381 lines
10 KiB
Rust

#![no_std]
//TODO look into using core::ffi (some types do not seem to work)
//TODO os errors in API calls
#[macro_export]
macro_rules! sifln {
($(,)?) => (
let mut stdout = Outbytes {};
writeln!(stdout);
);
($($arg:tt)*) => (
let mut stdout = Outbytes {};
let _alwaysok = writeln!(stdout, $($arg)*);
);
}
#[macro_export]
macro_rules! sif {
($($arg:tt)*) => (
let mut stdout = Outbytes {};
let _alwaysok = write!(stdout, $($arg)*);
);
}
use core::panic::PanicInfo;
#[panic_handler]
fn panic(panic: &PanicInfo<'_>) -> ! {
unsafe {
stop_it();
}
// TODO: Make this unicode-safe
sif!("In Task \"");
unsafe {
let task_name = get_task_name();
let mut offset = 0;
while *task_name.offset(offset) != 0 {
sif!("{}", *task_name.offset(offset) as char);
offset = offset + 1;
}
}
sifln!("\":");
sifln!("{}", panic);
//TODO: stop RTOS, exit if hosted
loop {}
}
type TaskFunction = unsafe extern "C" fn(*mut cty::c_void);
extern "C" {
fn outbyte(c: cty::c_char);
//void *create_task(TaskFunction_t taskFunction, void *parameter, size_t stack_size)
fn create_task(
taskFunction: TaskFunction,
parameter: *const cty::c_void,
stack_size: cty::size_t,
) -> *const cty::c_void;
fn get_task_name() -> *const core::ffi::c_uchar;
fn stop_it();
fn delete_task(handle: *const cty::c_void);
fn task_delay(milliseconds: cty::uint32_t);
//void *create_queue(size_t length, size_t element_size)
fn create_queue(length: cty::size_t, element_size: cty::size_t) -> *const cty::c_void;
fn queue_receive(queue: *const cty::c_void, message: *const cty::c_void) -> cty::uint8_t;
fn queue_send(queue: *const cty::c_void, message: *const cty::c_void) -> cty::uint8_t;
}
#[no_mangle]
extern "C" fn rust_main() {
sifln!("Rust startup 🚀");
mission();
sifln!("Mission done");
}
#[no_mangle]
extern "C" fn task_entry(task_object: *mut cty::c_void) {
sifln!("Task Entry");
sifln!("running pointer {:p}", task_object);
let task: &mut dyn TaskIF;
unsafe {
let pointer = task_object as *mut PeriodicTask;
task = &mut *pointer;
}
sifln!("running cast {:p}", task);
task.run();
}
trait ExecutableObjectIF {
fn perform(&mut self);
}
trait TaskIF {
fn run(&mut self);
fn get_stack_size(&self) -> cty::size_t;
fn set_handle(&mut self, task_handle: *const cty::c_void);
fn get_handle(&self) -> *const cty::c_void;
}
struct PeriodicTask<'a> {
stack_size: cty::size_t, //TODO generic type and safety
task_handle: *const cty::c_void,
period: usize,
task_object: &'a mut dyn ExecutableObjectIF,
}
impl<'a> PeriodicTask<'a> {
fn new(object: &'a mut dyn ExecutableObjectIF, stack_size: usize, period: usize) -> Self {
let instance = Self {
stack_size: stack_size,
task_handle: 0 as *const cty::c_void,
period: period,
task_object: object,
};
instance
}
}
impl<'a> TaskIF for PeriodicTask<'a> {
fn run(&mut self) {
sifln!("Task running {}", self.period);
loop {
self.task_object.perform();
unsafe {
task_delay(self.period as cty::uint32_t); //TODO type of delay should be generic but safe (cap to max in C)
}
}
}
fn get_stack_size(&self) -> cty::size_t {
self.stack_size
}
fn set_handle(&mut self, task_handle: *const cty::c_void) {
self.task_handle = task_handle;
}
fn get_handle(&self) -> *const cty::c_void {
self.task_handle
}
}
struct TaskExecutor<'a> {
tasks: &'a mut [&'a mut dyn TaskIF],
}
impl<'a> TaskExecutor<'a> {
fn run_tasks(&mut self) {
for task in self.tasks.iter_mut() {
// we give away a raw pointer, to be called by an OS task
// while this is generally very broken, we use a reference tied
// to our own lifetime and destroy the task when we get dropped
// this way, the reference is guaranteed to be valid over our
// lifetime while the task is deleted at the end of our lifetime
let task_pointer: *const cty::c_void = *task as *mut _ as *const cty::c_void; //TODO this does work without the "*" in front of the task -> Why??
sifln!("create task {:p}", task_pointer);
let handle;
unsafe {
handle = create_task(task_entry, task_pointer, task.get_stack_size());
}
if handle == 0 as *mut cty::c_void {
panic!("could not create Task");
} else {
task.set_handle(handle);
}
}
}
}
impl<'a> Drop for TaskExecutor<'a> {
fn drop(&mut self) {
for task in self.tasks.iter_mut() {
unsafe {
delete_task(task.get_handle());
}
}
}
}
struct Handler {
id: u32,
//command_queue: MessageQueue<Message, 10>,
}
struct HandlerSender {
id: u32,
cycle: u8,
//other_handler: MessageQueueSender<Message>,
}
// impl Handler {
// fn handle_message(&self, message: Message) {
// match message {
// Message::OK=> {sifln!("OK");},
// Message::FAILED => {sifln!("FAILED");},
// Message::DATA(data) => {sifln!("p1: {}, p2 {}", data.p1, data.p2);}
// }
// }
// }
impl ExecutableObjectIF for Handler {
fn perform(&mut self) {
sifln!("Handler {} performs", self.id);
// let result = self.command_queue.receive();
// match result {
// Ok(message) => self.handle_message(message),
// Err(_) => {sifln!("Handler {} got nothing", self.id);}
// }
}
}
impl ExecutableObjectIF for HandlerSender {
fn perform(&mut self) {
sifln!("HandlerSender {} performs step {}", self.id, self.cycle);
// match self.cycle {
// 0 => {let _ = self.other_handler.send(Message::OK);},
// 1 => {let _ = self.other_handler.send(Message::FAILED);},
// 2 => {let _ = self.other_handler.send(Message::DATA(GenericMessageData { p1: 1, p2: 2 }));},
// _ => (),
// }
// self.cycle += 1;
}
}
/*struct MessageQueue<T, const LENGTH: usize> {
queue_id: *const cty::c_void,
buffer: [T; LENGTH],
}
struct MessageQueueSender<T> {
queue_id: Option<*const cty::c_void>,
_unused: Option<T>, //need to constrain the sender to one message type for safety, but compiler needs that to be used
}
impl<T: Copy, const LENGTH: usize> MessageQueue<T, LENGTH> {
fn new() -> Self {
let mut instance: Self;
unsafe {
instance = Self {
queue_id: 0 as *const cty::c_void,
buffer: [core::mem::MaybeUninit::zeroed().assume_init(); LENGTH], //Gets passed to C/FreeRTOS, so we never ever touch it ever again
};
let buffer_pointer: *mut cty::c_void =
&mut instance.buffer as *mut _ as *mut cty::c_void;
instance.queue_id = create_queue(LENGTH, core::mem::size_of::<T>(), buffer_pointer);
if instance.queue_id == 0 as *mut cty::c_void {
panic!("could not create Queue");
}
instance
}
}
fn get_sender(&self) -> MessageQueueSender<T> {
let instance: MessageQueueSender<T> = MessageQueueSender::<T> {
queue_id: Some(self.queue_id),
_unused: None,
};
instance
}
fn receive(&self) -> Result<T, ()> {
let mut message: T;
let res: cty::uint8_t;
unsafe {
message = core::mem::MaybeUninit::zeroed().assume_init(); // We only return it if the queue received something
let message_pointer: *mut cty::c_void = &mut message as *mut _ as *mut cty::c_void;
res = queue_receive(self.queue_id, message_pointer);
}
if res == 1 {
Ok(message)
} else {
Err(())
}
}
}
impl<T> MessageQueueSender<T> {
fn new() -> Self {
Self {
queue_id: None,
_unused: None,
}
}
fn send(&self, message: T) -> Result<(), ()> {
let queue_id = self.queue_id.expect("unitialized Message Queue");
let res: cty::uint8_t;
unsafe {
let message_pointer: *const cty::c_void = &message as *const _ as *const cty::c_void;
res = queue_send(queue_id, message_pointer);
}
if res == 1 {
Ok(())
} else {
Err(())
}
}
}
*/
#[derive(Clone, Copy)]
struct GenericMessageData {
p1: u32,
p2: u32,
}
#[derive(Copy, Clone)]
enum Message {
OK,
FAILED,
DATA(GenericMessageData),
}
struct Outbytes {}
use core::fmt::{Error, Write};
impl Write for Outbytes {
fn write_str(&mut self, s: &str) -> Result<(), Error> {
for c in s.as_bytes() {
unsafe {
outbyte(*c);
}
}
Ok(())
}
}
fn mission() {
sifln!("Mission enter");
let mut h1 = Handler {
id: 1,
//command_queue: MessageQueue::new(),
};
let mut h2 = Handler {
id: 2,
// cycle: 0,
// other_handler: MessageQueueSender::<Message>::new(),
};
// h2.other_handler = h1.command_queue.get_sender();
let mut t1: PeriodicTask = PeriodicTask::new(&mut h1, 512, 200);
let mut t2: PeriodicTask = PeriodicTask::new(&mut h2, 512, 300);
sifln!("t1 {:p}", &t1);
let r1: &mut dyn TaskIF = &mut t1;
sifln!("as dyn {:p}", r1);
let mut task_executor = TaskExecutor {
tasks: &mut [&mut t1, &mut t2],
};
sifln!("{:p}", task_executor.tasks[0]);
task_executor.run_tasks();
sifln!("Mission delay");
unsafe {
task_delay(2000);
}
sifln!("executor dropped");
drop(task_executor);
//t2.period = 100; //Invalid
h1.id = 2;
unsafe {
task_delay(2000);
}
sifln!("Mission delay done");
}