forked from ROMEO/obsw
560 lines
20 KiB
C
560 lines
20 KiB
C
/*
|
|
* FreeRTOS V202212.00
|
|
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* https://www.FreeRTOS.org
|
|
* https://github.com/FreeRTOS
|
|
*
|
|
*/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* See http://www.freertos.org/RTOS-Xilinx-Zynq.html for instructions.
|
|
*
|
|
* This project provides three demo applications. A simple blinky style
|
|
* project, a more comprehensive test and demo application, and an lwIP example.
|
|
* The mainSELECTED_APPLICATION setting (defined in this file) is used to
|
|
* select between the three. The simply blinky demo is implemented and
|
|
* described in main_blinky.c. The more comprehensive test and demo application
|
|
* is implemented and described in main_full.c. The lwIP example is implemented
|
|
* and described in main_lwIP.c.
|
|
*
|
|
* This file implements the code that is not demo specific, including the
|
|
* hardware setup and FreeRTOS hook functions.
|
|
*
|
|
* !!! IMPORTANT NOTE !!!
|
|
* The GCC libraries that ship with the Xilinx SDK make use of the floating
|
|
* point registers. To avoid this causing corruption it is necessary to avoid
|
|
* their use unless a task has been given a floating point context. See
|
|
* https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
|
|
* for information on how to give a task a floating point context, and how to
|
|
* handle floating point operations in interrupts. As this demo does not give
|
|
* all tasks a floating point context main.c contains very basic C
|
|
* implementations of the standard C library functions memset(), memcpy() and
|
|
* memcmp(), which are are used by FreeRTOS itself. Defining these functions in
|
|
* the project prevents the linker pulling them in from the library. Any other
|
|
* standard C library functions that are used by the application must likewise
|
|
* be defined in C.
|
|
*
|
|
* ENSURE TO READ THE DOCUMENTATION PAGE FOR THIS PORT AND DEMO APPLICATION ON
|
|
* THE http://www.FreeRTOS.org WEB SITE FOR FULL INFORMATION ON USING THIS DEMO
|
|
* APPLICATION, AND ITS ASSOCIATE FreeRTOS ARCHITECTURE PORT!
|
|
*
|
|
*/
|
|
|
|
/* Standard includes. */
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
|
|
/* Scheduler include files. */
|
|
#include "FreeRTOS.h"
|
|
#include "semphr.h"
|
|
#include "task.h"
|
|
|
|
// /* Standard demo includes. */
|
|
// #include "EventGroupsDemo.h"
|
|
// #include "IntSemTest.h"
|
|
// #include "QueueOverwrite.h"
|
|
// #include "QueueSet.h"
|
|
// #include "StreamBufferDemo.h"
|
|
// #include "StreamBufferInterrupt.h"
|
|
// #include "TaskNotify.h"
|
|
// #include "TimerDemo.h"
|
|
// #include "partest.h"
|
|
|
|
/* Xilinx includes. */
|
|
//#include "platform.h"
|
|
#include "xil_exception.h"
|
|
#include "xparameters.h"
|
|
#include "xscugic.h"
|
|
#include "xscutimer.h"
|
|
#include "xuartps_hw.h"
|
|
|
|
// TODO why? is in bsp
|
|
void _exit(sint32 status) {
|
|
(void)status;
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the hardware as necessary to run this demo.
|
|
*/
|
|
static void prvSetupHardware(void);
|
|
|
|
/*
|
|
* The Xilinx projects use a BSP that do not allow the start up code to be
|
|
* altered easily. Therefore the vector table used by FreeRTOS is defined in
|
|
* FreeRTOS_asm_vectors.S, which is part of this project. Switch to use the
|
|
* FreeRTOS vector table.
|
|
*/
|
|
extern void vPortInstallFreeRTOSVectorTable(void);
|
|
|
|
/* Prototypes for the standard FreeRTOS callback/hook functions implemented
|
|
within this file. */
|
|
void vApplicationMallocFailedHook(void);
|
|
void vApplicationIdleHook(void);
|
|
void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName);
|
|
void vApplicationTickHook(void);
|
|
|
|
/* The private watchdog is used as the timer that generates run time
|
|
stats. This frequency means it will overflow quite quickly. */
|
|
XScuWdt xWatchDogInstance;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* The interrupt controller is initialised in this file, and made available to
|
|
other modules. */
|
|
XScuGic xInterruptController;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
#define XPS_UART0_BASEADDR 0xE0000000U
|
|
#define UART_BASE XPS_UART0_BASEADDR
|
|
#define XUARTPS_SR_TNFUL 0x00004000U /**< TX FIFO Nearly Full Status */
|
|
#define XUARTPS_SR_TACTIVE 0x00000800U /**< TX active */
|
|
#define XUARTPS_SR_RXEMPTY 0x00000002U /**< RX FIFO empty */
|
|
|
|
#define POINTER_TO_REGISTER(REG) (*((volatile uint32_t *)(REG)))
|
|
|
|
#define UART_FIFO POINTER_TO_REGISTER(UART_BASE + XUARTPS_FIFO_OFFSET) // FIFO
|
|
#define UART_STATUS \
|
|
POINTER_TO_REGISTER(UART_BASE + XUARTPS_SR_OFFSET) // Channel Status
|
|
|
|
void uart_send(char c) {
|
|
while (UART_STATUS & XUARTPS_SR_TNFUL)
|
|
;
|
|
UART_FIFO = c;
|
|
while (UART_STATUS & XUARTPS_SR_TACTIVE)
|
|
;
|
|
}
|
|
|
|
/* Priorities at which the tasks are created. */
|
|
#define mainQUEUE_RECEIVE_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
|
|
#define mainQUEUE_SEND_TASK_PRIORITY (tskIDLE_PRIORITY + 1)
|
|
|
|
/* The rate at which data is sent to the queue. The 200ms value is converted
|
|
to ticks using the portTICK_PERIOD_MS constant. */
|
|
#define mainQUEUE_SEND_FREQUENCY_MS (1000 / portTICK_PERIOD_MS)
|
|
|
|
/* The number of items the queue can hold. This is 1 as the receive task
|
|
will remove items as they are added, meaning the send task should always find
|
|
the queue empty. */
|
|
#define mainQUEUE_LENGTH (1)
|
|
|
|
/* The LED toggled by the Rx task. */
|
|
#define mainTASK_LED (0)
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* The tasks as described in the comments at the top of this file.
|
|
*/
|
|
static void prvQueueReceiveTask(void *pvParameters);
|
|
static void prvQueueSendTask(void *pvParameters);
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* The queue used by both tasks. */
|
|
static QueueHandle_t xQueue = NULL;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void uart_send(char c);
|
|
|
|
static void prvQueueSendTask(void *pvParameters) {
|
|
TickType_t xNextWakeTime;
|
|
const unsigned long ulValueToSend = 100UL;
|
|
|
|
/* Remove compiler warning about unused parameter. */
|
|
(void)pvParameters;
|
|
|
|
/* Initialise xNextWakeTime - this only needs to be done once. */
|
|
xNextWakeTime = xTaskGetTickCount();
|
|
vTaskDelayUntil(&xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS / 2);
|
|
|
|
for (;;) {
|
|
/* Place this task in the blocked state until it is time to run again. */
|
|
vTaskDelayUntil(&xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS);
|
|
|
|
uart_send('C');
|
|
|
|
/* Send to the queue - causing the queue receive task to unblock and
|
|
toggle the LED. 0 is used as the block time so the sending operation
|
|
will not block - it shouldn't need to block as the queue should always
|
|
be empty at this point in the code. */
|
|
xQueueSend(xQueue, &ulValueToSend, 0U);
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvQueueReceiveTask(void *pvParameters) {
|
|
unsigned long ulReceivedValue;
|
|
const unsigned long ulExpectedValue = 100UL;
|
|
|
|
/* Remove compiler warning about unused parameter. */
|
|
(void)pvParameters;
|
|
|
|
for (;;) {
|
|
/* Wait until something arrives in the queue - this task will block
|
|
indefinitely provided INCLUDE_vTaskSuspend is set to 1 in
|
|
FreeRTOSConfig.h. */
|
|
xQueueReceive(xQueue, &ulReceivedValue, portMAX_DELAY);
|
|
|
|
uart_send('c');
|
|
|
|
/* To get here something must have been received from the queue, but
|
|
is it the expected value? If it is, toggle the LED. */
|
|
if (ulReceivedValue == ulExpectedValue) {
|
|
// vParTestToggleLED(mainTASK_LED);
|
|
ulReceivedValue = 0U;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
int main(void) {
|
|
|
|
// *((uint32_t*)0xFFFFFFF0) = 0x030000A8;
|
|
// asm("SEV");
|
|
// //while(1);
|
|
|
|
/* Configure the hardware ready to run the demo. */
|
|
prvSetupHardware();
|
|
|
|
/* Create the queue. */
|
|
xQueue = xQueueCreate(mainQUEUE_LENGTH, sizeof(uint32_t));
|
|
|
|
if (xQueue != NULL) {
|
|
/* Start the two tasks as described in the comments at the top of this
|
|
file. */
|
|
xTaskCreate(
|
|
prvQueueReceiveTask, /* The function that implements the task. */
|
|
"Rx", /* The text name assigned to the task - for debug only as it is
|
|
not used by the kernel. */
|
|
configMINIMAL_STACK_SIZE, /* The size of the stack to allocate to the
|
|
task. */
|
|
NULL, /* The parameter passed to the task - not used in this case. */
|
|
mainQUEUE_RECEIVE_TASK_PRIORITY, /* The priority assigned to the task.
|
|
*/
|
|
NULL); /* The task handle is not required, so NULL is passed. */
|
|
|
|
xTaskCreate(prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE, NULL,
|
|
mainQUEUE_SEND_TASK_PRIORITY, NULL);
|
|
|
|
/* Start the tasks and timer running. */
|
|
vTaskStartScheduler();
|
|
}
|
|
|
|
/* If all is well, the scheduler will now be running, and the following
|
|
line will never be reached. If the following line does execute, then
|
|
there was either insufficient FreeRTOS heap memory available for the idle
|
|
and/or timer tasks to be created, or vTaskStartScheduler() was called from
|
|
User mode. See the memory management section on the FreeRTOS web site for
|
|
more details on the FreeRTOS heap http://www.freertos.org/a00111.html. The
|
|
mode from which main() is called is set in the C start up code and must be
|
|
a privileged mode (not user mode). */
|
|
for (;;)
|
|
;
|
|
|
|
/* Don't expect to reach here. */
|
|
return 0;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvSetupHardware(void) {
|
|
BaseType_t xStatus;
|
|
XScuGic_Config *pxGICConfig;
|
|
|
|
/* Ensure no interrupts execute while the scheduler is in an inconsistent
|
|
state. Interrupts are automatically enabled when the scheduler is
|
|
started. */
|
|
portDISABLE_INTERRUPTS();
|
|
|
|
/* Obtain the configuration of the GIC. */
|
|
pxGICConfig = XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
|
|
|
|
/* Sanity check the FreeRTOSConfig.h settings are correct for the
|
|
hardware. */
|
|
configASSERT(pxGICConfig);
|
|
configASSERT(pxGICConfig->CpuBaseAddress ==
|
|
(configINTERRUPT_CONTROLLER_BASE_ADDRESS +
|
|
configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET));
|
|
configASSERT(pxGICConfig->DistBaseAddress ==
|
|
configINTERRUPT_CONTROLLER_BASE_ADDRESS);
|
|
|
|
/* Install a default handler for each GIC interrupt. */
|
|
xStatus = XScuGic_CfgInitialize(&xInterruptController, pxGICConfig,
|
|
pxGICConfig->CpuBaseAddress);
|
|
configASSERT(xStatus == XST_SUCCESS);
|
|
(void)xStatus; /* Remove compiler warning if configASSERT() is not defined. */
|
|
|
|
/* Initialise the LED port. */
|
|
//vParTestInitialise();
|
|
|
|
/* The Xilinx projects use a BSP that do not allow the start up code to be
|
|
altered easily. Therefore the vector table used by FreeRTOS is defined in
|
|
FreeRTOS_asm_vectors.S, which is part of this project. Switch to use the
|
|
FreeRTOS vector table. */
|
|
vPortInstallFreeRTOSVectorTable();
|
|
|
|
/* Initialise UART for use with QEMU. */
|
|
// XUartPs_ResetHw(0xE0000000);
|
|
// XUartPs_WriteReg(0xE0000000, XUARTPS_CR_OFFSET,
|
|
// ((u32)XUARTPS_CR_RX_DIS | (u32)XUARTPS_CR_TX_EN |
|
|
// (u32)XUARTPS_CR_STOPBRK));
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vApplicationMallocFailedHook(void) {
|
|
/* Called if a call to pvPortMalloc() fails because there is insufficient
|
|
free memory available in the FreeRTOS heap. pvPortMalloc() is called
|
|
internally by FreeRTOS API functions that create tasks, queues, software
|
|
timers, and semaphores. The size of the FreeRTOS heap is set by the
|
|
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */
|
|
taskDISABLE_INTERRUPTS();
|
|
for (;;)
|
|
;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName) {
|
|
(void)pcTaskName;
|
|
(void)pxTask;
|
|
|
|
/* Run time stack overflow checking is performed if
|
|
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
|
|
function is called if a stack overflow is detected. */
|
|
taskDISABLE_INTERRUPTS();
|
|
for (;;)
|
|
;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vApplicationIdleHook(void) {
|
|
volatile size_t xFreeHeapSpace, xMinimumEverFreeHeapSpace;
|
|
|
|
/* This is just a trivial example of an idle hook. It is called on each
|
|
cycle of the idle task. It must *NOT* attempt to block. In this case the
|
|
idle task just queries the amount of FreeRTOS heap that remains. See the
|
|
memory management section on the http://www.FreeRTOS.org web site for memory
|
|
management options. If there is a lot of heap memory free then the
|
|
configTOTAL_HEAP_SIZE value in FreeRTOSConfig.h can be reduced to free up
|
|
RAM. */
|
|
xFreeHeapSpace = xPortGetFreeHeapSize();
|
|
xMinimumEverFreeHeapSpace = xPortGetMinimumEverFreeHeapSize();
|
|
|
|
/* Remove compiler warning about xFreeHeapSpace being set but never used. */
|
|
(void)xFreeHeapSpace;
|
|
(void)xMinimumEverFreeHeapSpace;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vAssertCalled(const char *pcFile, unsigned long ulLine) {
|
|
volatile unsigned long ul = 0;
|
|
|
|
(void)pcFile;
|
|
(void)ulLine;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Set ul to a non-zero value using the debugger to step out of this
|
|
function. */
|
|
while (ul == 0) {
|
|
portNOP();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vApplicationTickHook(void) {
|
|
#if (mainSELECTED_APPLICATION == 1)
|
|
{
|
|
/* The full demo includes a software timer demo/test that requires
|
|
prodding periodically from the tick interrupt. */
|
|
vTimerPeriodicISRTests();
|
|
|
|
/* Call the periodic queue overwrite from ISR demo. */
|
|
vQueueOverwritePeriodicISRDemo();
|
|
|
|
/* Call the periodic event group from ISR demo. */
|
|
vPeriodicEventGroupsProcessing();
|
|
|
|
/* Use task notifications from an interrupt. */
|
|
xNotifyTaskFromISR();
|
|
|
|
/* Use mutexes from interrupts. */
|
|
vInterruptSemaphorePeriodicTest();
|
|
|
|
/* Writes to stream buffer byte by byte to test the stream buffer trigger
|
|
level functionality. */
|
|
vPeriodicStreamBufferProcessing();
|
|
|
|
/* Writes a string to a string buffer four bytes at a time to demonstrate
|
|
a stream being sent from an interrupt to a task. */
|
|
vBasicStreamBufferSendFromISR();
|
|
|
|
#if (configUSE_QUEUE_SETS == 1)
|
|
{ vQueueSetAccessQueueSetFromISR(); }
|
|
#endif
|
|
|
|
/* Test flop alignment in interrupts - calling printf from an interrupt
|
|
is BAD! */
|
|
#if (configASSERT_DEFINED == 1)
|
|
{
|
|
char cBuf[20];
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{ sprintf(cBuf, "%1.3f", 1.234); }
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
|
|
|
|
configASSERT(strcmp(cBuf, "1.234") == 0);
|
|
}
|
|
#endif /* configASSERT_DEFINED */
|
|
}
|
|
#endif
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void *memcpy(void *pvDest, const void *pvSource, size_t xBytes) {
|
|
/* The compiler used during development seems to err unless these volatiles
|
|
are included at -O3 optimisation. */
|
|
volatile unsigned char *pcDest = (volatile unsigned char *)pvDest,
|
|
*pcSource = (volatile unsigned char *)pvSource;
|
|
size_t x;
|
|
|
|
/* Extremely crude standard library implementations in lieu of having a C
|
|
library. */
|
|
if (pvDest != pvSource) {
|
|
for (x = 0; x < xBytes; x++) {
|
|
pcDest[x] = pcSource[x];
|
|
}
|
|
}
|
|
|
|
return pvDest;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void *memset(void *pvDest, int iValue, size_t xBytes) {
|
|
/* The compiler used during development seems to err unless these volatiles
|
|
are included at -O3 optimisation. */
|
|
volatile unsigned char *volatile pcDest =
|
|
(volatile unsigned char *volatile)pvDest;
|
|
volatile size_t x;
|
|
|
|
/* Extremely crude standard library implementations in lieu of having a C
|
|
library. */
|
|
for (x = 0; x < xBytes; x++) {
|
|
pcDest[x] = (unsigned char)iValue;
|
|
}
|
|
|
|
return pvDest;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
int memcmp(const void *pvMem1, const void *pvMem2, size_t xBytes) {
|
|
const volatile unsigned char *pucMem1 = pvMem1, *pucMem2 = pvMem2;
|
|
volatile size_t x;
|
|
|
|
/* Extremely crude standard library implementations in lieu of having a C
|
|
library. */
|
|
for (x = 0; x < xBytes; x++) {
|
|
if (pucMem1[x] != pucMem2[x]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return xBytes - x;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vInitialiseTimerForRunTimeStats(void) {
|
|
XScuWdt_Config *pxWatchDogInstance;
|
|
uint32_t ulValue;
|
|
const uint32_t ulMaxDivisor = 0xff, ulDivisorShift = 0x08;
|
|
|
|
pxWatchDogInstance = XScuWdt_LookupConfig(XPAR_SCUWDT_0_DEVICE_ID);
|
|
XScuWdt_CfgInitialize(&xWatchDogInstance, pxWatchDogInstance,
|
|
pxWatchDogInstance->BaseAddr);
|
|
|
|
ulValue = XScuWdt_GetControlReg(&xWatchDogInstance);
|
|
ulValue |= ulMaxDivisor << ulDivisorShift;
|
|
XScuWdt_SetControlReg(&xWatchDogInstance, ulValue);
|
|
|
|
XScuWdt_LoadWdt(&xWatchDogInstance, UINT_MAX);
|
|
XScuWdt_SetTimerMode(&xWatchDogInstance);
|
|
XScuWdt_Start(&xWatchDogInstance);
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
|
|
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
|
|
used by the Idle task. */
|
|
void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer,
|
|
StackType_t **ppxIdleTaskStackBuffer,
|
|
uint32_t *pulIdleTaskStackSize) {
|
|
/* If the buffers to be provided to the Idle task are declared inside this
|
|
function then they must be declared static - otherwise they will be allocated
|
|
on the stack and so not exists after this function exits. */
|
|
static StaticTask_t xIdleTaskTCB;
|
|
static StackType_t uxIdleTaskStack[configMINIMAL_STACK_SIZE];
|
|
|
|
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
|
|
state will be stored. */
|
|
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
|
|
|
|
/* Pass out the array that will be used as the Idle task's stack. */
|
|
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
|
|
|
|
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
|
|
Note that, as the array is necessarily of type StackType_t,
|
|
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
|
|
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
|
|
application must provide an implementation of vApplicationGetTimerTaskMemory()
|
|
to provide the memory that is used by the Timer service task. */
|
|
void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer,
|
|
StackType_t **ppxTimerTaskStackBuffer,
|
|
uint32_t *pulTimerTaskStackSize) {
|
|
/* If the buffers to be provided to the Timer task are declared inside this
|
|
function then they must be declared static - otherwise they will be allocated
|
|
on the stack and so not exists after this function exits. */
|
|
static StaticTask_t xTimerTaskTCB;
|
|
static StackType_t uxTimerTaskStack[configTIMER_TASK_STACK_DEPTH];
|
|
|
|
/* Pass out a pointer to the StaticTask_t structure in which the Timer
|
|
task's state will be stored. */
|
|
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
|
|
|
|
/* Pass out the array that will be used as the Timer task's stack. */
|
|
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
|
|
|
|
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
|
|
Note that, as the array is necessarily of type StackType_t,
|
|
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
|
|
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
|
|
}
|