obsw/mission/main.c

560 lines
20 KiB
C

/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/******************************************************************************
*
* See http://www.freertos.org/RTOS-Xilinx-Zynq.html for instructions.
*
* This project provides three demo applications. A simple blinky style
* project, a more comprehensive test and demo application, and an lwIP example.
* The mainSELECTED_APPLICATION setting (defined in this file) is used to
* select between the three. The simply blinky demo is implemented and
* described in main_blinky.c. The more comprehensive test and demo application
* is implemented and described in main_full.c. The lwIP example is implemented
* and described in main_lwIP.c.
*
* This file implements the code that is not demo specific, including the
* hardware setup and FreeRTOS hook functions.
*
* !!! IMPORTANT NOTE !!!
* The GCC libraries that ship with the Xilinx SDK make use of the floating
* point registers. To avoid this causing corruption it is necessary to avoid
* their use unless a task has been given a floating point context. See
* https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
* for information on how to give a task a floating point context, and how to
* handle floating point operations in interrupts. As this demo does not give
* all tasks a floating point context main.c contains very basic C
* implementations of the standard C library functions memset(), memcpy() and
* memcmp(), which are are used by FreeRTOS itself. Defining these functions in
* the project prevents the linker pulling them in from the library. Any other
* standard C library functions that are used by the application must likewise
* be defined in C.
*
* ENSURE TO READ THE DOCUMENTATION PAGE FOR THIS PORT AND DEMO APPLICATION ON
* THE http://www.FreeRTOS.org WEB SITE FOR FULL INFORMATION ON USING THIS DEMO
* APPLICATION, AND ITS ASSOCIATE FreeRTOS ARCHITECTURE PORT!
*
*/
/* Standard includes. */
#include <limits.h>
#include <stdio.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "semphr.h"
#include "task.h"
// /* Standard demo includes. */
// #include "EventGroupsDemo.h"
// #include "IntSemTest.h"
// #include "QueueOverwrite.h"
// #include "QueueSet.h"
// #include "StreamBufferDemo.h"
// #include "StreamBufferInterrupt.h"
// #include "TaskNotify.h"
// #include "TimerDemo.h"
// #include "partest.h"
/* Xilinx includes. */
//#include "platform.h"
#include "xil_exception.h"
#include "xparameters.h"
#include "xscugic.h"
#include "xscutimer.h"
#include "xuartps_hw.h"
// TODO why? is in bsp
void _exit(sint32 status) {
(void)status;
while (1) {
;
}
}
/*
* Configure the hardware as necessary to run this demo.
*/
static void prvSetupHardware(void);
/*
* The Xilinx projects use a BSP that do not allow the start up code to be
* altered easily. Therefore the vector table used by FreeRTOS is defined in
* FreeRTOS_asm_vectors.S, which is part of this project. Switch to use the
* FreeRTOS vector table.
*/
extern void vPortInstallFreeRTOSVectorTable(void);
/* Prototypes for the standard FreeRTOS callback/hook functions implemented
within this file. */
void vApplicationMallocFailedHook(void);
void vApplicationIdleHook(void);
void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName);
void vApplicationTickHook(void);
/* The private watchdog is used as the timer that generates run time
stats. This frequency means it will overflow quite quickly. */
XScuWdt xWatchDogInstance;
/*-----------------------------------------------------------*/
/* The interrupt controller is initialised in this file, and made available to
other modules. */
XScuGic xInterruptController;
/*-----------------------------------------------------------*/
#define XPS_UART0_BASEADDR 0xE0000000U
#define UART_BASE XPS_UART0_BASEADDR
#define XUARTPS_SR_TNFUL 0x00004000U /**< TX FIFO Nearly Full Status */
#define XUARTPS_SR_TACTIVE 0x00000800U /**< TX active */
#define XUARTPS_SR_RXEMPTY 0x00000002U /**< RX FIFO empty */
#define POINTER_TO_REGISTER(REG) (*((volatile uint32_t *)(REG)))
#define UART_FIFO POINTER_TO_REGISTER(UART_BASE + XUARTPS_FIFO_OFFSET) // FIFO
#define UART_STATUS \
POINTER_TO_REGISTER(UART_BASE + XUARTPS_SR_OFFSET) // Channel Status
void uart_send(char c) {
while (UART_STATUS & XUARTPS_SR_TNFUL)
;
UART_FIFO = c;
while (UART_STATUS & XUARTPS_SR_TACTIVE)
;
}
/* Priorities at which the tasks are created. */
#define mainQUEUE_RECEIVE_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define mainQUEUE_SEND_TASK_PRIORITY (tskIDLE_PRIORITY + 1)
/* The rate at which data is sent to the queue. The 200ms value is converted
to ticks using the portTICK_PERIOD_MS constant. */
#define mainQUEUE_SEND_FREQUENCY_MS (1000 / portTICK_PERIOD_MS)
/* The number of items the queue can hold. This is 1 as the receive task
will remove items as they are added, meaning the send task should always find
the queue empty. */
#define mainQUEUE_LENGTH (1)
/* The LED toggled by the Rx task. */
#define mainTASK_LED (0)
/*-----------------------------------------------------------*/
/*
* The tasks as described in the comments at the top of this file.
*/
static void prvQueueReceiveTask(void *pvParameters);
static void prvQueueSendTask(void *pvParameters);
/*-----------------------------------------------------------*/
/* The queue used by both tasks. */
static QueueHandle_t xQueue = NULL;
/*-----------------------------------------------------------*/
void uart_send(char c);
static void prvQueueSendTask(void *pvParameters) {
TickType_t xNextWakeTime;
const unsigned long ulValueToSend = 100UL;
/* Remove compiler warning about unused parameter. */
(void)pvParameters;
/* Initialise xNextWakeTime - this only needs to be done once. */
xNextWakeTime = xTaskGetTickCount();
vTaskDelayUntil(&xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS / 2);
for (;;) {
/* Place this task in the blocked state until it is time to run again. */
vTaskDelayUntil(&xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS);
uart_send('C');
/* Send to the queue - causing the queue receive task to unblock and
toggle the LED. 0 is used as the block time so the sending operation
will not block - it shouldn't need to block as the queue should always
be empty at this point in the code. */
xQueueSend(xQueue, &ulValueToSend, 0U);
}
}
/*-----------------------------------------------------------*/
static void prvQueueReceiveTask(void *pvParameters) {
unsigned long ulReceivedValue;
const unsigned long ulExpectedValue = 100UL;
/* Remove compiler warning about unused parameter. */
(void)pvParameters;
for (;;) {
/* Wait until something arrives in the queue - this task will block
indefinitely provided INCLUDE_vTaskSuspend is set to 1 in
FreeRTOSConfig.h. */
xQueueReceive(xQueue, &ulReceivedValue, portMAX_DELAY);
uart_send('c');
/* To get here something must have been received from the queue, but
is it the expected value? If it is, toggle the LED. */
if (ulReceivedValue == ulExpectedValue) {
// vParTestToggleLED(mainTASK_LED);
ulReceivedValue = 0U;
}
}
}
/*-----------------------------------------------------------*/
int main(void) {
// *((uint32_t*)0xFFFFFFF0) = 0x030000A8;
// asm("SEV");
// //while(1);
/* Configure the hardware ready to run the demo. */
prvSetupHardware();
/* Create the queue. */
xQueue = xQueueCreate(mainQUEUE_LENGTH, sizeof(uint32_t));
if (xQueue != NULL) {
/* Start the two tasks as described in the comments at the top of this
file. */
xTaskCreate(
prvQueueReceiveTask, /* The function that implements the task. */
"Rx", /* The text name assigned to the task - for debug only as it is
not used by the kernel. */
configMINIMAL_STACK_SIZE, /* The size of the stack to allocate to the
task. */
NULL, /* The parameter passed to the task - not used in this case. */
mainQUEUE_RECEIVE_TASK_PRIORITY, /* The priority assigned to the task.
*/
NULL); /* The task handle is not required, so NULL is passed. */
xTaskCreate(prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE, NULL,
mainQUEUE_SEND_TASK_PRIORITY, NULL);
/* Start the tasks and timer running. */
vTaskStartScheduler();
}
/* If all is well, the scheduler will now be running, and the following
line will never be reached. If the following line does execute, then
there was either insufficient FreeRTOS heap memory available for the idle
and/or timer tasks to be created, or vTaskStartScheduler() was called from
User mode. See the memory management section on the FreeRTOS web site for
more details on the FreeRTOS heap http://www.freertos.org/a00111.html. The
mode from which main() is called is set in the C start up code and must be
a privileged mode (not user mode). */
for (;;)
;
/* Don't expect to reach here. */
return 0;
}
/*-----------------------------------------------------------*/
static void prvSetupHardware(void) {
BaseType_t xStatus;
XScuGic_Config *pxGICConfig;
/* Ensure no interrupts execute while the scheduler is in an inconsistent
state. Interrupts are automatically enabled when the scheduler is
started. */
portDISABLE_INTERRUPTS();
/* Obtain the configuration of the GIC. */
pxGICConfig = XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
/* Sanity check the FreeRTOSConfig.h settings are correct for the
hardware. */
configASSERT(pxGICConfig);
configASSERT(pxGICConfig->CpuBaseAddress ==
(configINTERRUPT_CONTROLLER_BASE_ADDRESS +
configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET));
configASSERT(pxGICConfig->DistBaseAddress ==
configINTERRUPT_CONTROLLER_BASE_ADDRESS);
/* Install a default handler for each GIC interrupt. */
xStatus = XScuGic_CfgInitialize(&xInterruptController, pxGICConfig,
pxGICConfig->CpuBaseAddress);
configASSERT(xStatus == XST_SUCCESS);
(void)xStatus; /* Remove compiler warning if configASSERT() is not defined. */
/* Initialise the LED port. */
//vParTestInitialise();
/* The Xilinx projects use a BSP that do not allow the start up code to be
altered easily. Therefore the vector table used by FreeRTOS is defined in
FreeRTOS_asm_vectors.S, which is part of this project. Switch to use the
FreeRTOS vector table. */
vPortInstallFreeRTOSVectorTable();
/* Initialise UART for use with QEMU. */
// XUartPs_ResetHw(0xE0000000);
// XUartPs_WriteReg(0xE0000000, XUARTPS_CR_OFFSET,
// ((u32)XUARTPS_CR_RX_DIS | (u32)XUARTPS_CR_TX_EN |
// (u32)XUARTPS_CR_STOPBRK));
}
/*-----------------------------------------------------------*/
void vApplicationMallocFailedHook(void) {
/* Called if a call to pvPortMalloc() fails because there is insufficient
free memory available in the FreeRTOS heap. pvPortMalloc() is called
internally by FreeRTOS API functions that create tasks, queues, software
timers, and semaphores. The size of the FreeRTOS heap is set by the
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */
taskDISABLE_INTERRUPTS();
for (;;)
;
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName) {
(void)pcTaskName;
(void)pxTask;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for (;;)
;
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook(void) {
volatile size_t xFreeHeapSpace, xMinimumEverFreeHeapSpace;
/* This is just a trivial example of an idle hook. It is called on each
cycle of the idle task. It must *NOT* attempt to block. In this case the
idle task just queries the amount of FreeRTOS heap that remains. See the
memory management section on the http://www.FreeRTOS.org web site for memory
management options. If there is a lot of heap memory free then the
configTOTAL_HEAP_SIZE value in FreeRTOSConfig.h can be reduced to free up
RAM. */
xFreeHeapSpace = xPortGetFreeHeapSize();
xMinimumEverFreeHeapSpace = xPortGetMinimumEverFreeHeapSize();
/* Remove compiler warning about xFreeHeapSpace being set but never used. */
(void)xFreeHeapSpace;
(void)xMinimumEverFreeHeapSpace;
}
/*-----------------------------------------------------------*/
void vAssertCalled(const char *pcFile, unsigned long ulLine) {
volatile unsigned long ul = 0;
(void)pcFile;
(void)ulLine;
taskENTER_CRITICAL();
{
/* Set ul to a non-zero value using the debugger to step out of this
function. */
while (ul == 0) {
portNOP();
}
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
void vApplicationTickHook(void) {
#if (mainSELECTED_APPLICATION == 1)
{
/* The full demo includes a software timer demo/test that requires
prodding periodically from the tick interrupt. */
vTimerPeriodicISRTests();
/* Call the periodic queue overwrite from ISR demo. */
vQueueOverwritePeriodicISRDemo();
/* Call the periodic event group from ISR demo. */
vPeriodicEventGroupsProcessing();
/* Use task notifications from an interrupt. */
xNotifyTaskFromISR();
/* Use mutexes from interrupts. */
vInterruptSemaphorePeriodicTest();
/* Writes to stream buffer byte by byte to test the stream buffer trigger
level functionality. */
vPeriodicStreamBufferProcessing();
/* Writes a string to a string buffer four bytes at a time to demonstrate
a stream being sent from an interrupt to a task. */
vBasicStreamBufferSendFromISR();
#if (configUSE_QUEUE_SETS == 1)
{ vQueueSetAccessQueueSetFromISR(); }
#endif
/* Test flop alignment in interrupts - calling printf from an interrupt
is BAD! */
#if (configASSERT_DEFINED == 1)
{
char cBuf[20];
UBaseType_t uxSavedInterruptStatus;
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{ sprintf(cBuf, "%1.3f", 1.234); }
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
configASSERT(strcmp(cBuf, "1.234") == 0);
}
#endif /* configASSERT_DEFINED */
}
#endif
}
/*-----------------------------------------------------------*/
void *memcpy(void *pvDest, const void *pvSource, size_t xBytes) {
/* The compiler used during development seems to err unless these volatiles
are included at -O3 optimisation. */
volatile unsigned char *pcDest = (volatile unsigned char *)pvDest,
*pcSource = (volatile unsigned char *)pvSource;
size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
if (pvDest != pvSource) {
for (x = 0; x < xBytes; x++) {
pcDest[x] = pcSource[x];
}
}
return pvDest;
}
/*-----------------------------------------------------------*/
void *memset(void *pvDest, int iValue, size_t xBytes) {
/* The compiler used during development seems to err unless these volatiles
are included at -O3 optimisation. */
volatile unsigned char *volatile pcDest =
(volatile unsigned char *volatile)pvDest;
volatile size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
for (x = 0; x < xBytes; x++) {
pcDest[x] = (unsigned char)iValue;
}
return pvDest;
}
/*-----------------------------------------------------------*/
int memcmp(const void *pvMem1, const void *pvMem2, size_t xBytes) {
const volatile unsigned char *pucMem1 = pvMem1, *pucMem2 = pvMem2;
volatile size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
for (x = 0; x < xBytes; x++) {
if (pucMem1[x] != pucMem2[x]) {
break;
}
}
return xBytes - x;
}
/*-----------------------------------------------------------*/
void vInitialiseTimerForRunTimeStats(void) {
XScuWdt_Config *pxWatchDogInstance;
uint32_t ulValue;
const uint32_t ulMaxDivisor = 0xff, ulDivisorShift = 0x08;
pxWatchDogInstance = XScuWdt_LookupConfig(XPAR_SCUWDT_0_DEVICE_ID);
XScuWdt_CfgInitialize(&xWatchDogInstance, pxWatchDogInstance,
pxWatchDogInstance->BaseAddr);
ulValue = XScuWdt_GetControlReg(&xWatchDogInstance);
ulValue |= ulMaxDivisor << ulDivisorShift;
XScuWdt_SetControlReg(&xWatchDogInstance, ulValue);
XScuWdt_LoadWdt(&xWatchDogInstance, UINT_MAX);
XScuWdt_SetTimerMode(&xWatchDogInstance);
XScuWdt_Start(&xWatchDogInstance);
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
used by the Idle task. */
void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize) {
/* If the buffers to be provided to the Idle task are declared inside this
function then they must be declared static - otherwise they will be allocated
on the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[configMINIMAL_STACK_SIZE];
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
/* Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
application must provide an implementation of vApplicationGetTimerTaskMemory()
to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer,
StackType_t **ppxTimerTaskStackBuffer,
uint32_t *pulTimerTaskStackSize) {
/* If the buffers to be provided to the Timer task are declared inside this
function then they must be declared static - otherwise they will be allocated
on the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[configTIMER_TASK_STACK_DEPTH];
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task's state will be stored. */
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
/* Pass out the array that will be used as the Timer task's stack. */
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}