modularized the mini simulator
Some checks failed
Rust/sat-rs/pipeline/pr-main There was a failure building this commit

This commit is contained in:
Robin Müller 2024-03-07 12:24:54 +01:00
parent 0a41de5e70
commit 3ad06f63c7
Signed by: muellerr
GPG Key ID: A649FB78196E3849
7 changed files with 508 additions and 367 deletions

148
satrs-minisim/src/acs.rs Normal file
View File

@ -0,0 +1,148 @@
use std::{f32::consts::PI, sync::mpsc, time::Duration};
use asynchronix::{
model::{Model, Output},
time::Scheduler,
};
use satrs::power::SwitchState;
use satrs_minisim::{
acs::{MgmSensorValues, MgtDipole, MGT_GEN_MAGNETIC_FIELD},
SimDevice, SimReply,
};
use crate::time::current_millis;
// Earth magnetic field varies between -30 uT and 30 uT
const AMPLITUDE_MGM: f32 = 0.03;
// Lets start with a simple frequency here.
const FREQUENCY_MGM: f32 = 1.0;
const PHASE_X: f32 = 0.0;
// Different phases to have different values on the other axes.
const PHASE_Y: f32 = 0.1;
const PHASE_Z: f32 = 0.2;
/// Simple model for a magnetometer where the measure magnetic fields are modeled with sine waves.
///
/// Please note that that a more realistic MGM model wouold include the following components
/// which are not included here to simplify the model:
///
/// 1. It would probably generate signed [i16] values which need to be converted to SI units
/// because it is a digital sensor
/// 2. It would sample the magnetic field at a high fixed rate. This might not be possible for
/// a general purpose OS, but self self-sampling at a relatively high rate (20-40 ms) might
/// stil lbe possible.
pub struct MagnetometerModel {
pub switch_state: SwitchState,
pub periodicity: Duration,
pub external_mag_field: Option<MgmSensorValues>,
pub reply_sender: mpsc::Sender<SimReply>,
}
impl MagnetometerModel {
pub fn new(periodicity: Duration, reply_sender: mpsc::Sender<SimReply>) -> Self {
Self {
switch_state: SwitchState::Off,
periodicity,
external_mag_field: None,
reply_sender,
}
}
pub async fn switch_device(&mut self, switch_state: SwitchState) {
self.switch_state = switch_state;
}
pub async fn send_sensor_values(&mut self, _: (), scheduler: &Scheduler<Self>) {
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
let reply = SimReply {
device: SimDevice::Mgm,
reply: serde_json::to_string(&value).unwrap(),
};
self.reply_sender
.send(reply)
.expect("sending MGM sensor values failed");
}
// Devices like magnetorquers generate a strong magnetic field which overrides the default
// model for the measured magnetic field.
pub async fn apply_external_magnetic_field(&mut self, field: MgmSensorValues) {
self.external_mag_field = Some(field);
}
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmSensorValues {
if let SwitchState::On = self.switch_state {
if let Some(ext_field) = self.external_mag_field {
return ext_field;
}
let base_sin_val = 2.0 * PI as f32 * FREQUENCY_MGM * (time_ms as f32 / 1000.0);
return MgmSensorValues {
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
};
}
MgmSensorValues {
x: 0.0,
y: 0.0,
z: 0.0,
}
}
}
impl Model for MagnetometerModel {}
pub struct MagnetorquerModel {
switch_state: SwitchState,
torquing: bool,
torque_dipole: Option<MgtDipole>,
gen_magnetic_field: Output<MgmSensorValues>,
}
impl MagnetorquerModel {
pub async fn apply_torque(
&mut self,
dipole: MgtDipole,
torque_duration: Duration,
scheduler: &Scheduler<Self>,
) {
self.torque_dipole = Some(dipole);
self.torquing = true;
if scheduler
.schedule_event(torque_duration, Self::clear_torque, ())
.is_err()
{
log::warn!("torque clearing can only be set for a future time.");
}
self.generate_magnetic_field(()).await;
}
pub async fn clear_torque(&mut self, _: ()) {
self.torque_dipole = None;
self.torquing = false;
self.generate_magnetic_field(()).await;
}
pub async fn switch_device(&mut self, switch_state: SwitchState) {
self.switch_state = switch_state;
self.generate_magnetic_field(()).await;
}
fn calc_magnetic_field(&self, _: MgtDipole) -> MgmSensorValues {
// Simplified model: Just returns some fixed magnetic field for now.
// Later, we could make this more fancy by incorporating the commanded dipole.
MGT_GEN_MAGNETIC_FIELD
}
/// A torquing magnetorquer generates a magnetic field. This function can be used to apply
/// the magnetic field.
async fn generate_magnetic_field(&mut self, _: ()) {
if self.switch_state != SwitchState::On || !self.torquing {
return;
}
self.gen_magnetic_field
.send(self.calc_magnetic_field(self.torque_dipole.expect("expected valid dipole")))
.await;
}
}
impl Model for MagnetorquerModel {}

View File

@ -0,0 +1,70 @@
use std::{sync::mpsc, time::Duration};
use asynchronix::{
simulation::{Address, Simulation},
time::{Clock, MonotonicTime, SystemClock},
};
use satrs_minisim::{acs::MgmRequest, SimRequest};
use crate::{
acs::MagnetometerModel,
eps::{PcduModel, PcduRequest},
};
// The simulation controller processes requests and drives the simulation.
pub struct SimController {
pub sys_clock: SystemClock,
pub request_receiver: mpsc::Receiver<SimRequest>,
pub simulation: Simulation,
pub mgm_addr: Address<MagnetometerModel>,
pub pcdu_addr: Address<PcduModel>,
}
impl SimController {
pub fn run(&mut self, t0: MonotonicTime) {
let mut t = t0 + Duration::from_millis(10);
loop {
self.simulation
.step_until(t)
.expect("simulation step failed");
t += Duration::from_millis(10);
// TODO: Received and handle requests.
// TODO: Incorporate network latency.
self.sys_clock.synchronize(t);
}
}
fn handle_mgm_request(&mut self, request: &str) {
let mgm_request: serde_json::Result<MgmRequest> = serde_json::from_str(request);
if mgm_request.is_err() {
log::warn!("received invalid MGM request: {}", mgm_request.unwrap_err());
return;
}
let mgm_request = mgm_request.unwrap();
match mgm_request {
MgmRequest::RequestSensorData => {
self.simulation.send_event(
MagnetometerModel::send_sensor_values,
(),
&self.mgm_addr,
);
}
}
}
fn handle_pcdu_request(&mut self, request: &str) {
let pcdu_request: serde_json::Result<PcduRequest> = serde_json::from_str(&request);
if pcdu_request.is_err() {
log::warn!(
"received invalid PCDU request: {}",
pcdu_request.unwrap_err()
);
return;
}
let pcdu_request = pcdu_request.unwrap();
match pcdu_request {
PcduRequest::RequestSwitchInfo => todo!(),
}
}
}

37
satrs-minisim/src/eps.rs Normal file
View File

@ -0,0 +1,37 @@
use asynchronix::model::{Model, Output};
use satrs::power::{SwitchState, SwitchStateBinary};
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct PcduTuple {}
pub enum PcduSwitches {
Mgm = 0,
Mgt = 1,
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum PcduRequest {
RequestSwitchInfo,
}
pub struct PcduModel {
pub switcher_list: Output<Vec<SwitchStateBinary>>,
pub mgm_switch: Output<SwitchState>,
pub mgt_switch: Output<SwitchState>,
}
impl PcduModel {
pub async fn switch_device(&mut self, switch: PcduSwitches, switch_state: SwitchState) {
match switch {
PcduSwitches::Mgm => {
self.mgm_switch.send(switch_state).await;
}
PcduSwitches::Mgt => {
self.mgt_switch.send(switch_state).await;
}
}
}
}
impl Model for PcduModel {}

53
satrs-minisim/src/lib.rs Normal file
View File

@ -0,0 +1,53 @@
use serde::{Deserialize, Serialize};
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum SimDevice {
Mgm,
Mgt,
Pcdu,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SimRequest {
pub device: SimDevice,
pub request: String,
}
#[derive(Serialize, Deserialize)]
pub struct SimReply {
pub device: SimDevice,
pub reply: String,
}
pub mod acs {
use super::*;
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum MgmRequest {
RequestSensorData,
}
// Normally, small magnetometers generate their output as a signed 16 bit raw format or something
// similar which needs to be converted to a signed float value with physical units. We will
// simplify this now and generate the signed float values directly.
#[derive(Debug, Copy, Clone, PartialEq, Serialize, Deserialize)]
pub struct MgmSensorValues {
pub x: f32,
pub y: f32,
pub z: f32,
}
pub const MGT_GEN_MAGNETIC_FIELD: MgmSensorValues = MgmSensorValues {
x: 0.03,
y: -0.03,
z: 0.03,
};
// Simple model using i16 values.
#[derive(Debug, Copy, Clone, PartialEq, Serialize, Deserialize)]
pub struct MgtDipole {
pub x: i16,
pub y: i16,
pub z: i16,
}
}

View File

@ -1,387 +1,63 @@
use asynchronix::model::{Model, Output};
use asynchronix::simulation::{EventSlot, Mailbox, SimInit, Simulation};
use asynchronix::time::{MonotonicTime, Scheduler, SystemClock};
use log::{info, warn};
use satrs::power::{SwitchState, SwitchStateBinary};
use serde::{Deserialize, Serialize};
use std::f64::consts::PI;
use std::future::Future;
use std::net::{SocketAddr, UdpSocket};
use std::sync::{mpsc, Arc, Mutex};
use std::time::{Duration, Instant, SystemTime, UNIX_EPOCH};
use std::{io, thread};
use acs::MagnetometerModel;
use asynchronix::model::Model;
use asynchronix::simulation::{Mailbox, SimInit};
use asynchronix::time::{MonotonicTime, SystemClock};
use controller::SimController;
use std::sync::mpsc;
use std::thread;
use std::time::{Duration, SystemTime};
use udp::{SharedSocketAddr, UdpTcServer, UdpTmClient};
// Normally, small magnetometers generate their output as a signed 16 bit raw format or something
// similar which needs to be converted to a signed float value with physical units. We will
// simplify this now and generate the signed float values directly.
#[derive(Debug, Copy, Clone, PartialEq, Serialize)]
pub struct MgmTuple {
x: f32,
y: f32,
z: f32,
}
// Earth magnetic field varies between -30 uT and 30 uT
const AMPLITUDE_MGM: f32 = 0.03;
// Lets start with a simple frequency here.
const FREQUENCY_MGM: f32 = 1.0;
const PHASE_X: f32 = 0.0;
// Different phases to have different values on the other axes.
const PHASE_Y: f32 = 0.1;
const PHASE_Z: f32 = 0.2;
const MGT_GEN_MAGNETIC_FIELD: MgmTuple = MgmTuple {
x: 0.03,
y: -0.03,
z: 0.03,
};
pub struct MagnetometerModel {
pub switch_state: SwitchState,
pub periodicity: Duration,
pub external_mag_field: Option<MgmTuple>,
pub sensor_values: Output<MgmTuple>,
}
impl MagnetometerModel {
fn new(periodicity: Duration) -> Self {
Self {
switch_state: SwitchState::Off,
periodicity,
external_mag_field: None,
sensor_values: Default::default(),
}
}
pub async fn start(&mut self, _: (), scheduler: &Scheduler<Self>) {
self.generate_output_self_scheduling((), scheduler).await;
}
pub async fn switch_device(&mut self, switch_state: SwitchState, scheduler: &Scheduler<Self>) {
self.switch_state = switch_state;
self.generate_output((), scheduler).await;
}
// Devices like magnetorquers generate a strong magnetic field which overrides the default
// model for the measured magnetic field.
pub async fn apply_external_magnetic_field(
&mut self,
field: MgmTuple,
scheduler: &Scheduler<Self>,
) {
self.external_mag_field = Some(field);
self.generate_output((), scheduler).await;
}
// Simple unit input to request MGM tuple for current time.
//
// Need the partially desugared function signature, see [asynchronix::time::Scheduler] docs.
#[allow(clippy::manual_async_fn)]
pub fn generate_output_self_scheduling<'a>(
&'a mut self,
_: (),
scheduler: &'a Scheduler<Self>,
) -> impl Future<Output = ()> + Send + 'a {
async move {
if scheduler
.schedule_event(self.periodicity, Self::generate_output_self_scheduling, ())
.is_err()
{
warn!("output generation can only be set for a future time.");
}
self.generate_output((), scheduler).await;
}
}
pub async fn generate_output(&mut self, _: (), scheduler: &Scheduler<Self>) {
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
self.sensor_values.send(value).await;
}
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmTuple {
if let SwitchState::On = self.switch_state {
if let Some(ext_field) = self.external_mag_field {
return ext_field;
}
let base_sin_val = 2.0 * PI as f32 * FREQUENCY_MGM * (time_ms as f32 / 1000.0);
return MgmTuple {
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
};
}
MgmTuple {
x: 0.0,
y: 0.0,
z: 0.0,
}
}
}
impl Model for MagnetometerModel {}
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct PcduTuple {}
pub enum PcduSwitches {
Mgm = 0,
Mgt = 1,
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum PcduRequest {
RequestSwitchInfo,
}
pub struct PcduModel {
pub switcher_list: Output<Vec<SwitchStateBinary>>,
pub mgm_switch: Output<SwitchState>,
pub mgt_switch: Output<SwitchState>,
}
impl PcduModel {
pub async fn switch_device(&mut self, switch: PcduSwitches, switch_state: SwitchState) {
match switch {
PcduSwitches::Mgm => {
self.mgm_switch.send(switch_state).await;
}
PcduSwitches::Mgt => {
self.mgt_switch.send(switch_state).await;
}
}
}
}
impl Model for PcduModel {}
// Simple model using i16 values.
#[derive(Debug, Copy, Clone, PartialEq, Serialize)]
pub struct Dipole {
pub x: i16,
pub y: i16,
pub z: i16,
}
pub struct MagnetorquerModel {
switch_state: SwitchState,
torquing: bool,
//torque_duration: Duration,
torque_dipole: Option<Dipole>,
gen_magnetic_field: Output<MgmTuple>,
}
impl MagnetorquerModel {
pub async fn apply_torque(
&mut self,
dipole: Dipole,
torque_duration: Duration,
scheduler: &Scheduler<Self>,
) {
self.torque_dipole = Some(dipole);
self.torquing = true;
if scheduler
.schedule_event(torque_duration, Self::clear_torque, ())
.is_err()
{
warn!("torque clearing can only be set for a future time.");
}
self.generate_magnetic_field(()).await;
}
pub async fn clear_torque(&mut self, _: ()) {
self.torque_dipole = None;
self.torquing = false;
self.generate_magnetic_field(()).await;
}
pub async fn switch_device(&mut self, switch_state: SwitchState) {
self.switch_state = switch_state;
self.generate_magnetic_field(()).await;
}
fn calc_magnetic_field(&self, _: Dipole) -> MgmTuple {
// Simplified model: Just returns some fixed magnetic field for now.
// Later, we could make this more fancy by incorporating the commanded dipole.
MGT_GEN_MAGNETIC_FIELD
}
/// A torquing magnetorquer generates a magnetic field. This function can be used to apply
/// the magnetic field.
async fn generate_magnetic_field(&mut self, _: ()) {
if self.switch_state != SwitchState::On || !self.torquing {
return;
}
self.gen_magnetic_field
.send(self.calc_magnetic_field(self.torque_dipole.expect("expected valid dipole")))
.await;
}
}
impl Model for MagnetorquerModel {}
// A helper object which sends back all replies to the UDP client.
//
// This helper is scheduled separately to minimize the delay between the requests and replies.
pub struct UdpTmSender {
reply_receiver: mpsc::Receiver<SimReply>,
last_sender: Arc<Mutex<Option<SocketAddr>>>,
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum SimDevice {
Mgm,
Mgt,
Pcdu,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SimRequest {
device: SimDevice,
request: String,
}
#[derive(Serialize, Deserialize)]
pub struct SimReply {
device: SimDevice,
reply: String,
}
pub type SharedSocketAddr = Arc<Mutex<Option<SocketAddr>>>;
// A UDP server which handles all TC received by a client application.
pub struct UdpTcServer {
socket: UdpSocket,
request_sender: mpsc::Sender<SimRequest>,
last_sender: SharedSocketAddr,
}
impl UdpTcServer {
pub fn new(
request_sender: mpsc::Sender<SimRequest>,
last_sender: SharedSocketAddr,
) -> io::Result<Self> {
let socket = UdpSocket::bind("0.0.0.0:7303")?;
Ok(Self {
socket,
request_sender,
last_sender,
})
}
pub fn run(&mut self) {
loop {
// Buffer to store incoming data.
let mut buffer = [0u8; 4096];
// Block until data is received. `recv_from` returns the number of bytes read and the
// sender's address.
let (bytes_read, src) = self
.socket
.recv_from(&mut buffer)
.expect("could not read from socket");
// Convert the buffer into a string slice and print the message.
let req_string = std::str::from_utf8(&buffer[..bytes_read])
.expect("Could not write buffer as string");
println!("Received from {}: {}", src, req_string);
let sim_req: serde_json::Result<SimRequest> = serde_json::from_str(req_string);
if sim_req.is_err() {
warn!(
"received UDP request with invalid format: {}",
sim_req.unwrap_err()
);
continue;
}
self.request_sender.send(sim_req.unwrap()).unwrap();
self.last_sender.lock().unwrap().replace(src);
/*
let sim_req = sim_req.unwrap();
match sim_req.device {
SimDevice::Mgm => {
self.handle_mgm_request(&src, &sim_req);
}
SimDevice::Mgt => {}
SimDevice::Pcdu => {
self.handle_pcdu_request(&src, &sim_req);
}
}
*/
}
}
fn handle_mgm_request(&mut self, sender: &SocketAddr, sim_req: &SimRequest) {
/*
let tuple = self.mgm_out.take().expect("expected output");
let reply = ValueReply {
device: sim_req.device,
reply: serde_json::to_string(&tuple).unwrap(),
};
let reply_string = serde_json::to_string(&reply).expect("generating reply string failed");
self.socket
.send_to(reply_string.as_bytes(), sender)
.expect("could not send data");
*/
}
fn handle_pcdu_request(&mut self, sender: &SocketAddr, sim_req: &SimRequest) {
let pcdu_request: serde_json::Result<PcduRequest> = serde_json::from_str(&sim_req.request);
if pcdu_request.is_err() {
warn!(
"received invalid PCDU request: {}",
pcdu_request.unwrap_err()
);
return;
}
}
}
// The simulation controller processes requests and drives the simulation.
// TODO: How do we process requests and drive the simulation at the same time?
pub struct SimController {
pub request_receiver: mpsc::Receiver<SimRequest>,
pub simulation: Simulation,
}
impl SimController {}
pub fn current_millis(time: MonotonicTime) -> u64 {
(time.as_secs() as u64 * 1000) + (time.subsec_nanos() as u64 / 1_000_000)
}
mod acs;
mod controller;
mod eps;
mod time;
mod udp;
fn main() {
let shared_socket_addr = SharedSocketAddr::default();
let (req_sender, req_receiver) = mpsc::channel();
let (request_sender, request_receiver) = mpsc::channel();
let (reply_sender, reply_receiver) = mpsc::channel();
// Instantiate models and their mailboxes.
let mut mgm_sim = MagnetometerModel::new(Duration::from_millis(50));
let mgm_sim = MagnetometerModel::new(Duration::from_millis(50), reply_sender.clone());
let mgm_mailbox = Mailbox::new();
let mgm_input_addr = mgm_mailbox.address();
let mgm_addr = mgm_mailbox.address();
let pcdu_mailbox = Mailbox::new();
let pcdu_addr = pcdu_mailbox.address();
// Keep handles to the main input and output.
// let output_slot = mgm_sim.sensor_values.connect_slot().0;
// let output_slot_2 = mgm_sim.sensor_values.connect_slot().0;
let t0 = MonotonicTime::EPOCH;
let clock = SystemClock::from_system_time(t0, SystemTime::now());
// Instantiate the simulator
let mut simu = SimInit::new()
.add_model(mgm_sim, mgm_mailbox)
.init_with_clock(t0, clock);
let t0 = MonotonicTime::EPOCH;
let sys_clock = SystemClock::from_system_time(t0, SystemTime::now());
let simulation = SimInit::new().add_model(mgm_sim, mgm_mailbox).init(t0);
let mut sim_controller = SimController {
sys_clock,
request_receiver,
simulation,
mgm_addr,
pcdu_addr,
};
// This thread schedules the simulator.
let sim_thread = thread::spawn(move || {
// The magnetometer will schedule itself at fixed intervals.
simu.send_event(MagnetometerModel::start, (), &mgm_input_addr);
loop {
simu.step();
}
sim_controller.run(t0);
});
// This thread manages the simulator UDP server.
let udp_thread = thread::spawn(move || {
let mut server = UdpTcServer::new(req_sender, shared_socket_addr).unwrap();
let mut server = UdpTcServer::new(request_sender, shared_socket_addr.clone()).unwrap();
// This thread manages the simulator UDP TC server.
let udp_tc_thread = thread::spawn(move || {
server.run();
});
let mut client = UdpTmClient::new(reply_receiver, 200, shared_socket_addr);
// This thread manages the simulator UDP TM client.
let udp_tm_thread = thread::spawn(move || {
client.run();
});
sim_thread.join().expect("joining simulation thread failed");
udp_thread.join().expect("joining UDP thread failed");
udp_tc_thread.join().expect("joining UDP TC thread failed");
udp_tm_thread.join().expect("joining UDP TM thread failed");
}

View File

@ -0,0 +1,5 @@
use asynchronix::time::MonotonicTime;
pub fn current_millis(time: MonotonicTime) -> u64 {
(time.as_secs() as u64 * 1000) + (time.subsec_nanos() as u64 / 1_000_000)
}

152
satrs-minisim/src/udp.rs Normal file
View File

@ -0,0 +1,152 @@
use std::{
collections::VecDeque,
net::{SocketAddr, UdpSocket},
sync::{mpsc, Arc, Mutex},
time::Duration,
};
use satrs_minisim::{SimReply, SimRequest};
pub type SharedSocketAddr = Arc<Mutex<Option<SocketAddr>>>;
// A UDP server which handles all TC received by a client application.
pub struct UdpTcServer {
socket: UdpSocket,
request_sender: mpsc::Sender<SimRequest>,
shared_last_sender: SharedSocketAddr,
}
impl UdpTcServer {
pub fn new(
request_sender: mpsc::Sender<SimRequest>,
shared_last_sender: SharedSocketAddr,
) -> std::io::Result<Self> {
let socket = UdpSocket::bind("0.0.0.0:7303")?;
Ok(Self {
socket,
request_sender,
shared_last_sender,
})
}
pub fn run(&mut self) {
let mut last_socket_addr = None;
loop {
// Buffer to store incoming data.
let mut buffer = [0u8; 4096];
// Block until data is received. `recv_from` returns the number of bytes read and the
// sender's address.
let (bytes_read, src) = self
.socket
.recv_from(&mut buffer)
.expect("could not read from socket");
// Convert the buffer into a string slice and print the message.
let req_string = std::str::from_utf8(&buffer[..bytes_read])
.expect("Could not write buffer as string");
println!("Received from {}: {}", src, req_string);
let sim_req: serde_json::Result<SimRequest> = serde_json::from_str(req_string);
if sim_req.is_err() {
log::warn!(
"received UDP request with invalid format: {}",
sim_req.unwrap_err()
);
continue;
}
self.request_sender.send(sim_req.unwrap()).unwrap();
// Only set last sender if it has changed.
if last_socket_addr.is_some() && src != last_socket_addr.unwrap() {
self.shared_last_sender.lock().unwrap().replace(src);
}
last_socket_addr = Some(src);
}
}
}
// A helper object which sends back all replies to the UDP client.
//
// This helper is scheduled separately to minimize the delay between the requests and replies.
pub struct UdpTmClient {
reply_receiver: mpsc::Receiver<SimReply>,
reply_queue: VecDeque<SimReply>,
max_num_replies: usize,
socket: UdpSocket,
last_sender: SharedSocketAddr,
}
impl UdpTmClient {
pub fn new(
reply_receiver: mpsc::Receiver<SimReply>,
max_num_replies: usize,
last_sender: SharedSocketAddr,
) -> Self {
let socket =
UdpSocket::bind("127.0.0.1:0").expect("creating UDP client for TM sender failed");
Self {
reply_receiver,
reply_queue: VecDeque::new(),
max_num_replies,
socket,
last_sender,
}
}
pub fn run(&mut self) {
loop {
let processed_replies = self.process_replies();
let last_sender_lock = self
.last_sender
.lock()
.expect("locking last UDP sender failed");
let last_sender = *last_sender_lock;
drop(last_sender_lock);
let mut sent_replies = false;
if let Some(last_sender) = last_sender {
sent_replies = self.send_replies(last_sender);
}
if !processed_replies && !sent_replies {
std::thread::sleep(Duration::from_millis(20));
}
}
}
fn process_replies(&mut self) -> bool {
let mut processed_replies = false;
loop {
match self.reply_receiver.try_recv() {
Ok(reply) => {
if self.reply_queue.len() >= self.max_num_replies {
self.reply_queue.pop_front();
}
self.reply_queue.push_back(reply);
processed_replies = true;
}
Err(e) => match e {
mpsc::TryRecvError::Empty => return processed_replies,
mpsc::TryRecvError::Disconnected => {
log::error!("all UDP reply senders disconnected")
}
},
}
}
}
fn send_replies(&mut self, last_sender: SocketAddr) -> bool {
let mut sent_replies = false;
self.socket
.connect(last_sender)
.expect("connecting to last sender failed");
while !self.reply_queue.is_empty() {
let next_reply_to_send = self.reply_queue.pop_front().unwrap();
self.socket
.send(
serde_json::to_string(&next_reply_to_send)
.unwrap()
.as_bytes(),
)
.expect("sending reply failed");
sent_replies = true;
}
sent_replies
}
}