Major example update
All checks were successful
Rust/sat-rs/pipeline/pr-main This commit looks good

- Increased example modularization by moving the majority
  of app logic inside dedicated modules
- Added a new `dyn_tmtc` feature for the satrs-example which is used
  to configure the heap as the backing store for TMTC packages instead
  of static stores.
- Added dedicated satrs-example chapter in satrs-book
This commit is contained in:
2024-02-07 18:10:47 +01:00
parent 28da48ca6e
commit 0fd70c08c2
26 changed files with 1916 additions and 745 deletions

30
satrs-book/src/example.md Normal file
View File

@ -0,0 +1,30 @@
# sat-rs Example Application
The `sat-rs` framework includes a monolithic example application which can be found inside
the [`satrs-example`](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-example)
subdirectory of the repository. The primary purpose of this example application is to show how
the various components of the sat-rs framework could be used as part of a larger on-board
software application.
## Structure of the example project
The example project contains components which could also be expected to be part of a production
On-Board Software.
1. A UDP and TCP server to receive telecommands and poll telemetry from. This might be an optional
component for an OBSW which is only used during the development phase on ground. The TCP
server parses space packets by using the CCSDS space packet ID as the packet start delimiter.
2. A PUS service stack which exposes some functionality conformant with the ECSS PUS service. This
currently includes the following services:
- Service 1 for telecommand verification.
- Service 3 for housekeeping telemetry handling.
- Service 5 for management and downlink of on-board events.
- Service 8 for handling on-board actions.
- Service 11 for scheduling telecommands to be released at a specific time.
- Service 17 for test purposes (pings)
3. An event manager component which handles the event IPC mechanism.
4. A TC source component which demultiplexes and routes telecommands based on parameters like
packet APID or PUS service and subservice type.
5. A TM sink sink component which is the target of all sent telemetry and sends it to downlink
handlers like the UDP and TCP server.
6. An AOCS example task which can also process some PUS commands.