sat-rs/satrs/src/event_man.rs

792 lines
30 KiB
Rust
Raw Normal View History

//! Event management and forwarding
//!
//! This module provides components to perform event routing. The most important component for this
//! task is the [EventManager]. It receives all events and then routes them to event subscribers
//! where appropriate. One common use case for satellite systems is to offer a light-weight
//! publish-subscribe mechanism and IPC mechanism for software and hardware events which are also
//! packaged as telemetry (TM) or can trigger a system response.
//!
//! It is recommended to read the
//! [sat-rs book chapter](https://absatsw.irs.uni-stuttgart.de/projects/sat-rs/book/events.html)
//! about events first:
//!
2024-02-23 14:19:30 +01:00
//! The event manager has a listener table abstracted by the [ListenerMapProvider], which maps
2023-07-10 00:36:35 +02:00
//! listener groups identified by [ListenerKey]s to a [sender ID][ChannelId].
2024-02-23 14:19:30 +01:00
//! It also contains a sender table abstracted by the [SenderMapProvider] which maps these sender
//! IDs to concrete [EventSendProvider]s. A simple approach would be to use one send event provider
//! for each OBSW thread and then subscribe for all interesting events for a particular thread
//! using the send event provider ID.
//!
//! This can be done with the [EventManager] like this:
//!
2024-02-23 14:19:30 +01:00
//! 1. Provide a concrete [EventReceiveProvider] implementation. This abstraction allow to use different
//! message queue backends. A straightforward implementation where dynamic memory allocation is
//! not a big concern could use [std::sync::mpsc::channel] to do this and is provided in
//! form of the [MpscEventReceiver].
//! 2. To set up event creators, create channel pairs using some message queue implementation.
//! Each event creator gets a (cloned) sender component which allows it to send events to the
//! manager.
2024-02-23 14:19:30 +01:00
//! 3. The event manager receives the receiver component as part of a [EventReceiveProvider]
//! implementation so all events are routed to the manager.
2024-02-23 14:19:30 +01:00
//! 4. Create the [send event providers][EventSendProvider]s which allow routing events to
//! subscribers. You can now use their [sender IDs][EventSendProvider::channel_id] to subscribe
//! for event groups, for example by using the [EventManager::subscribe_single] method.
//! 5. Add the send provider as well using the [EventManager::add_sender] call so the event
//! manager can route listener groups to a the send provider.
//!
//! Some components like a PUS Event Service or PUS Event Action Service might require all
//! events to package them as telemetry or start actions where applicable.
//! Other components might only be interested in certain events. For example, a thermal system
//! handler might only be interested in temperature events generated by a thermal sensor component.
//!
//! # Examples
//!
2024-02-23 14:19:30 +01:00
//! You can check [integration test](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs/tests/pus_events.rs)
//! for a concrete example using multi-threading where events are routed to
//! different threads.
use crate::events::{EventU16, EventU32, GenericEvent, LargestEventRaw, LargestGroupIdRaw};
use crate::params::{Params, ParamsHeapless};
2024-02-23 14:19:30 +01:00
use crate::queue::GenericSendError;
use core::marker::PhantomData;
use core::slice::Iter;
2023-07-10 00:29:31 +02:00
use crate::ChannelId;
2024-02-23 14:19:30 +01:00
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
#[cfg(feature = "std")]
2024-02-23 14:19:30 +01:00
pub use std_mod::*;
#[derive(PartialEq, Eq, Hash, Copy, Clone, Debug)]
pub enum ListenerKey {
Single(LargestEventRaw),
Group(LargestGroupIdRaw),
All,
}
pub type EventWithHeaplessAuxData<Event> = (Event, Option<ParamsHeapless>);
pub type EventU32WithHeaplessAuxData = EventWithHeaplessAuxData<EventU32>;
pub type EventU16WithHeaplessAuxData = EventWithHeaplessAuxData<EventU16>;
pub type EventWithAuxData<Event> = (Event, Option<Params>);
pub type EventU32WithAuxData = EventWithAuxData<EventU32>;
pub type EventU16WithAuxData = EventWithAuxData<EventU16>;
2024-02-23 14:19:30 +01:00
pub trait EventSendProvider<EV: GenericEvent, AuxDataProvider = Params> {
fn channel_id(&self) -> ChannelId;
2024-02-23 14:19:30 +01:00
fn send_no_data(&self, event: EV) -> Result<(), GenericSendError> {
self.send(event, None)
}
2024-02-23 14:19:30 +01:00
fn send(&self, event: EV, aux_data: Option<AuxDataProvider>) -> Result<(), GenericSendError>;
}
/// Generic abstraction for an event receiver.
2024-02-23 14:19:30 +01:00
pub trait EventReceiveProvider<Event: GenericEvent, AuxDataProvider = Params> {
/// This function has to be provided by any event receiver. A receive call may or may not return
/// an event.
///
/// To allow returning arbitrary additional auxiliary data, a mutable slice is passed to the
/// [Self::receive] call as well. Receivers can write data to this slice, but care must be taken
/// to avoid panics due to size missmatches or out of bound writes.
2024-02-23 14:19:30 +01:00
fn try_recv_event(&self) -> Option<(Event, Option<AuxDataProvider>)>;
}
2024-02-23 14:19:30 +01:00
pub trait ListenerMapProvider {
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn get_listeners(&self) -> alloc::vec::Vec<ListenerKey>;
fn contains_listener(&self, key: &ListenerKey) -> bool;
2023-07-10 00:29:31 +02:00
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<ChannelId>>;
fn add_listener(&mut self, key: ListenerKey, sender_id: ChannelId) -> bool;
fn remove_duplicates(&mut self, key: &ListenerKey);
}
2024-02-23 14:19:30 +01:00
pub trait SenderMapProvider<
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent = EventU32,
AUX = Params,
>
{
2023-07-10 00:29:31 +02:00
fn contains_send_event_provider(&self, id: &ChannelId) -> bool;
2024-02-23 14:19:30 +01:00
fn get_send_event_provider(&self, id: &ChannelId) -> Option<&SP>;
fn add_send_event_provider(&mut self, send_provider: SP) -> bool;
}
/// Generic event manager implementation.
///
/// # Generics
///
2024-02-23 14:19:30 +01:00
/// * `ERP`: [EventReceiveProvider] used to receive all events.
/// * `SMP`: [SenderMapProvider] which maps channel IDs to send providers.
/// * `LTR`: [ListenerMapProvider] which maps listener keys to channel IDs.
/// * `SP`: [EventSendProvider] contained within the sender map which sends the events.
/// * `EV`: The event type. This type must implement the [GenericEvent]. Currently only [EventU32]
/// and [EventU16] are supported.
/// * `AUX`: Auxiliary data which is sent with the event to provide optional context information
pub struct EventManager<
ERP: EventReceiveProvider<EV, AUX>,
SMP: SenderMapProvider<SP, EV, AUX>,
LTR: ListenerMapProvider,
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent = EventU32,
AUX = Params,
> {
event_receiver: ERP,
sender_map: SMP,
listener_map: LTR,
phantom: core::marker::PhantomData<(SP, EV, AUX)>,
}
#[derive(Debug)]
2024-02-23 14:19:30 +01:00
pub enum EventRoutingResult<EV: GenericEvent, AUX> {
/// No event was received
Empty,
2024-02-23 14:19:30 +01:00
/// An event was received and routed to listeners.
Handled {
num_recipients: u32,
event: EV,
aux_data: Option<AUX>,
},
}
#[derive(Debug)]
2024-02-23 14:19:30 +01:00
pub enum EventRoutingError {
Send(GenericSendError),
NoSendersForKey(ListenerKey),
2023-07-10 00:29:31 +02:00
NoSenderForId(ChannelId),
}
#[derive(Debug)]
2024-02-23 14:19:30 +01:00
pub struct EventRoutingErrorsWithResult<EV: GenericEvent, AUX> {
pub result: EventRoutingResult<EV, AUX>,
pub errors: [Option<EventRoutingError>; 3],
}
2024-02-23 14:19:30 +01:00
impl<
ER: EventReceiveProvider<EV, AUX>,
S: SenderMapProvider<SP, EV, AUX>,
L: ListenerMapProvider,
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent + Copy,
AUX: Clone,
> EventManager<ER, S, L, SP, EV, AUX>
{
pub fn remove_duplicates(&mut self, key: &ListenerKey) {
2024-02-23 14:19:30 +01:00
self.listener_map.remove_duplicates(key)
}
/// Subscribe for a unique event.
2024-02-23 14:19:30 +01:00
pub fn subscribe_single(&mut self, event: &EV, sender_id: ChannelId) {
self.update_listeners(ListenerKey::Single(event.raw_as_largest_type()), sender_id);
}
/// Subscribe for an event group.
2023-07-10 00:29:31 +02:00
pub fn subscribe_group(&mut self, group_id: LargestGroupIdRaw, sender_id: ChannelId) {
self.update_listeners(ListenerKey::Group(group_id), sender_id);
}
/// Subscribe for all events received by the manager.
///
/// For example, this can be useful for a handler component which sends every event as
/// a telemetry packet.
2023-07-10 00:29:31 +02:00
pub fn subscribe_all(&mut self, sender_id: ChannelId) {
self.update_listeners(ListenerKey::All, sender_id);
}
}
2024-02-23 14:19:30 +01:00
impl<
ERP: EventReceiveProvider<EV, AUX>,
SMP: SenderMapProvider<SP, EV, AUX>,
LTR: ListenerMapProvider,
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent + Copy,
AUX: Clone,
> EventManager<ERP, SMP, LTR, SP, EV, AUX>
{
2024-02-23 14:19:30 +01:00
pub fn new_with_custom_maps(event_receiver: ERP, sender_map: SMP, listener_map: LTR) -> Self {
EventManager {
2024-02-23 14:19:30 +01:00
listener_map,
sender_map,
event_receiver,
2024-02-23 14:19:30 +01:00
phantom: PhantomData,
}
}
2024-02-23 14:19:30 +01:00
/// Add a new sender component which can be used to send events to subscribers.
pub fn add_sender(&mut self, send_provider: SP) {
if !self
2024-02-23 14:19:30 +01:00
.sender_map
.contains_send_event_provider(&send_provider.channel_id())
{
2024-02-23 14:19:30 +01:00
self.sender_map.add_send_event_provider(send_provider);
}
}
2024-02-23 14:19:30 +01:00
/// Generic function to update the event subscribers.
2023-07-10 00:29:31 +02:00
fn update_listeners(&mut self, key: ListenerKey, sender_id: ChannelId) {
2024-02-23 14:19:30 +01:00
self.listener_map.add_listener(key, sender_id);
}
/// This function will use the cached event receiver and try to receive one event.
/// If an event was received, it will try to route that event to all subscribed event listeners.
/// If this works without any issues, the [EventRoutingResult] will contain context information
/// about the routed event.
///
/// This function will track up to 3 errors returned as part of the
/// [EventRoutingErrorsWithResult] error struct.
pub fn try_event_handling(
2023-07-19 11:34:13 +02:00
&self,
2024-02-23 14:19:30 +01:00
) -> Result<EventRoutingResult<EV, AUX>, EventRoutingErrorsWithResult<EV, AUX>> {
let mut err_idx = 0;
let mut err_slice = [None, None, None];
let mut num_recipients = 0;
2024-02-23 14:19:30 +01:00
let mut add_error = |error: EventRoutingError| {
if err_idx < 3 {
err_slice[err_idx] = Some(error);
err_idx += 1;
}
};
2024-02-23 14:19:30 +01:00
let mut send_handler = |key: &ListenerKey, event: EV, aux_data: &Option<AUX>| {
if self.listener_map.contains_listener(key) {
if let Some(ids) = self.listener_map.get_listener_ids(key) {
for id in ids {
if let Some(sender) = self.sender_map.get_send_event_provider(id) {
if let Err(e) = sender.send(event, aux_data.clone()) {
add_error(EventRoutingError::Send(e));
} else {
2024-02-23 14:19:30 +01:00
num_recipients += 1;
}
2024-02-23 14:19:30 +01:00
} else {
add_error(EventRoutingError::NoSenderForId(*id));
}
}
2024-02-23 14:19:30 +01:00
} else {
add_error(EventRoutingError::NoSendersForKey(*key));
}
2024-02-23 14:19:30 +01:00
}
};
if let Some((event, aux_data)) = self.event_receiver.try_recv_event() {
let single_key = ListenerKey::Single(event.raw_as_largest_type());
send_handler(&single_key, event, &aux_data);
let group_key = ListenerKey::Group(event.group_id_as_largest_type());
send_handler(&group_key, event, &aux_data);
send_handler(&ListenerKey::All, event, &aux_data);
if err_idx > 0 {
return Err(EventRoutingErrorsWithResult {
2024-02-23 14:19:30 +01:00
result: EventRoutingResult::Handled {
num_recipients,
event,
aux_data,
},
errors: err_slice,
});
}
2024-02-23 14:19:30 +01:00
return Ok(EventRoutingResult::Handled {
num_recipients,
event,
aux_data,
});
}
Ok(EventRoutingResult::Empty)
}
}
2024-02-23 14:19:30 +01:00
#[cfg(feature = "alloc")]
pub mod alloc_mod {
use alloc::vec::Vec;
use hashbrown::HashMap;
2024-02-23 14:19:30 +01:00
use super::*;
2024-02-23 14:19:30 +01:00
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses regular mpsc channels as the message queue backend.
pub type EventManagerWithMpsc<EV = EventU32, AUX = Params> = EventManager<
MpscEventReceiver,
DefaultSenderMap<EventSenderMpsc<EV>, EV, AUX>,
DefaultListenerMap,
EventSenderMpsc<EV>,
>;
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses
/// [bounded mpsc senders](https://doc.rust-lang.org/std/sync/mpsc/struct.SyncSender.html) as the
/// message queue backend.
pub type EventManagerWithBoundedMpsc<EV = EventU32, AUX = Params> = EventManager<
MpscEventReceiver,
DefaultSenderMap<EventSenderMpscBounded<EV>, EV, AUX>,
DefaultListenerMap,
EventSenderMpscBounded<EV>,
>;
impl<
ER: EventReceiveProvider<EV, AUX>,
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent + Copy,
AUX: 'static,
> EventManager<ER, DefaultSenderMap<SP, EV, AUX>, DefaultListenerMap, SP, EV, AUX>
{
/// Create an event manager where the sender table will be the [DefaultSenderMap]
/// and the listener table will be the [DefaultListenerMap].
pub fn new(event_receiver: ER) -> Self {
Self {
listener_map: DefaultListenerMap::default(),
sender_map: DefaultSenderMap::default(),
event_receiver,
phantom: PhantomData,
}
}
}
2024-02-23 14:19:30 +01:00
/// Default listener map.
///
/// Simple implementation which uses a [HashMap] and a [Vec] internally.
#[derive(Default)]
pub struct DefaultListenerMap {
listeners: HashMap<ListenerKey, Vec<ChannelId>>,
}
2024-02-23 14:19:30 +01:00
impl ListenerMapProvider for DefaultListenerMap {
fn get_listeners(&self) -> Vec<ListenerKey> {
let mut key_list = Vec::new();
for key in self.listeners.keys() {
key_list.push(*key);
}
key_list
}
fn contains_listener(&self, key: &ListenerKey) -> bool {
self.listeners.contains_key(key)
}
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<ChannelId>> {
self.listeners.get(key).map(|vec| vec.iter())
}
fn add_listener(&mut self, key: ListenerKey, sender_id: ChannelId) -> bool {
if let Some(existing_list) = self.listeners.get_mut(&key) {
existing_list.push(sender_id);
} else {
let new_list = alloc::vec![sender_id];
self.listeners.insert(key, new_list);
}
true
}
fn remove_duplicates(&mut self, key: &ListenerKey) {
if let Some(list) = self.listeners.get_mut(key) {
list.sort_unstable();
list.dedup();
}
}
}
2024-02-23 14:19:30 +01:00
/// Default sender map.
///
/// Simple implementation which uses a [HashMap] internally.
pub struct DefaultSenderMap<
SP: EventSendProvider<EV, AUX>,
EV: GenericEvent = EventU32,
AUX = Params,
> {
senders: HashMap<ChannelId, SP>,
phantom: PhantomData<(EV, AUX)>,
}
2024-02-23 14:19:30 +01:00
impl<SP: EventSendProvider<EV, AUX>, EV: GenericEvent, AUX> Default
for DefaultSenderMap<SP, EV, AUX>
{
fn default() -> Self {
Self {
senders: Default::default(),
phantom: Default::default(),
}
}
}
2024-02-23 14:19:30 +01:00
impl<SP: EventSendProvider<EV, AUX>, EV: GenericEvent, AUX> SenderMapProvider<SP, EV, AUX>
for DefaultSenderMap<SP, EV, AUX>
{
fn contains_send_event_provider(&self, id: &ChannelId) -> bool {
self.senders.contains_key(id)
}
2024-02-23 14:19:30 +01:00
fn get_send_event_provider(&self, id: &ChannelId) -> Option<&SP> {
self.senders
.get(id)
.filter(|sender| sender.channel_id() == *id)
}
2024-02-23 14:19:30 +01:00
fn add_send_event_provider(&mut self, send_provider: SP) -> bool {
let id = send_provider.channel_id();
if self.senders.contains_key(&id) {
return false;
}
self.senders.insert(id, send_provider).is_none()
}
}
}
#[cfg(feature = "std")]
2024-02-23 14:19:30 +01:00
pub mod std_mod {
use super::*;
2024-02-23 14:19:30 +01:00
use crate::event_man::{EventReceiveProvider, EventWithAuxData};
use crate::events::{EventU16, EventU32, GenericEvent};
use crate::params::Params;
2024-02-23 14:19:30 +01:00
use std::sync::mpsc::{self};
pub struct MpscEventReceiver<Event: GenericEvent + Send = EventU32> {
2024-02-23 14:19:30 +01:00
mpsc_receiver: mpsc::Receiver<(Event, Option<Params>)>,
}
impl<Event: GenericEvent + Send> MpscEventReceiver<Event> {
2024-02-23 14:19:30 +01:00
pub fn new(receiver: mpsc::Receiver<(Event, Option<Params>)>) -> Self {
Self {
mpsc_receiver: receiver,
}
}
}
2024-02-23 14:19:30 +01:00
impl<Event: GenericEvent + Send> EventReceiveProvider<Event> for MpscEventReceiver<Event> {
fn try_recv_event(&self) -> Option<EventWithAuxData<Event>> {
if let Ok(event_and_data) = self.mpsc_receiver.try_recv() {
return Some(event_and_data);
}
None
}
}
pub type MpscEventU32Receiver = MpscEventReceiver<EventU32>;
pub type MpscEventU16Receiver = MpscEventReceiver<EventU16>;
2024-02-23 14:19:30 +01:00
/// Generic event sender which uses a regular [mpsc::Sender] as the messaging backend to
/// send events.
#[derive(Clone)]
2024-02-23 14:19:30 +01:00
pub struct EventSenderMpsc<Event: GenericEvent + Send> {
id: u32,
2024-02-23 14:19:30 +01:00
sender: mpsc::Sender<(Event, Option<Params>)>,
}
2024-02-23 14:19:30 +01:00
impl<Event: GenericEvent + Send> EventSenderMpsc<Event> {
pub fn new(id: u32, sender: mpsc::Sender<(Event, Option<Params>)>) -> Self {
Self { id, sender }
}
}
2024-02-23 14:19:30 +01:00
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpsc<Event> {
fn channel_id(&self) -> u32 {
self.id
}
2024-02-23 14:19:30 +01:00
fn send(&self, event: Event, aux_data: Option<Params>) -> Result<(), GenericSendError> {
self.sender
.send((event, aux_data))
.map_err(|_| GenericSendError::RxDisconnected)
}
}
2024-02-23 14:19:30 +01:00
/// Generic event sender which uses the [mpsc::SyncSender] as the messaging backend to send
/// events. This has the advantage that the channel is bounded and thus more deterministic.
#[derive(Clone)]
pub struct EventSenderMpscBounded<Event: GenericEvent + Send> {
channel_id: u32,
sender: mpsc::SyncSender<(Event, Option<Params>)>,
capacity: usize,
}
impl<Event: GenericEvent + Send> EventSenderMpscBounded<Event> {
pub fn new(
channel_id: u32,
sender: mpsc::SyncSender<(Event, Option<Params>)>,
capacity: usize,
) -> Self {
Self {
channel_id,
sender,
capacity,
}
}
}
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpscBounded<Event> {
fn channel_id(&self) -> u32 {
self.channel_id
}
fn send(&self, event: Event, aux_data: Option<Params>) -> Result<(), GenericSendError> {
if let Err(e) = self.sender.try_send((event, aux_data)) {
return match e {
mpsc::TrySendError::Full(_) => {
Err(GenericSendError::QueueFull(Some(self.capacity as u32)))
}
mpsc::TrySendError::Disconnected(_) => Err(GenericSendError::RxDisconnected),
};
}
Ok(())
}
}
pub type EventU32SenderMpsc = EventSenderMpsc<EventU32>;
pub type EventU16SenderMpsc = EventSenderMpsc<EventU16>;
pub type EventU32SenderMpscBounded = EventSenderMpscBounded<EventU32>;
pub type EventU16SenderMpscBounded = EventSenderMpscBounded<EventU16>;
}
#[cfg(test)]
mod tests {
use super::*;
use crate::event_man::EventManager;
use crate::events::{EventU32, GenericEvent, Severity};
use crate::params::ParamsRaw;
use std::format;
2024-02-23 14:19:30 +01:00
use std::sync::mpsc::{self, channel, Receiver, Sender};
2024-02-23 14:19:30 +01:00
const TEST_EVENT: EventU32 = EventU32::const_new(Severity::INFO, 0, 5);
fn check_next_event(
expected: EventU32,
receiver: &Receiver<EventU32WithAuxData>,
) -> Option<Params> {
if let Ok(event) = receiver.try_recv() {
assert_eq!(event.0, expected);
return event.1;
}
None
}
fn check_handled_event(
res: EventRoutingResult<EventU32, Params>,
expected: EventU32,
expected_num_sent: u32,
) {
assert!(matches!(res, EventRoutingResult::Handled { .. }));
2024-02-23 14:19:30 +01:00
if let EventRoutingResult::Handled {
num_recipients,
event,
..
} = res
{
assert_eq!(event, expected);
assert_eq!(num_recipients, expected_num_sent);
}
}
2024-02-23 14:19:30 +01:00
fn generic_event_man() -> (Sender<EventU32WithAuxData>, EventManagerWithMpsc) {
let (event_sender, manager_queue) = channel();
let event_man_receiver = MpscEventReceiver::new(manager_queue);
2024-02-23 14:19:30 +01:00
(event_sender, EventManager::new(event_man_receiver))
}
#[test]
fn test_basic() {
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let event_grp_1_0 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (single_event_sender, single_event_receiver) = channel();
2024-02-23 14:19:30 +01:00
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.channel_id());
event_man.add_sender(single_event_listener);
let (group_event_sender_0, group_event_receiver_0) = channel();
2024-02-23 14:19:30 +01:00
let group_event_listener = EventU32SenderMpsc::new(1, group_event_sender_0);
event_man.subscribe_group(event_grp_1_0.group_id(), group_event_listener.channel_id());
event_man.add_sender(group_event_listener);
// Test event with one listener
event_sender
.send((event_grp_0, None))
.expect("Sending single error failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_grp_0, 1);
check_next_event(event_grp_0, &single_event_receiver);
// Test event which is sent to all group listeners
event_sender
.send((event_grp_1_0, None))
.expect("Sending group error failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_grp_1_0, 1);
check_next_event(event_grp_1_0, &group_event_receiver_0);
}
#[test]
fn test_with_basic_aux_data() {
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let (single_event_sender, single_event_receiver) = channel();
2024-02-23 14:19:30 +01:00
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.channel_id());
event_man.add_sender(single_event_listener);
event_sender
.send((event_grp_0, Some(Params::Heapless((2_u32, 3_u32).into()))))
.expect("Sending group error failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_grp_0, 1);
let aux = check_next_event(event_grp_0, &single_event_receiver);
assert!(aux.is_some());
let aux = aux.unwrap();
if let Params::Heapless(ParamsHeapless::Raw(ParamsRaw::U32Pair(pair))) = aux {
assert_eq!(pair.0, 2);
assert_eq!(pair.1, 3);
} else {
panic!("{}", format!("Unexpected auxiliary value type {:?}", aux));
}
}
/// Test listening for multiple groups
#[test]
fn test_multi_group() {
let (event_sender, mut event_man) = generic_event_man();
let res = event_man.try_event_handling();
assert!(res.is_ok());
let hres = res.unwrap();
assert!(matches!(hres, EventRoutingResult::Empty));
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let event_grp_1_0 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_grp_0_sender, event_grp_0_receiver) = channel();
2024-02-23 14:19:30 +01:00
let event_grp_0_and_1_listener = EventU32SenderMpsc::new(0, event_grp_0_sender);
event_man.subscribe_group(
event_grp_0.group_id(),
event_grp_0_and_1_listener.channel_id(),
);
event_man.subscribe_group(
event_grp_1_0.group_id(),
event_grp_0_and_1_listener.channel_id(),
);
event_man.add_sender(event_grp_0_and_1_listener);
event_sender
.send((event_grp_0, None))
.expect("Sending Event Group 0 failed");
event_sender
.send((event_grp_1_0, None))
.expect("Sendign Event Group 1 failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_grp_0, 1);
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_grp_1_0, 1);
check_next_event(event_grp_0, &event_grp_0_receiver);
check_next_event(event_grp_1_0, &event_grp_0_receiver);
}
/// Test listening to the same event from multiple listeners. Also test listening
/// to both group and single events from one listener
#[test]
fn test_listening_to_same_event_and_multi_type() {
let (event_sender, mut event_man) = generic_event_man();
let event_0 = EventU32::new(Severity::INFO, 0, 5).unwrap();
let event_1 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_0_tx_0, event_0_rx_0) = channel();
let (event_0_tx_1, event_0_rx_1) = channel();
2024-02-23 14:19:30 +01:00
let event_listener_0 = EventU32SenderMpsc::new(0, event_0_tx_0);
let event_listener_1 = EventU32SenderMpsc::new(1, event_0_tx_1);
let event_listener_0_sender_id = event_listener_0.channel_id();
event_man.subscribe_single(&event_0, event_listener_0_sender_id);
event_man.add_sender(event_listener_0);
2024-02-23 14:19:30 +01:00
let event_listener_1_sender_id = event_listener_1.channel_id();
event_man.subscribe_single(&event_0, event_listener_1_sender_id);
event_man.add_sender(event_listener_1);
event_sender
.send((event_0, None))
.expect("Triggering Event 0 failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_0, 2);
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_0, &event_0_rx_1);
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_sender
.send((event_0, None))
.expect("Triggering Event 0 failed");
event_sender
.send((event_1, None))
.expect("Triggering Event 1 failed");
// 3 Events messages will be sent now
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_0, 2);
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_1, 1);
// Both the single event and the group event should arrive now
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_1, &event_0_rx_0);
// Do double insertion and then remove duplicates
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_man.remove_duplicates(&ListenerKey::Group(event_1.group_id()));
event_sender
.send((event_1, None))
.expect("Triggering Event 1 failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_1, 1);
}
#[test]
fn test_all_events_listener() {
let (event_sender, manager_queue) = channel();
let event_man_receiver = MpscEventReceiver::new(manager_queue);
2024-02-23 14:19:30 +01:00
let mut event_man = EventManagerWithMpsc::new(event_man_receiver);
let event_0 = EventU32::new(Severity::INFO, 0, 5).unwrap();
let event_1 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_0_tx_0, all_events_rx) = channel();
2024-02-23 14:19:30 +01:00
let all_events_listener = EventU32SenderMpsc::new(0, event_0_tx_0);
event_man.subscribe_all(all_events_listener.channel_id());
event_man.add_sender(all_events_listener);
event_sender
.send((event_0, None))
.expect("Triggering event 0 failed");
event_sender
.send((event_1, None))
.expect("Triggering event 1 failed");
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_0, 1);
let res = event_man.try_event_handling();
assert!(res.is_ok());
check_handled_event(res.unwrap(), event_1, 1);
check_next_event(event_0, &all_events_rx);
check_next_event(event_1, &all_events_rx);
}
2024-02-23 14:19:30 +01:00
#[test]
fn test_bounded_event_sender_queue_full() {
let (event_sender, _event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
event_sender
.send_no_data(TEST_EVENT)
.expect("sending test event failed");
event_sender
.send_no_data(TEST_EVENT)
.expect("sending test event failed");
event_sender
.send_no_data(TEST_EVENT)
.expect("sending test event failed");
let error = event_sender.send_no_data(TEST_EVENT);
if let Err(e) = error {
assert!(matches!(e, GenericSendError::QueueFull(Some(3))));
} else {
panic!("unexpected error {error:?}");
}
}
#[test]
fn test_bounded_event_sender_rx_dropped() {
let (event_sender, event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
drop(event_receiver);
if let Err(e) = event_sender.send_no_data(TEST_EVENT) {
assert!(matches!(e, GenericSendError::RxDisconnected));
} else {
panic!("Expected error");
}
}
}