Re-worked TMTC modules
All checks were successful
Rust/sat-rs/pipeline/pr-main This commit looks good

This commit is contained in:
2024-04-16 11:04:22 +02:00
parent 8cfe3b81e7
commit 63f37f0917
53 changed files with 2030 additions and 2939 deletions

View File

@ -17,7 +17,7 @@ it is still centered around small packets. `sat-rs` provides support for these E
standards and also attempts to fill the gap to the internet protocol by providing the following
components.
1. [UDP TMTC Server](https://docs.rs/satrs/latest/satrs/hal/host/udp_server/index.html).
1. [UDP TMTC Server](https://docs.rs/satrs/latest/satrs/hal/std/udp_server/index.html).
UDP is already packet based which makes it an excellent fit for exchanging space packets.
2. [TCP TMTC Server Components](https://docs.rs/satrs/latest/satrs/hal/std/tcp_server/index.html).
TCP is a stream based protocol, so the library provides building blocks to parse telemetry
@ -39,8 +39,12 @@ task might be to store all arriving telemetry persistently. This is especially i
space systems which do not have permanent contact like low-earth-orbit (LEO) satellites.
The most important task of a TC source is to deliver the telecommands to the correct recipients.
For modern component oriented software using message passing, this usually includes staged
demultiplexing components to determine where a command needs to be sent.
For component oriented software using message passing, this usually includes staged demultiplexing
components to determine where a command needs to be sent.
Using a generic concept of a TC source and a TM sink as part of the software design simplifies
the flexibility of the TMTC infrastructure: Newly added TM generators and TC receiver only have to
forward their generated or received packets to those handler objects.
# Low-level protocols and the bridge to the communcation subsystem

View File

@ -1,11 +1,11 @@
# Modes
Modes are an extremely useful concept for complex system in general. They also allow simplified
system reasoning for both system operators and OBSW developers. They model the behaviour of a
component and also provide observability of a system. A few examples of how to model
different components of a space system with modes will be given.
Modes are an extremely useful concept to model complex systems. They allow simplified
system reasoning for both system operators and OBSW developers. They also provide a way to alter
the behaviour of a component and also provide observability of a system. A few examples of how to
model the mode of different components within a space system with modes will be given.
## Modelling a pyhsical devices with modes
## Pyhsical device component with modes
The following simple mode scheme with the following three mode
@ -13,7 +13,8 @@ The following simple mode scheme with the following three mode
- `ON`
- `NORMAL`
can be applied to a large number of simpler devices of a remote system, for example sensors.
can be applied to a large number of simpler device controllers of a remote system, for example
sensors.
1. `OFF` means that a device is physically switched off, and the corresponding software component
does not poll the device regularly.
@ -31,7 +32,7 @@ for the majority of devices:
2. `NORMAL` or `ON` to `OFF`: Any important shutdown configuration or handling must be performed
before powering off the device.
## Modelling a controller with modes
## Controller components with modes
Controller components are not modelling physical devices, but a mode scheme is still the best
way to model most of these components.