meant to takes place and
// check that we move directly to the 3rd event.
event_t2_1.cancel();
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(2));
assert_eq!(output.next(), Some(22));
assert!(output.next().is_none());
}
#[test]
fn simulation_schedule_periodic_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 periodic events at t0 + 3s + k*2s.
simu.schedule_periodic_event_in(
Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
simu.schedule_periodic_event_at(
t0 + Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
2,
&addr,
)
.unwrap();
// Move to the next events at t0 + 3s + k*2s.
for k in 0..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
);
assert_eq!(output.next(), Some(1));
assert_eq!(output.next(), Some(2));
assert!(output.next().is_none());
}
}
#[test]
fn simulation_schedule_periodic_keyed_events() {
let (mut simu, t0, addr, mut output) = simple_bench();
// Queue 2 periodic events at t0 + 3s + k*2s.
simu.schedule_periodic_event_in(
Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
1,
&addr,
)
.unwrap();
let event2_key = simu
.schedule_periodic_keyed_event_at(
t0 + Duration::from_secs(3),
Duration::from_secs(2),
PassThroughModel::input,
2,
&addr,
)
.unwrap();
// Move to the next event at t0+3s.
simu.step();
assert_eq!(simu.time(), t0 + Duration::from_secs(3));
assert_eq!(output.next(), Some(1));
assert_eq!(output.next(), Some(2));
assert!(output.next().is_none());
// Cancel the second event.
event2_key.cancel();
// Move to the next events at t0 + 3s + k*2s.
for k in 1..10 {
simu.step();
assert_eq!(
simu.time(),
t0 + Duration::from_secs(3) + k * Duration::from_secs(2)
);
assert_eq!(output.next(), Some(1));
assert!(output.next().is_none());
}
}

View File

@ -0,0 +1,4 @@
#[cfg(not(asynchronix_loom))]
mod model_scheduling;
#[cfg(not(asynchronix_loom))]
mod simulation_scheduling;