Merge branch 'main' into TargetIdWithApid
Some checks failed
Rust/sat-rs/pipeline/pr-main There was a failure building this commit

This commit is contained in:
2023-09-26 16:00:16 +02:00
28 changed files with 3412 additions and 94 deletions

View File

@ -17,10 +17,16 @@ delegate = ">0.7, <=0.10"
paste = "1"
embed-doc-image = "0.1"
[dependencies.smallvec]
version = "1"
[dependencies.num_enum]
version = ">0.5, <=0.7"
default-features = false
[dependencies.crc]
version = "3"
[dependencies.dyn-clone]
version = "1"
optional = true
@ -60,19 +66,30 @@ version = "1"
default-features = false
optional = true
[dependencies.socket2]
version = "0.5.4"
features = ["all"]
optional = true
[dependencies.spacepackets]
version = "0.7.0-beta.1"
# version = "0.7.0-beta.1"
# path = "../../spacepackets"
# git = "https://egit.irs.uni-stuttgart.de/rust/spacepackets.git"
# rev = ""
git = "https://egit.irs.uni-stuttgart.de/rust/spacepackets.git"
rev = "79d26e1a6"
# branch = ""
default-features = false
[dependencies.cobs]
git = "https://github.com/robamu/cobs.rs.git"
branch = "all_features"
default-features = false
[dev-dependencies]
serde = "1"
zerocopy = "0.7"
once_cell = "1.13"
serde_json = "1"
rand = "0.8"
[dev-dependencies.postcard]
version = "1"
@ -80,22 +97,23 @@ version = "1"
[features]
default = ["std"]
std = [
"downcast-rs/std",
"alloc",
"bus",
"postcard/use-std",
"crossbeam-channel/std",
"serde/std",
"spacepackets/std",
"num_enum/std",
"thiserror"
"downcast-rs/std",
"alloc",
"bus",
"postcard/use-std",
"crossbeam-channel/std",
"serde/std",
"spacepackets/std",
"num_enum/std",
"thiserror",
"socket2"
]
alloc = [
"serde/alloc",
"spacepackets/alloc",
"hashbrown",
"dyn-clone",
"downcast-rs"
"serde/alloc",
"spacepackets/alloc",
"hashbrown",
"dyn-clone",
"downcast-rs"
]
serde = ["dep:serde", "spacepackets/serde"]
crossbeam = ["crossbeam-channel"]

871
satrs-core/src/cfdp/dest.rs Normal file
View File

@ -0,0 +1,871 @@
use core::str::{from_utf8, Utf8Error};
use std::{
fs::{metadata, File},
io::{BufReader, Read, Seek, SeekFrom, Write},
path::{Path, PathBuf},
};
use crate::cfdp::user::TransactionFinishedParams;
use super::{
user::{CfdpUser, MetadataReceivedParams},
PacketInfo, PacketTarget, State, TransactionId, TransactionStep, CRC_32,
};
use smallvec::SmallVec;
use spacepackets::{
cfdp::{
pdu::{
eof::EofPdu,
file_data::FileDataPdu,
finished::{DeliveryCode, FileStatus, FinishedPdu},
metadata::{MetadataGenericParams, MetadataPdu},
CommonPduConfig, FileDirectiveType, PduError, PduHeader,
},
tlv::{msg_to_user::MsgToUserTlv, EntityIdTlv, TlvType},
ConditionCode, PduType, TransmissionMode,
},
util::UnsignedByteField,
};
use thiserror::Error;
pub struct DestinationHandler {
id: UnsignedByteField,
step: TransactionStep,
state: State,
tparams: TransactionParams,
packets_to_send_ctx: PacketsToSendContext,
}
#[derive(Debug, Default)]
struct PacketsToSendContext {
packet_available: bool,
directive: Option<FileDirectiveType>,
}
#[derive(Debug)]
struct FileProperties {
src_file_name: [u8; u8::MAX as usize],
src_file_name_len: usize,
dest_file_name: [u8; u8::MAX as usize],
dest_file_name_len: usize,
dest_path_buf: PathBuf,
}
#[derive(Debug)]
struct TransferState {
transaction_id: Option<TransactionId>,
progress: usize,
condition_code: ConditionCode,
delivery_code: DeliveryCode,
file_status: FileStatus,
metadata_params: MetadataGenericParams,
}
impl Default for TransferState {
fn default() -> Self {
Self {
transaction_id: None,
progress: Default::default(),
condition_code: ConditionCode::NoError,
delivery_code: DeliveryCode::Incomplete,
file_status: FileStatus::Unreported,
metadata_params: Default::default(),
}
}
}
#[derive(Debug)]
struct TransactionParams {
tstate: TransferState,
pdu_conf: CommonPduConfig,
file_properties: FileProperties,
cksum_buf: [u8; 1024],
msgs_to_user_size: usize,
msgs_to_user_buf: [u8; 1024],
}
impl Default for FileProperties {
fn default() -> Self {
Self {
src_file_name: [0; u8::MAX as usize],
src_file_name_len: Default::default(),
dest_file_name: [0; u8::MAX as usize],
dest_file_name_len: Default::default(),
dest_path_buf: Default::default(),
}
}
}
impl TransactionParams {
fn file_size(&self) -> usize {
self.tstate.metadata_params.file_size as usize
}
fn metadata_params(&self) -> &MetadataGenericParams {
&self.tstate.metadata_params
}
}
impl Default for TransactionParams {
fn default() -> Self {
Self {
pdu_conf: Default::default(),
cksum_buf: [0; 1024],
msgs_to_user_size: 0,
msgs_to_user_buf: [0; 1024],
tstate: Default::default(),
file_properties: Default::default(),
}
}
}
impl TransactionParams {
fn reset(&mut self) {
self.tstate.condition_code = ConditionCode::NoError;
self.tstate.delivery_code = DeliveryCode::Incomplete;
}
}
#[derive(Debug, Error)]
pub enum DestError {
/// File directive expected, but none specified
#[error("expected file directive")]
DirectiveExpected,
#[error("can not process packet type {0:?}")]
CantProcessPacketType(FileDirectiveType),
#[error("can not process file data PDUs in current state")]
WrongStateForFileDataAndEof,
// Received new metadata PDU while being already being busy with a file transfer.
#[error("busy with transfer")]
RecvdMetadataButIsBusy,
#[error("empty source file field")]
EmptySrcFileField,
#[error("empty dest file field")]
EmptyDestFileField,
#[error("pdu error {0}")]
Pdu(#[from] PduError),
#[error("io error {0}")]
Io(#[from] std::io::Error),
#[error("path conversion error {0}")]
PathConversion(#[from] Utf8Error),
#[error("error building dest path from source file name and dest folder")]
PathConcatError,
}
impl DestinationHandler {
pub fn new(id: impl Into<UnsignedByteField>) -> Self {
Self {
id: id.into(),
step: TransactionStep::Idle,
state: State::Idle,
tparams: Default::default(),
packets_to_send_ctx: Default::default(),
}
}
pub fn state_machine(&mut self, cfdp_user: &mut impl CfdpUser) -> Result<(), DestError> {
match self.state {
State::Idle => todo!(),
State::BusyClass1Nacked => self.fsm_nacked(cfdp_user),
State::BusyClass2Acked => todo!("acknowledged mode not implemented yet"),
}
}
pub fn insert_packet(&mut self, packet_info: &PacketInfo) -> Result<(), DestError> {
if packet_info.target() != PacketTarget::DestEntity {
// Unwrap is okay here, a PacketInfo for a file data PDU should always have the
// destination as the target.
return Err(DestError::CantProcessPacketType(
packet_info.pdu_directive().unwrap(),
));
}
match packet_info.pdu_type {
PduType::FileDirective => {
if packet_info.pdu_directive.is_none() {
return Err(DestError::DirectiveExpected);
}
self.handle_file_directive(
packet_info.pdu_directive.unwrap(),
packet_info.raw_packet,
)
}
PduType::FileData => self.handle_file_data(packet_info.raw_packet),
}
}
pub fn packet_to_send_ready(&self) -> bool {
self.packets_to_send_ctx.packet_available
}
pub fn get_next_packet_to_send(
&self,
buf: &mut [u8],
) -> Result<Option<(FileDirectiveType, usize)>, DestError> {
if !self.packet_to_send_ready() {
return Ok(None);
}
let directive = self.packets_to_send_ctx.directive.unwrap();
let written_size = match directive {
FileDirectiveType::FinishedPdu => {
let pdu_header = PduHeader::new_no_file_data(self.tparams.pdu_conf, 0);
let finished_pdu = if self.tparams.tstate.condition_code == ConditionCode::NoError
|| self.tparams.tstate.condition_code == ConditionCode::UnsupportedChecksumType
{
FinishedPdu::new_default(
pdu_header,
self.tparams.tstate.delivery_code,
self.tparams.tstate.file_status,
)
} else {
// TODO: Are there cases where this ID is actually the source entity ID?
let entity_id = EntityIdTlv::new(self.id);
FinishedPdu::new_with_error(
pdu_header,
self.tparams.tstate.condition_code,
self.tparams.tstate.delivery_code,
self.tparams.tstate.file_status,
entity_id,
)
};
finished_pdu.write_to_bytes(buf)?
}
FileDirectiveType::AckPdu => todo!(),
FileDirectiveType::NakPdu => todo!(),
FileDirectiveType::KeepAlivePdu => todo!(),
_ => {
// This should never happen and is considered an internal impl error
panic!("invalid file directive {directive:?} for dest handler send packet");
}
};
Ok(Some((directive, written_size)))
}
pub fn handle_file_directive(
&mut self,
pdu_directive: FileDirectiveType,
raw_packet: &[u8],
) -> Result<(), DestError> {
match pdu_directive {
FileDirectiveType::EofPdu => self.handle_eof_pdu(raw_packet)?,
FileDirectiveType::FinishedPdu
| FileDirectiveType::NakPdu
| FileDirectiveType::KeepAlivePdu => {
return Err(DestError::CantProcessPacketType(pdu_directive));
}
FileDirectiveType::AckPdu => {
todo!(
"check whether ACK pdu handling is applicable by checking the acked directive field"
)
}
FileDirectiveType::MetadataPdu => self.handle_metadata_pdu(raw_packet)?,
FileDirectiveType::PromptPdu => self.handle_prompt_pdu(raw_packet)?,
};
Ok(())
}
pub fn handle_metadata_pdu(&mut self, raw_packet: &[u8]) -> Result<(), DestError> {
if self.state != State::Idle {
return Err(DestError::RecvdMetadataButIsBusy);
}
let metadata_pdu = MetadataPdu::from_bytes(raw_packet)?;
self.tparams.reset();
self.tparams.tstate.metadata_params = *metadata_pdu.metadata_params();
let src_name = metadata_pdu.src_file_name();
if src_name.is_empty() {
return Err(DestError::EmptySrcFileField);
}
self.tparams.file_properties.src_file_name[..src_name.len_value()]
.copy_from_slice(src_name.value());
self.tparams.file_properties.src_file_name_len = src_name.len_value();
let dest_name = metadata_pdu.dest_file_name();
if dest_name.is_empty() {
return Err(DestError::EmptyDestFileField);
}
self.tparams.file_properties.dest_file_name[..dest_name.len_value()]
.copy_from_slice(dest_name.value());
self.tparams.file_properties.dest_file_name_len = dest_name.len_value();
self.tparams.pdu_conf = *metadata_pdu.pdu_header().common_pdu_conf();
self.tparams.msgs_to_user_size = 0;
if metadata_pdu.options().is_some() {
for option_tlv in metadata_pdu.options_iter().unwrap() {
if option_tlv.is_standard_tlv()
&& option_tlv.tlv_type().unwrap() == TlvType::MsgToUser
{
self.tparams
.msgs_to_user_buf
.copy_from_slice(option_tlv.raw_data().unwrap());
self.tparams.msgs_to_user_size += option_tlv.len_full();
}
}
}
if self.tparams.pdu_conf.trans_mode == TransmissionMode::Unacknowledged {
self.state = State::BusyClass1Nacked;
} else {
self.state = State::BusyClass2Acked;
}
self.step = TransactionStep::TransactionStart;
Ok(())
}
pub fn handle_file_data(&mut self, raw_packet: &[u8]) -> Result<(), DestError> {
if self.state == State::Idle || self.step != TransactionStep::ReceivingFileDataPdus {
return Err(DestError::WrongStateForFileDataAndEof);
}
let fd_pdu = FileDataPdu::from_bytes(raw_packet)?;
let mut dest_file = File::options()
.write(true)
.open(&self.tparams.file_properties.dest_path_buf)?;
dest_file.seek(SeekFrom::Start(fd_pdu.offset()))?;
dest_file.write_all(fd_pdu.file_data())?;
Ok(())
}
#[allow(clippy::needless_if)]
pub fn handle_eof_pdu(&mut self, raw_packet: &[u8]) -> Result<(), DestError> {
if self.state == State::Idle || self.step != TransactionStep::ReceivingFileDataPdus {
return Err(DestError::WrongStateForFileDataAndEof);
}
let eof_pdu = EofPdu::from_bytes(raw_packet)?;
let checksum = eof_pdu.file_checksum();
// For a standard disk based file system, which is assumed to be used for now, the file
// will always be retained. This might change in the future.
self.tparams.tstate.file_status = FileStatus::Retained;
if self.checksum_check(checksum)? {
self.tparams.tstate.condition_code = ConditionCode::NoError;
self.tparams.tstate.delivery_code = DeliveryCode::Complete;
} else {
self.tparams.tstate.condition_code = ConditionCode::FileChecksumFailure;
}
// TODO: Check progress, and implement transfer completion timer as specified in the
// standard. This timer protects against out of order arrival of packets.
if self.tparams.tstate.progress != self.tparams.file_size() {}
if self.state == State::BusyClass1Nacked {
self.step = TransactionStep::TransferCompletion;
} else {
self.step = TransactionStep::SendingAckPdu;
}
Ok(())
}
pub fn handle_prompt_pdu(&mut self, _raw_packet: &[u8]) -> Result<(), DestError> {
todo!();
}
fn checksum_check(&mut self, expected_checksum: u32) -> Result<bool, DestError> {
let mut digest = CRC_32.digest();
let file_to_check = File::open(&self.tparams.file_properties.dest_path_buf)?;
let mut buf_reader = BufReader::new(file_to_check);
loop {
let bytes_read = buf_reader.read(&mut self.tparams.cksum_buf)?;
if bytes_read == 0 {
break;
}
digest.update(&self.tparams.cksum_buf[0..bytes_read]);
}
if digest.finalize() == expected_checksum {
return Ok(true);
}
Ok(false)
}
fn fsm_nacked(&mut self, cfdp_user: &mut impl CfdpUser) -> Result<(), DestError> {
if self.step == TransactionStep::TransactionStart {
self.transaction_start(cfdp_user)?;
}
if self.step == TransactionStep::TransferCompletion {
self.transfer_completion(cfdp_user)?;
}
if self.step == TransactionStep::SendingAckPdu {
todo!("no support for acknowledged mode yet");
}
if self.step == TransactionStep::SendingFinishedPdu {
self.reset();
}
Ok(())
}
/// Get the step, which denotes the exact step of a pending CFDP transaction when applicable.
pub fn step(&self) -> TransactionStep {
self.step
}
/// Get the step, which denotes whether the CFDP handler is active, and which CFDP class
/// is used if it is active.
pub fn state(&self) -> State {
self.state
}
fn transaction_start(&mut self, cfdp_user: &mut impl CfdpUser) -> Result<(), DestError> {
let dest_name = from_utf8(
&self.tparams.file_properties.dest_file_name
[..self.tparams.file_properties.dest_file_name_len],
)?;
let dest_path = Path::new(dest_name);
self.tparams.file_properties.dest_path_buf = dest_path.to_path_buf();
let source_id = self.tparams.pdu_conf.source_id();
let id = TransactionId::new(source_id, self.tparams.pdu_conf.transaction_seq_num);
let src_name = from_utf8(
&self.tparams.file_properties.src_file_name
[0..self.tparams.file_properties.src_file_name_len],
)?;
let mut msgs_to_user = SmallVec::<[MsgToUserTlv<'_>; 16]>::new();
let mut num_msgs_to_user = 0;
if self.tparams.msgs_to_user_size > 0 {
let mut index = 0;
while index < self.tparams.msgs_to_user_size {
// This should never panic as the validity of the options was checked beforehand.
let msgs_to_user_tlv =
MsgToUserTlv::from_bytes(&self.tparams.msgs_to_user_buf[index..])
.expect("message to user creation failed unexpectedly");
msgs_to_user.push(msgs_to_user_tlv);
index += msgs_to_user_tlv.len_full();
num_msgs_to_user += 1;
}
}
let metadata_recvd_params = MetadataReceivedParams {
id,
source_id,
file_size: self.tparams.tstate.metadata_params.file_size,
src_file_name: src_name,
dest_file_name: dest_name,
msgs_to_user: &msgs_to_user[..num_msgs_to_user],
};
self.tparams.tstate.transaction_id = Some(id);
cfdp_user.metadata_recvd_indication(&metadata_recvd_params);
if dest_path.exists() {
let dest_metadata = metadata(dest_path)?;
if dest_metadata.is_dir() {
// Create new destination path by concatenating the last part of the source source
// name and the destination folder. For example, for a source file of /tmp/hello.txt
// and a destination name of /home/test, the resulting file name should be
// /home/test/hello.txt
let source_path = Path::new(from_utf8(
&self.tparams.file_properties.src_file_name
[..self.tparams.file_properties.src_file_name_len],
)?);
let source_name = source_path.file_name();
if source_name.is_none() {
return Err(DestError::PathConcatError);
}
let source_name = source_name.unwrap();
self.tparams.file_properties.dest_path_buf.push(source_name);
}
}
// This function does exactly what we require: Create a new file if it does not exist yet
// and trucate an existing one.
File::create(&self.tparams.file_properties.dest_path_buf)?;
self.step = TransactionStep::ReceivingFileDataPdus;
Ok(())
}
fn transfer_completion(&mut self, cfdp_user: &mut impl CfdpUser) -> Result<(), DestError> {
let transaction_finished_params = TransactionFinishedParams {
id: self.tparams.tstate.transaction_id.unwrap(),
condition_code: self.tparams.tstate.condition_code,
delivery_code: self.tparams.tstate.delivery_code,
file_status: self.tparams.tstate.file_status,
};
cfdp_user.transaction_finished_indication(&transaction_finished_params);
// This function should never be called with metadata parameters not set
if self.tparams.metadata_params().closure_requested {
self.prepare_finished_pdu()?;
self.step = TransactionStep::SendingFinishedPdu;
} else {
self.reset();
self.state = State::Idle;
self.step = TransactionStep::Idle;
}
Ok(())
}
fn reset(&mut self) {
self.step = TransactionStep::Idle;
self.state = State::Idle;
self.packets_to_send_ctx.packet_available = false;
self.tparams.reset();
}
fn prepare_finished_pdu(&mut self) -> Result<(), DestError> {
self.packets_to_send_ctx.packet_available = true;
self.packets_to_send_ctx.directive = Some(FileDirectiveType::FinishedPdu);
self.step = TransactionStep::SendingFinishedPdu;
Ok(())
}
}
#[cfg(test)]
mod tests {
use core::sync::atomic::{AtomicU8, Ordering};
#[allow(unused_imports)]
use std::println;
use std::{env::temp_dir, fs};
use alloc::{format, string::String};
use rand::Rng;
use spacepackets::{
cfdp::{lv::Lv, ChecksumType},
util::{UbfU16, UnsignedByteFieldU16},
};
use super::*;
const LOCAL_ID: UnsignedByteFieldU16 = UnsignedByteFieldU16::new(1);
const REMOTE_ID: UnsignedByteFieldU16 = UnsignedByteFieldU16::new(2);
const SRC_NAME: &str = "__cfdp__source-file";
const DEST_NAME: &str = "__cfdp__dest-file";
static ATOMIC_COUNTER: AtomicU8 = AtomicU8::new(0);
#[derive(Default)]
struct TestCfdpUser {
next_expected_seq_num: u64,
expected_full_src_name: String,
expected_full_dest_name: String,
expected_file_size: usize,
}
impl TestCfdpUser {
fn generic_id_check(&self, id: &crate::cfdp::TransactionId) {
assert_eq!(id.source_id, LOCAL_ID.into());
assert_eq!(id.seq_num().value(), self.next_expected_seq_num);
}
}
impl CfdpUser for TestCfdpUser {
fn transaction_indication(&mut self, id: &crate::cfdp::TransactionId) {
self.generic_id_check(id);
}
fn eof_sent_indication(&mut self, id: &crate::cfdp::TransactionId) {
self.generic_id_check(id);
}
fn transaction_finished_indication(
&mut self,
finished_params: &crate::cfdp::user::TransactionFinishedParams,
) {
self.generic_id_check(&finished_params.id);
}
fn metadata_recvd_indication(
&mut self,
md_recvd_params: &crate::cfdp::user::MetadataReceivedParams,
) {
self.generic_id_check(&md_recvd_params.id);
assert_eq!(
String::from(md_recvd_params.src_file_name),
self.expected_full_src_name
);
assert_eq!(
String::from(md_recvd_params.dest_file_name),
self.expected_full_dest_name
);
assert_eq!(md_recvd_params.msgs_to_user.len(), 0);
assert_eq!(md_recvd_params.source_id, LOCAL_ID.into());
assert_eq!(md_recvd_params.file_size as usize, self.expected_file_size);
}
fn file_segment_recvd_indication(
&mut self,
_segment_recvd_params: &crate::cfdp::user::FileSegmentRecvdParams,
) {
}
fn report_indication(&mut self, _id: &crate::cfdp::TransactionId) {}
fn suspended_indication(
&mut self,
_id: &crate::cfdp::TransactionId,
_condition_code: ConditionCode,
) {
panic!("unexpected suspended indication");
}
fn resumed_indication(&mut self, _id: &crate::cfdp::TransactionId, _progresss: u64) {}
fn fault_indication(
&mut self,
_id: &crate::cfdp::TransactionId,
_condition_code: ConditionCode,
_progress: u64,
) {
panic!("unexpected fault indication");
}
fn abandoned_indication(
&mut self,
_id: &crate::cfdp::TransactionId,
_condition_code: ConditionCode,
_progress: u64,
) {
panic!("unexpected abandoned indication");
}
fn eof_recvd_indication(&mut self, id: &crate::cfdp::TransactionId) {
self.generic_id_check(id);
}
}
fn init_check(handler: &DestinationHandler) {
assert_eq!(handler.state(), State::Idle);
assert_eq!(handler.step(), TransactionStep::Idle);
}
fn init_full_filenames() -> (PathBuf, PathBuf) {
let mut file_path = temp_dir();
let mut src_path = file_path.clone();
// Atomic counter used to allow concurrent tests.
let unique_counter = ATOMIC_COUNTER.fetch_add(1, Ordering::Relaxed);
// Create unique test filenames.
let src_name_unique = format!("{SRC_NAME}{}.txt", unique_counter);
let dest_name_unique = format!("{DEST_NAME}{}.txt", unique_counter);
src_path.push(src_name_unique);
file_path.push(dest_name_unique);
(src_path, file_path)
}
#[test]
fn test_basic() {
let dest_handler = DestinationHandler::new(REMOTE_ID);
init_check(&dest_handler);
}
fn create_pdu_header(seq_num: impl Into<UnsignedByteField>) -> PduHeader {
let mut pdu_conf =
CommonPduConfig::new_with_byte_fields(LOCAL_ID, REMOTE_ID, seq_num).unwrap();
pdu_conf.trans_mode = TransmissionMode::Unacknowledged;
PduHeader::new_no_file_data(pdu_conf, 0)
}
fn create_metadata_pdu<'filename>(
pdu_header: &PduHeader,
src_name: &'filename Path,
dest_name: &'filename Path,
file_size: u64,
) -> MetadataPdu<'filename, 'filename, 'static> {
let metadata_params = MetadataGenericParams::new(false, ChecksumType::Crc32, file_size);
MetadataPdu::new(
*pdu_header,
metadata_params,
Lv::new_from_str(src_name.as_os_str().to_str().unwrap()).unwrap(),
Lv::new_from_str(dest_name.as_os_str().to_str().unwrap()).unwrap(),
None,
)
}
fn insert_metadata_pdu(
metadata_pdu: &MetadataPdu,
buf: &mut [u8],
dest_handler: &mut DestinationHandler,
) {
let written_len = metadata_pdu
.write_to_bytes(buf)
.expect("writing metadata PDU failed");
let packet_info =
PacketInfo::new(&buf[..written_len]).expect("generating packet info failed");
let insert_result = dest_handler.insert_packet(&packet_info);
if let Err(e) = insert_result {
panic!("insert result error: {e}");
}
}
fn insert_eof_pdu(
file_data: &[u8],
pdu_header: &PduHeader,
buf: &mut [u8],
dest_handler: &mut DestinationHandler,
) {
let mut digest = CRC_32.digest();
digest.update(file_data);
let crc32 = digest.finalize();
let eof_pdu = EofPdu::new_no_error(*pdu_header, crc32, file_data.len() as u64);
let result = eof_pdu.write_to_bytes(buf);
assert!(result.is_ok());
let packet_info = PacketInfo::new(&buf).expect("generating packet info failed");
let result = dest_handler.insert_packet(&packet_info);
assert!(result.is_ok());
}
#[test]
fn test_empty_file_transfer() {
let (src_name, dest_name) = init_full_filenames();
assert!(!Path::exists(&dest_name));
let mut buf: [u8; 512] = [0; 512];
let mut test_user = TestCfdpUser {
next_expected_seq_num: 0,
expected_full_src_name: src_name.to_string_lossy().into(),
expected_full_dest_name: dest_name.to_string_lossy().into(),
expected_file_size: 0,
};
// We treat the destination handler like it is a remote entity.
let mut dest_handler = DestinationHandler::new(REMOTE_ID);
init_check(&dest_handler);
let seq_num = UbfU16::new(0);
let pdu_header = create_pdu_header(seq_num);
let metadata_pdu =
create_metadata_pdu(&pdu_header, src_name.as_path(), dest_name.as_path(), 0);
insert_metadata_pdu(&metadata_pdu, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
if let Err(e) = result {
panic!("dest handler fsm error: {e}");
}
assert_ne!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::ReceivingFileDataPdus);
insert_eof_pdu(&[], &pdu_header, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
assert_eq!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::Idle);
assert!(Path::exists(&dest_name));
let read_content = fs::read(&dest_name).expect("reading back string failed");
assert_eq!(read_content.len(), 0);
assert!(fs::remove_file(dest_name).is_ok());
}
#[test]
fn test_small_file_transfer() {
let (src_name, dest_name) = init_full_filenames();
assert!(!Path::exists(&dest_name));
let file_data_str = "Hello World!";
let file_data = file_data_str.as_bytes();
let mut buf: [u8; 512] = [0; 512];
let mut test_user = TestCfdpUser {
next_expected_seq_num: 0,
expected_full_src_name: src_name.to_string_lossy().into(),
expected_full_dest_name: dest_name.to_string_lossy().into(),
expected_file_size: file_data.len(),
};
// We treat the destination handler like it is a remote entity.
let mut dest_handler = DestinationHandler::new(REMOTE_ID);
init_check(&dest_handler);
let seq_num = UbfU16::new(0);
let pdu_header = create_pdu_header(seq_num);
let metadata_pdu = create_metadata_pdu(
&pdu_header,
src_name.as_path(),
dest_name.as_path(),
file_data.len() as u64,
);
insert_metadata_pdu(&metadata_pdu, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
if let Err(e) = result {
panic!("dest handler fsm error: {e}");
}
assert_ne!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::ReceivingFileDataPdus);
let offset = 0;
let filedata_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, offset, file_data);
filedata_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
let result = dest_handler.insert_packet(&packet_info);
if let Err(e) = result {
panic!("destination handler packet insertion error: {e}");
}
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
insert_eof_pdu(file_data, &pdu_header, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
assert_eq!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::Idle);
assert!(Path::exists(&dest_name));
let read_content = fs::read_to_string(&dest_name).expect("reading back string failed");
assert_eq!(read_content, file_data_str);
assert!(fs::remove_file(dest_name).is_ok());
}
#[test]
fn test_segmented_file_transfer() {
let (src_name, dest_name) = init_full_filenames();
assert!(!Path::exists(&dest_name));
let mut rng = rand::thread_rng();
let mut random_data = [0u8; 512];
rng.fill(&mut random_data);
let mut buf: [u8; 512] = [0; 512];
let mut test_user = TestCfdpUser {
next_expected_seq_num: 0,
expected_full_src_name: src_name.to_string_lossy().into(),
expected_full_dest_name: dest_name.to_string_lossy().into(),
expected_file_size: random_data.len(),
};
// We treat the destination handler like it is a remote entity.
let mut dest_handler = DestinationHandler::new(REMOTE_ID);
init_check(&dest_handler);
let seq_num = UbfU16::new(0);
let pdu_header = create_pdu_header(seq_num);
let metadata_pdu = create_metadata_pdu(
&pdu_header,
src_name.as_path(),
dest_name.as_path(),
random_data.len() as u64,
);
insert_metadata_pdu(&metadata_pdu, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
if let Err(e) = result {
panic!("dest handler fsm error: {e}");
}
assert_ne!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::ReceivingFileDataPdus);
// First file data PDU
let mut offset: usize = 0;
let segment_len = 256;
let filedata_pdu = FileDataPdu::new_no_seg_metadata(
pdu_header,
offset as u64,
&random_data[0..segment_len],
);
filedata_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
let result = dest_handler.insert_packet(&packet_info);
if let Err(e) = result {
panic!("destination handler packet insertion error: {e}");
}
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
// Second file data PDU
offset += segment_len;
let filedata_pdu = FileDataPdu::new_no_seg_metadata(
pdu_header,
offset as u64,
&random_data[segment_len..],
);
filedata_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
let result = dest_handler.insert_packet(&packet_info);
if let Err(e) = result {
panic!("destination handler packet insertion error: {e}");
}
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
insert_eof_pdu(&random_data, &pdu_header, &mut buf, &mut dest_handler);
let result = dest_handler.state_machine(&mut test_user);
assert!(result.is_ok());
assert_eq!(dest_handler.state(), State::Idle);
assert_eq!(dest_handler.step(), TransactionStep::Idle);
// Clean up
assert!(Path::exists(&dest_name));
let read_content = fs::read(&dest_name).expect("reading back string failed");
assert_eq!(read_content, random_data);
assert!(fs::remove_file(dest_name).is_ok());
}
}

320
satrs-core/src/cfdp/mod.rs Normal file
View File

@ -0,0 +1,320 @@
use crc::{Crc, CRC_32_CKSUM};
use spacepackets::{
cfdp::{
pdu::{FileDirectiveType, PduError, PduHeader},
ChecksumType, PduType, TransmissionMode,
},
util::UnsignedByteField,
};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
pub mod dest;
#[cfg(feature = "std")]
pub mod source;
pub mod user;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum EntityType {
Sending,
Receiving,
}
/// Generic abstraction for a check timer which has different functionality depending on whether
/// the using entity is the sending entity or the receiving entity for the unacknowledged
/// transmission mode.
///
/// For the sending entity, this timer determines the expiry period for declaring a check limit
/// fault after sending an EOF PDU with requested closure. This allows a timeout of the transfer.
/// Also see 4.6.3.2 of the CFDP standard.
///
/// For the receiving entity, this timer determines the expiry period for incrementing a check
/// counter after an EOF PDU is received for an incomplete file transfer. This allows out-of-order
/// reception of file data PDUs and EOF PDUs. Also see 4.6.3.3 of the CFDP standard.
pub trait CheckTimerProvider {
fn has_expired(&self) -> bool;
}
/// A generic trait which allows CFDP entities to create check timers which are required to
/// implement special procedures in unacknowledged transmission mode, as specified in 4.6.3.2
/// and 4.6.3.3. The [CheckTimerProvider] provides more information about the purpose of the
/// check timer.
///
/// This trait also allows the creation of different check timers depending on
/// the ID of the local entity, the ID of the remote entity for a given transaction, and the
/// type of entity.
#[cfg(feature = "alloc")]
pub trait CheckTimerCreator {
fn get_check_timer_provider(
local_id: &UnsignedByteField,
remote_id: &UnsignedByteField,
entity_type: EntityType,
) -> Box<dyn CheckTimerProvider>;
}
/// Simple implementation of the [CheckTimerProvider] trait assuming a standard runtime.
/// It also assumes that a second accuracy of the check timer period is sufficient.
#[cfg(feature = "std")]
pub struct StdCheckTimer {
expiry_time_seconds: u64,
start_time: std::time::Instant,
}
#[cfg(feature = "std")]
impl StdCheckTimer {
pub fn new(expiry_time_seconds: u64) -> Self {
Self {
expiry_time_seconds,
start_time: std::time::Instant::now(),
}
}
}
#[cfg(feature = "std")]
impl CheckTimerProvider for StdCheckTimer {
fn has_expired(&self) -> bool {
let elapsed_time = self.start_time.elapsed();
if elapsed_time.as_secs() > self.expiry_time_seconds {
return true;
}
false
}
}
#[derive(Debug)]
pub struct RemoteEntityConfig {
pub entity_id: UnsignedByteField,
pub max_file_segment_len: usize,
pub closure_requeted_by_default: bool,
pub crc_on_transmission_by_default: bool,
pub default_transmission_mode: TransmissionMode,
pub default_crc_type: ChecksumType,
pub check_limit: u32,
}
pub trait RemoteEntityConfigProvider {
fn get_remote_config(&self, remote_id: &UnsignedByteField) -> Option<&RemoteEntityConfig>;
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TransactionId {
source_id: UnsignedByteField,
seq_num: UnsignedByteField,
}
impl TransactionId {
pub fn new(source_id: UnsignedByteField, seq_num: UnsignedByteField) -> Self {
Self { source_id, seq_num }
}
pub fn source_id(&self) -> &UnsignedByteField {
&self.source_id
}
pub fn seq_num(&self) -> &UnsignedByteField {
&self.seq_num
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TransactionStep {
Idle = 0,
TransactionStart = 1,
ReceivingFileDataPdus = 2,
SendingAckPdu = 3,
TransferCompletion = 4,
SendingFinishedPdu = 5,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum State {
Idle = 0,
BusyClass1Nacked = 2,
BusyClass2Acked = 3,
}
pub const CRC_32: Crc<u32> = Crc::<u32>::new(&CRC_32_CKSUM);
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PacketTarget {
SourceEntity,
DestEntity,
}
/// This is a helper struct which contains base information about a particular PDU packet.
/// This is also necessary information for CFDP packet routing. For example, some packet types
/// like file data PDUs can only be used by CFDP source entities.
pub struct PacketInfo<'raw_packet> {
pdu_type: PduType,
pdu_directive: Option<FileDirectiveType>,
target: PacketTarget,
raw_packet: &'raw_packet [u8],
}
impl<'raw> PacketInfo<'raw> {
pub fn new(raw_packet: &'raw [u8]) -> Result<Self, PduError> {
let (pdu_header, header_len) = PduHeader::from_bytes(raw_packet)?;
if pdu_header.pdu_type() == PduType::FileData {
return Ok(Self {
pdu_type: pdu_header.pdu_type(),
pdu_directive: None,
target: PacketTarget::DestEntity,
raw_packet,
});
}
if pdu_header.pdu_datafield_len() < 1 {
return Err(PduError::FormatError);
}
// Route depending on PDU type and directive type if applicable. Retrieve directive type
// from the raw stream for better performance (with sanity and directive code check).
// The routing is based on section 4.5 of the CFDP standard which specifies the PDU forwarding
// procedure.
let directive = FileDirectiveType::try_from(raw_packet[header_len]).map_err(|_| {
PduError::InvalidDirectiveType {
found: raw_packet[header_len],
expected: None,
}
})?;
let packet_target = match directive {
// Section c) of 4.5.3: These PDUs should always be targeted towards the file sender a.k.a.
// the source handler
FileDirectiveType::NakPdu
| FileDirectiveType::FinishedPdu
| FileDirectiveType::KeepAlivePdu => PacketTarget::SourceEntity,
// Section b) of 4.5.3: These PDUs should always be targeted towards the file receiver a.k.a.
// the destination handler
FileDirectiveType::MetadataPdu
| FileDirectiveType::EofPdu
| FileDirectiveType::PromptPdu => PacketTarget::DestEntity,
// Section a): Recipient depends of the type of PDU that is being acknowledged. We can simply
// extract the PDU type from the raw stream. If it is an EOF PDU, this packet is passed to
// the source handler, for a Finished PDU, it is passed to the destination handler.
FileDirectiveType::AckPdu => {
let acked_directive = FileDirectiveType::try_from(raw_packet[header_len + 1])
.map_err(|_| PduError::InvalidDirectiveType {
found: raw_packet[header_len],
expected: None,
})?;
if acked_directive == FileDirectiveType::EofPdu {
PacketTarget::SourceEntity
} else if acked_directive == FileDirectiveType::FinishedPdu {
PacketTarget::DestEntity
} else {
// TODO: Maybe a better error? This might be confusing..
return Err(PduError::InvalidDirectiveType {
found: raw_packet[header_len + 1],
expected: None,
});
}
}
};
Ok(Self {
pdu_type: pdu_header.pdu_type(),
pdu_directive: Some(directive),
target: packet_target,
raw_packet,
})
}
pub fn pdu_type(&self) -> PduType {
self.pdu_type
}
pub fn pdu_directive(&self) -> Option<FileDirectiveType> {
self.pdu_directive
}
pub fn target(&self) -> PacketTarget {
self.target
}
pub fn raw_packet(&self) -> &[u8] {
self.raw_packet
}
}
#[cfg(test)]
mod tests {
use spacepackets::cfdp::{
lv::Lv,
pdu::{
eof::EofPdu,
file_data::FileDataPdu,
metadata::{MetadataGenericParams, MetadataPdu},
CommonPduConfig, FileDirectiveType, PduHeader,
},
PduType,
};
use crate::cfdp::PacketTarget;
use super::PacketInfo;
fn generic_pdu_header() -> PduHeader {
let pdu_conf = CommonPduConfig::default();
PduHeader::new_no_file_data(pdu_conf, 0)
}
#[test]
fn test_metadata_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let metadata_params = MetadataGenericParams::default();
let src_file_name = "hello.txt";
let dest_file_name = "hello-dest.txt";
let src_lv = Lv::new_from_str(src_file_name).unwrap();
let dest_lv = Lv::new_from_str(dest_file_name).unwrap();
let metadata_pdu = MetadataPdu::new(pdu_header, metadata_params, src_lv, dest_lv, None);
metadata_pdu
.write_to_bytes(&mut buf)
.expect("writing metadata PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileDirective);
assert!(packet_info.pdu_directive().is_some());
assert_eq!(
packet_info.pdu_directive().unwrap(),
FileDirectiveType::MetadataPdu
);
assert_eq!(packet_info.target(), PacketTarget::DestEntity);
}
#[test]
fn test_filedata_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let file_data_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 0, &[]);
file_data_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileData);
assert!(packet_info.pdu_directive().is_none());
assert_eq!(packet_info.target(), PacketTarget::DestEntity);
}
#[test]
fn test_eof_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let eof_pdu = EofPdu::new_no_error(pdu_header, 0, 0);
eof_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileDirective);
assert!(packet_info.pdu_directive().is_some());
assert_eq!(
packet_info.pdu_directive().unwrap(),
FileDirectiveType::EofPdu
);
}
}

View File

@ -0,0 +1,15 @@
#![allow(dead_code)]
use spacepackets::util::UnsignedByteField;
pub struct SourceHandler {
id: UnsignedByteField,
}
impl SourceHandler {
pub fn new(id: impl Into<UnsignedByteField>) -> Self {
Self { id: id.into() }
}
}
#[cfg(test)]
mod tests {}

View File

@ -0,0 +1,65 @@
use spacepackets::{
cfdp::{
pdu::{
file_data::RecordContinuationState,
finished::{DeliveryCode, FileStatus},
},
tlv::msg_to_user::MsgToUserTlv,
ConditionCode,
},
util::UnsignedByteField,
};
use super::TransactionId;
#[derive(Debug, Copy, Clone)]
pub struct TransactionFinishedParams {
pub id: TransactionId,
pub condition_code: ConditionCode,
pub delivery_code: DeliveryCode,
pub file_status: FileStatus,
}
#[derive(Debug)]
pub struct MetadataReceivedParams<'src_file, 'dest_file, 'msgs_to_user> {
pub id: TransactionId,
pub source_id: UnsignedByteField,
pub file_size: u64,
pub src_file_name: &'src_file str,
pub dest_file_name: &'dest_file str,
pub msgs_to_user: &'msgs_to_user [MsgToUserTlv<'msgs_to_user>],
}
#[derive(Debug)]
pub struct FileSegmentRecvdParams<'seg_meta> {
pub id: TransactionId,
pub offset: u64,
pub length: usize,
pub rec_cont_state: Option<RecordContinuationState>,
pub segment_metadata: Option<&'seg_meta [u8]>,
}
pub trait CfdpUser {
fn transaction_indication(&mut self, id: &TransactionId);
fn eof_sent_indication(&mut self, id: &TransactionId);
fn transaction_finished_indication(&mut self, finished_params: &TransactionFinishedParams);
fn metadata_recvd_indication(&mut self, md_recvd_params: &MetadataReceivedParams);
fn file_segment_recvd_indication(&mut self, segment_recvd_params: &FileSegmentRecvdParams);
// TODO: The standard does not strictly specify how the report information looks..
fn report_indication(&mut self, id: &TransactionId);
fn suspended_indication(&mut self, id: &TransactionId, condition_code: ConditionCode);
fn resumed_indication(&mut self, id: &TransactionId, progress: u64);
fn fault_indication(
&mut self,
id: &TransactionId,
condition_code: ConditionCode,
progress: u64,
);
fn abandoned_indication(
&mut self,
id: &TransactionId,
condition_code: ConditionCode,
progress: u64,
);
fn eof_recvd_indication(&mut self, id: &TransactionId);
}

View File

@ -0,0 +1,269 @@
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "alloc")]
use hashbrown::HashSet;
use spacepackets::PacketId;
use crate::tmtc::ReceivesTcCore;
pub trait PacketIdLookup {
fn validate(&self, packet_id: u16) -> bool;
}
#[cfg(feature = "alloc")]
impl PacketIdLookup for Vec<u16> {
fn validate(&self, packet_id: u16) -> bool {
self.contains(&packet_id)
}
}
#[cfg(feature = "alloc")]
impl PacketIdLookup for HashSet<u16> {
fn validate(&self, packet_id: u16) -> bool {
self.contains(&packet_id)
}
}
impl PacketIdLookup for [u16] {
fn validate(&self, packet_id: u16) -> bool {
self.binary_search(&packet_id).is_ok()
}
}
#[cfg(feature = "alloc")]
impl PacketIdLookup for Vec<PacketId> {
fn validate(&self, packet_id: u16) -> bool {
self.contains(&PacketId::from(packet_id))
}
}
#[cfg(feature = "alloc")]
impl PacketIdLookup for HashSet<PacketId> {
fn validate(&self, packet_id: u16) -> bool {
self.contains(&PacketId::from(packet_id))
}
}
impl PacketIdLookup for [PacketId] {
fn validate(&self, packet_id: u16) -> bool {
self.binary_search(&PacketId::from(packet_id)).is_ok()
}
}
/// This function parses a given buffer for tightly packed CCSDS space packets. It uses the
/// [PacketId] field of the CCSDS packets to detect the start of a CCSDS space packet and then
/// uses the length field of the packet to extract CCSDS packets.
///
/// This function is also able to deal with broken tail packets at the end as long a the parser
/// can read the full 7 bytes which constitue a space packet header plus one byte minimal size.
/// If broken tail packets are detected, they are moved to the front of the buffer, and the write
/// index for future write operations will be written to the `next_write_idx` argument.
///
/// The parser will write all packets which were decoded successfully to the given `tc_receiver`
/// and return the number of packets found. If the [ReceivesTcCore::pass_tc] calls fails, the
/// error will be returned.
pub fn parse_buffer_for_ccsds_space_packets<E>(
buf: &mut [u8],
packet_id_lookup: &(impl PacketIdLookup + ?Sized),
tc_receiver: &mut (impl ReceivesTcCore<Error = E> + ?Sized),
next_write_idx: &mut usize,
) -> Result<u32, E> {
*next_write_idx = 0;
let mut packets_found = 0;
let mut current_idx = 0;
let buf_len = buf.len();
loop {
if current_idx + 7 >= buf.len() {
break;
}
let packet_id = u16::from_be_bytes(buf[current_idx..current_idx + 2].try_into().unwrap());
if packet_id_lookup.validate(packet_id) {
let length_field =
u16::from_be_bytes(buf[current_idx + 4..current_idx + 6].try_into().unwrap());
let packet_size = length_field + 7;
if (current_idx + packet_size as usize) <= buf_len {
tc_receiver.pass_tc(&buf[current_idx..current_idx + packet_size as usize])?;
packets_found += 1;
} else {
// Move packet to start of buffer if applicable.
if current_idx > 0 {
buf.copy_within(current_idx.., 0);
*next_write_idx = buf.len() - current_idx;
}
}
current_idx += packet_size as usize;
continue;
}
current_idx += 1;
}
Ok(packets_found)
}
#[cfg(test)]
mod tests {
use spacepackets::{
ecss::{tc::PusTcCreator, SerializablePusPacket},
PacketId, SpHeader,
};
use crate::encoding::tests::TcCacher;
use super::parse_buffer_for_ccsds_space_packets;
const TEST_APID_0: u16 = 0x02;
const TEST_APID_1: u16 = 0x10;
const TEST_PACKET_ID_0: PacketId = PacketId::const_tc(true, TEST_APID_0);
const TEST_PACKET_ID_1: PacketId = PacketId::const_tc(true, TEST_APID_1);
#[test]
fn test_basic() {
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let valid_packet_ids = [TEST_PACKET_ID_0];
let mut tc_cacher = TcCacher::default();
let mut next_write_idx = 0;
let parse_result = parse_buffer_for_ccsds_space_packets(
&mut buffer,
valid_packet_ids.as_slice(),
&mut tc_cacher,
&mut next_write_idx,
);
assert!(parse_result.is_ok());
let parsed_packets = parse_result.unwrap();
assert_eq!(parsed_packets, 1);
assert_eq!(tc_cacher.tc_queue.len(), 1);
assert_eq!(
tc_cacher.tc_queue.pop_front().unwrap(),
buffer[..packet_len]
);
}
#[test]
fn test_multi_packet() {
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
let action_tc = PusTcCreator::new_simple(&mut sph, 8, 0, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len_ping = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let packet_len_action = action_tc
.write_to_bytes(&mut buffer[packet_len_ping..])
.expect("writing packet failed");
let valid_packet_ids = [TEST_PACKET_ID_0];
let mut tc_cacher = TcCacher::default();
let mut next_write_idx = 0;
let parse_result = parse_buffer_for_ccsds_space_packets(
&mut buffer,
valid_packet_ids.as_slice(),
&mut tc_cacher,
&mut next_write_idx,
);
assert!(parse_result.is_ok());
let parsed_packets = parse_result.unwrap();
assert_eq!(parsed_packets, 2);
assert_eq!(tc_cacher.tc_queue.len(), 2);
assert_eq!(
tc_cacher.tc_queue.pop_front().unwrap(),
buffer[..packet_len_ping]
);
assert_eq!(
tc_cacher.tc_queue.pop_front().unwrap(),
buffer[packet_len_ping..packet_len_ping + packet_len_action]
);
}
#[test]
fn test_multi_apid() {
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
sph = SpHeader::tc_unseg(TEST_APID_1, 0, 0).unwrap();
let action_tc = PusTcCreator::new_simple(&mut sph, 8, 0, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len_ping = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let packet_len_action = action_tc
.write_to_bytes(&mut buffer[packet_len_ping..])
.expect("writing packet failed");
let valid_packet_ids = [TEST_PACKET_ID_0, TEST_PACKET_ID_1];
let mut tc_cacher = TcCacher::default();
let mut next_write_idx = 0;
let parse_result = parse_buffer_for_ccsds_space_packets(
&mut buffer,
valid_packet_ids.as_slice(),
&mut tc_cacher,
&mut next_write_idx,
);
assert!(parse_result.is_ok());
let parsed_packets = parse_result.unwrap();
assert_eq!(parsed_packets, 2);
assert_eq!(tc_cacher.tc_queue.len(), 2);
assert_eq!(
tc_cacher.tc_queue.pop_front().unwrap(),
buffer[..packet_len_ping]
);
assert_eq!(
tc_cacher.tc_queue.pop_front().unwrap(),
buffer[packet_len_ping..packet_len_ping + packet_len_action]
);
}
#[test]
fn test_split_packet_multi() {
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
sph = SpHeader::tc_unseg(TEST_APID_1, 0, 0).unwrap();
let action_tc = PusTcCreator::new_simple(&mut sph, 8, 0, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len_ping = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let packet_len_action = action_tc
.write_to_bytes(&mut buffer[packet_len_ping..])
.expect("writing packet failed");
let valid_packet_ids = [TEST_PACKET_ID_0, TEST_PACKET_ID_1];
let mut tc_cacher = TcCacher::default();
let mut next_write_idx = 0;
let parse_result = parse_buffer_for_ccsds_space_packets(
&mut buffer[..packet_len_ping + packet_len_action - 4],
valid_packet_ids.as_slice(),
&mut tc_cacher,
&mut next_write_idx,
);
assert!(parse_result.is_ok());
let parsed_packets = parse_result.unwrap();
assert_eq!(parsed_packets, 1);
assert_eq!(tc_cacher.tc_queue.len(), 1);
// The broken packet was moved to the start, so the next write index should be after the
// last segment missing 4 bytes.
assert_eq!(next_write_idx, packet_len_action - 4);
}
#[test]
fn test_one_split_packet() {
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len_ping = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let valid_packet_ids = [TEST_PACKET_ID_0, TEST_PACKET_ID_1];
let mut tc_cacher = TcCacher::default();
let mut next_write_idx = 0;
let parse_result = parse_buffer_for_ccsds_space_packets(
&mut buffer[..packet_len_ping - 4],
valid_packet_ids.as_slice(),
&mut tc_cacher,
&mut next_write_idx,
);
assert_eq!(next_write_idx, 0);
assert!(parse_result.is_ok());
let parsed_packets = parse_result.unwrap();
assert_eq!(parsed_packets, 0);
assert_eq!(tc_cacher.tc_queue.len(), 0);
}
}

View File

@ -0,0 +1,263 @@
use crate::tmtc::ReceivesTcCore;
use cobs::{decode_in_place, encode, max_encoding_length};
/// This function encodes the given packet with COBS and also wraps the encoded packet with
/// the sentinel value 0. It can be used repeatedly on the same encoded buffer by expecting
/// and incrementing the mutable reference of the current packet index. This is also used
/// to retrieve the total encoded size.
///
/// This function will return [false] if the given encoding buffer is not large enough to hold
/// the encoded buffer and the two sentinel bytes and [true] if the encoding was successfull.
///
/// ## Example
///
/// ```
/// use cobs::decode_in_place_report;
/// use satrs_core::encoding::{encode_packet_with_cobs};
//
/// const SIMPLE_PACKET: [u8; 5] = [1, 2, 3, 4, 5];
/// const INVERTED_PACKET: [u8; 5] = [5, 4, 3, 2, 1];
///
/// let mut encoding_buf: [u8; 32] = [0; 32];
/// let mut current_idx = 0;
/// assert!(encode_packet_with_cobs(&SIMPLE_PACKET, &mut encoding_buf, &mut current_idx));
/// assert!(encode_packet_with_cobs(&INVERTED_PACKET, &mut encoding_buf, &mut current_idx));
/// assert_eq!(encoding_buf[0], 0);
/// let dec_report = decode_in_place_report(&mut encoding_buf[1..]).expect("decoding failed");
/// assert_eq!(encoding_buf[1 + dec_report.src_used], 0);
/// assert_eq!(dec_report.dst_used, 5);
/// assert_eq!(current_idx, 16);
/// ```
pub fn encode_packet_with_cobs(
packet: &[u8],
encoded_buf: &mut [u8],
current_idx: &mut usize,
) -> bool {
let max_encoding_len = max_encoding_length(packet.len());
if *current_idx + max_encoding_len + 2 > encoded_buf.len() {
return false;
}
encoded_buf[*current_idx] = 0;
*current_idx += 1;
*current_idx += encode(packet, &mut encoded_buf[*current_idx..]);
encoded_buf[*current_idx] = 0;
*current_idx += 1;
true
}
/// This function parses a given buffer for COBS encoded packets. The packet structure is
/// expected to be like this, assuming a sentinel value of 0 as the packet delimiter:
///
/// 0 | ... Encoded Packet Data ... | 0 | 0 | ... Encoded Packet Data ... | 0
///
/// This function is also able to deal with broken tail packets at the end. If broken tail
/// packets are detected, they are moved to the front of the buffer, and the write index for
/// future write operations will be written to the `next_write_idx` argument.
///
/// The parser will write all packets which were decoded successfully to the given `tc_receiver`.
pub fn parse_buffer_for_cobs_encoded_packets<E>(
buf: &mut [u8],
tc_receiver: &mut dyn ReceivesTcCore<Error = E>,
next_write_idx: &mut usize,
) -> Result<u32, E> {
let mut start_index_packet = 0;
let mut start_found = false;
let mut last_byte = false;
let mut packets_found = 0;
for i in 0..buf.len() {
if i == buf.len() - 1 {
last_byte = true;
}
if buf[i] == 0 {
if !start_found && !last_byte && buf[i + 1] == 0 {
// Special case: Consecutive sentinel values or all zeroes.
// Skip.
continue;
}
if start_found {
let decode_result = decode_in_place(&mut buf[start_index_packet..i]);
if let Ok(packet_len) = decode_result {
packets_found += 1;
tc_receiver
.pass_tc(&buf[start_index_packet..start_index_packet + packet_len])?;
}
start_found = false;
} else {
start_index_packet = i + 1;
start_found = true;
}
}
}
// Move split frame at the end to the front of the buffer.
if start_index_packet > 0 && start_found && packets_found > 0 {
buf.copy_within(start_index_packet - 1.., 0);
*next_write_idx = buf.len() - start_index_packet + 1;
}
Ok(packets_found)
}
#[cfg(test)]
pub(crate) mod tests {
use cobs::encode;
use crate::encoding::tests::{encode_simple_packet, TcCacher, INVERTED_PACKET, SIMPLE_PACKET};
use super::parse_buffer_for_cobs_encoded_packets;
#[test]
fn test_parsing_simple_packet() {
let mut test_sender = TcCacher::default();
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
let mut next_read_idx = 0;
let packets = parse_buffer_for_cobs_encoded_packets(
&mut encoded_buf[0..current_idx],
&mut test_sender,
&mut next_read_idx,
)
.unwrap();
assert_eq!(packets, 1);
assert_eq!(test_sender.tc_queue.len(), 1);
let packet = &test_sender.tc_queue[0];
assert_eq!(packet, &SIMPLE_PACKET);
}
#[test]
fn test_parsing_consecutive_packets() {
let mut test_sender = TcCacher::default();
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
// Second packet
encoded_buf[current_idx] = 0;
current_idx += 1;
current_idx += encode(&INVERTED_PACKET, &mut encoded_buf[current_idx..]);
encoded_buf[current_idx] = 0;
current_idx += 1;
let mut next_read_idx = 0;
let packets = parse_buffer_for_cobs_encoded_packets(
&mut encoded_buf[0..current_idx],
&mut test_sender,
&mut next_read_idx,
)
.unwrap();
assert_eq!(packets, 2);
assert_eq!(test_sender.tc_queue.len(), 2);
let packet0 = &test_sender.tc_queue[0];
assert_eq!(packet0, &SIMPLE_PACKET);
let packet1 = &test_sender.tc_queue[1];
assert_eq!(packet1, &INVERTED_PACKET);
}
#[test]
fn test_split_tail_packet_only() {
let mut test_sender = TcCacher::default();
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
let mut next_read_idx = 0;
let packets = parse_buffer_for_cobs_encoded_packets(
// Cut off the sentinel byte at the end.
&mut encoded_buf[0..current_idx - 1],
&mut test_sender,
&mut next_read_idx,
)
.unwrap();
assert_eq!(packets, 0);
assert_eq!(test_sender.tc_queue.len(), 0);
assert_eq!(next_read_idx, 0);
}
fn generic_test_split_packet(cut_off: usize) {
let mut test_sender = TcCacher::default();
let mut encoded_buf: [u8; 16] = [0; 16];
assert!(cut_off < INVERTED_PACKET.len() + 1);
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
// Second packet
encoded_buf[current_idx] = 0;
let packet_start = current_idx;
current_idx += 1;
let encoded_len = encode(&INVERTED_PACKET, &mut encoded_buf[current_idx..]);
assert_eq!(encoded_len, 6);
current_idx += encoded_len;
// We cut off the sentinel byte, so we expecte the write index to be the length of the
// packet minus the sentinel byte plus the first sentinel byte.
let next_expected_write_idx = 1 + encoded_len - cut_off + 1;
encoded_buf[current_idx] = 0;
current_idx += 1;
let mut next_write_idx = 0;
let expected_at_start = encoded_buf[packet_start..current_idx - cut_off].to_vec();
let packets = parse_buffer_for_cobs_encoded_packets(
// Cut off the sentinel byte at the end.
&mut encoded_buf[0..current_idx - cut_off],
&mut test_sender,
&mut next_write_idx,
)
.unwrap();
assert_eq!(packets, 1);
assert_eq!(test_sender.tc_queue.len(), 1);
assert_eq!(&test_sender.tc_queue[0], &SIMPLE_PACKET);
assert_eq!(next_write_idx, next_expected_write_idx);
assert_eq!(encoded_buf[..next_expected_write_idx], expected_at_start);
}
#[test]
fn test_one_packet_and_split_tail_packet_0() {
generic_test_split_packet(1);
}
#[test]
fn test_one_packet_and_split_tail_packet_1() {
generic_test_split_packet(2);
}
#[test]
fn test_one_packet_and_split_tail_packet_2() {
generic_test_split_packet(3);
}
#[test]
fn test_zero_at_end() {
let mut test_sender = TcCacher::default();
let mut encoded_buf: [u8; 16] = [0; 16];
let mut next_write_idx = 0;
let mut current_idx = 0;
encoded_buf[current_idx] = 5;
current_idx += 1;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
encoded_buf[current_idx] = 0;
current_idx += 1;
let packets = parse_buffer_for_cobs_encoded_packets(
// Cut off the sentinel byte at the end.
&mut encoded_buf[0..current_idx],
&mut test_sender,
&mut next_write_idx,
)
.unwrap();
assert_eq!(packets, 1);
assert_eq!(test_sender.tc_queue.len(), 1);
assert_eq!(&test_sender.tc_queue[0], &SIMPLE_PACKET);
assert_eq!(next_write_idx, 1);
assert_eq!(encoded_buf[0], 0);
}
#[test]
fn test_all_zeroes() {
let mut test_sender = TcCacher::default();
let mut all_zeroes: [u8; 5] = [0; 5];
let mut next_write_idx = 0;
let packets = parse_buffer_for_cobs_encoded_packets(
// Cut off the sentinel byte at the end.
&mut all_zeroes,
&mut test_sender,
&mut next_write_idx,
)
.unwrap();
assert_eq!(packets, 0);
assert!(test_sender.tc_queue.is_empty());
assert_eq!(next_write_idx, 0);
}
}

View File

@ -0,0 +1,40 @@
pub mod ccsds;
pub mod cobs;
pub use crate::encoding::ccsds::parse_buffer_for_ccsds_space_packets;
pub use crate::encoding::cobs::{encode_packet_with_cobs, parse_buffer_for_cobs_encoded_packets};
#[cfg(test)]
pub(crate) mod tests {
use alloc::{collections::VecDeque, vec::Vec};
use crate::tmtc::ReceivesTcCore;
use super::cobs::encode_packet_with_cobs;
pub(crate) const SIMPLE_PACKET: [u8; 5] = [1, 2, 3, 4, 5];
pub(crate) const INVERTED_PACKET: [u8; 5] = [5, 4, 3, 2, 1];
#[derive(Default)]
pub(crate) struct TcCacher {
pub(crate) tc_queue: VecDeque<Vec<u8>>,
}
impl ReceivesTcCore for TcCacher {
type Error = ();
fn pass_tc(&mut self, tc_raw: &[u8]) -> Result<(), Self::Error> {
self.tc_queue.push_back(tc_raw.to_vec());
Ok(())
}
}
pub(crate) fn encode_simple_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet_with_cobs(&SIMPLE_PACKET, encoded_buf, current_idx);
}
#[allow(dead_code)]
pub(crate) fn encode_inverted_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet_with_cobs(&INVERTED_PACKET, encoded_buf, current_idx);
}
}

View File

@ -29,7 +29,7 @@ pub trait Executable: Send {
fn periodic_op(&mut self, op_code: i32) -> Result<OpResult, Self::Error>;
}
/// This function allows executing one task which implements the [Executable][Executable] trait
/// This function allows executing one task which implements the [Executable] trait
///
/// # Arguments
///
@ -78,7 +78,7 @@ pub fn exec_sched_single<
}
/// This function allows executing multiple tasks as long as the tasks implement the
/// [Executable][Executable] trait
/// [Executable] trait
///
/// # Arguments
///

View File

@ -1,2 +0,0 @@
//! Helper modules intended to be used on hosts with a full [std] runtime
pub mod udp_server;

View File

@ -1,4 +1,4 @@
//! # Hardware Abstraction Layer module
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub mod host;
pub mod std;

View File

@ -0,0 +1,6 @@
//! Helper modules intended to be used on systems with a full [std] runtime.
pub mod tcp_server;
pub mod udp_server;
mod tcp_cobs_server;
mod tcp_spacepackets_server;

View File

@ -0,0 +1,369 @@
use alloc::boxed::Box;
use alloc::vec;
use cobs::encode;
use delegate::delegate;
use std::io::Write;
use std::net::SocketAddr;
use std::net::TcpListener;
use std::net::TcpStream;
use std::vec::Vec;
use crate::encoding::parse_buffer_for_cobs_encoded_packets;
use crate::tmtc::ReceivesTc;
use crate::tmtc::TmPacketSource;
use crate::hal::std::tcp_server::{
ConnectionResult, ServerConfig, TcpTcParser, TcpTmSender, TcpTmtcError, TcpTmtcGenericServer,
};
/// Concrete [TcpTcParser] implementation for the [TcpTmtcInCobsServer].
#[derive(Default)]
pub struct CobsTcParser {}
impl<TmError, TcError: 'static> TcpTcParser<TmError, TcError> for CobsTcParser {
fn handle_tc_parsing(
&mut self,
tc_buffer: &mut [u8],
tc_receiver: &mut (impl ReceivesTc<Error = TcError> + ?Sized),
conn_result: &mut ConnectionResult,
current_write_idx: usize,
next_write_idx: &mut usize,
) -> Result<(), TcpTmtcError<TmError, TcError>> {
// Reader vec full, need to parse for packets.
conn_result.num_received_tcs += parse_buffer_for_cobs_encoded_packets(
&mut tc_buffer[..current_write_idx],
tc_receiver.upcast_mut(),
next_write_idx,
)
.map_err(|e| TcpTmtcError::TcError(e))?;
Ok(())
}
}
/// Concrete [TcpTmSender] implementation for the [TcpTmtcInCobsServer].
pub struct CobsTmSender {
tm_encoding_buffer: Vec<u8>,
}
impl CobsTmSender {
fn new(tm_buffer_size: usize) -> Self {
Self {
// The buffer should be large enough to hold the maximum expected TM size encoded with
// COBS.
tm_encoding_buffer: vec![0; cobs::max_encoding_length(tm_buffer_size)],
}
}
}
impl<TmError, TcError> TcpTmSender<TmError, TcError> for CobsTmSender {
fn handle_tm_sending(
&mut self,
tm_buffer: &mut [u8],
tm_source: &mut (impl TmPacketSource<Error = TmError> + ?Sized),
conn_result: &mut ConnectionResult,
stream: &mut TcpStream,
) -> Result<bool, TcpTmtcError<TmError, TcError>> {
let mut tm_was_sent = false;
loop {
// Write TM until TM source is exhausted. For now, there is no limit for the amount
// of TM written this way.
let read_tm_len = tm_source
.retrieve_packet(tm_buffer)
.map_err(|e| TcpTmtcError::TmError(e))?;
if read_tm_len == 0 {
return Ok(tm_was_sent);
}
tm_was_sent = true;
conn_result.num_sent_tms += 1;
// Encode into COBS and sent to client.
let mut current_idx = 0;
self.tm_encoding_buffer[current_idx] = 0;
current_idx += 1;
current_idx += encode(
&tm_buffer[..read_tm_len],
&mut self.tm_encoding_buffer[current_idx..],
);
self.tm_encoding_buffer[current_idx] = 0;
current_idx += 1;
stream.write_all(&self.tm_encoding_buffer[..current_idx])?;
}
}
}
/// TCP TMTC server implementation for exchange of generic TMTC packets which are framed with the
/// [COBS protocol](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing).
///
/// Telemetry will be encoded with the COBS protocol using [cobs::encode] in addition to being
/// wrapped with the sentinel value 0 as the packet delimiter as well before being sent back to
/// the client. Please note that the server will send as much data as it can retrieve from the
/// [TmPacketSource] in its current implementation.
///
/// Using a framing protocol like COBS imposes minimal restrictions on the type of TMTC data
/// exchanged while also allowing packets with flexible size and a reliable way to reconstruct full
/// packets even from a data stream which is split up. The server wil use the
/// [parse_buffer_for_cobs_encoded_packets] function to parse for packets and pass them to a
/// generic TC receiver. The user can use [crate::encoding::encode_packet_with_cobs] to encode
/// telecommands sent to the server.
///
/// ## Example
///
/// The [TCP integration tests](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-core/tests/tcp_servers.rs)
/// test also serves as the example application for this module.
pub struct TcpTmtcInCobsServer<TmError, TcError: 'static> {
generic_server: TcpTmtcGenericServer<TmError, TcError, CobsTmSender, CobsTcParser>,
}
impl<TmError: 'static, TcError: 'static> TcpTmtcInCobsServer<TmError, TcError> {
/// Create a new TCP TMTC server which exchanges TMTC packets encoded with
/// [COBS protocol](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing).
///
/// ## Parameter
///
/// * `cfg` - Configuration of the server.
/// * `tm_source` - Generic TM source used by the server to pull telemetry packets which are
/// then sent back to the client.
/// * `tc_receiver` - Any received telecommands which were decoded successfully will be
/// forwarded to this TC receiver.
pub fn new(
cfg: ServerConfig,
tm_source: Box<dyn TmPacketSource<Error = TmError>>,
tc_receiver: Box<dyn ReceivesTc<Error = TcError>>,
) -> Result<Self, TcpTmtcError<TmError, TcError>> {
Ok(Self {
generic_server: TcpTmtcGenericServer::new(
cfg,
CobsTcParser::default(),
CobsTmSender::new(cfg.tm_buffer_size),
tm_source,
tc_receiver,
)?,
})
}
delegate! {
to self.generic_server {
pub fn listener(&mut self) -> &mut TcpListener;
/// Can be used to retrieve the local assigned address of the TCP server. This is especially
/// useful if using the port number 0 for OS auto-assignment.
pub fn local_addr(&self) -> std::io::Result<SocketAddr>;
/// Delegation to the [TcpTmtcGenericServer::handle_next_connection] call.
pub fn handle_next_connection(
&mut self,
) -> Result<ConnectionResult, TcpTmtcError<TmError, TcError>>;
}
}
}
#[cfg(test)]
mod tests {
use core::{
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
use std::{
io::{Read, Write},
net::{IpAddr, Ipv4Addr, SocketAddr, TcpStream},
thread,
};
use crate::{
encoding::tests::{INVERTED_PACKET, SIMPLE_PACKET},
hal::std::tcp_server::{
tests::{SyncTcCacher, SyncTmSource},
ServerConfig,
},
};
use alloc::{boxed::Box, sync::Arc};
use cobs::encode;
use super::TcpTmtcInCobsServer;
fn encode_simple_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet(&SIMPLE_PACKET, encoded_buf, current_idx)
}
fn encode_inverted_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet(&INVERTED_PACKET, encoded_buf, current_idx)
}
fn encode_packet(packet: &[u8], encoded_buf: &mut [u8], current_idx: &mut usize) {
encoded_buf[*current_idx] = 0;
*current_idx += 1;
*current_idx += encode(packet, &mut encoded_buf[*current_idx..]);
encoded_buf[*current_idx] = 0;
*current_idx += 1;
}
fn generic_tmtc_server(
addr: &SocketAddr,
tc_receiver: SyncTcCacher,
tm_source: SyncTmSource,
) -> TcpTmtcInCobsServer<(), ()> {
TcpTmtcInCobsServer::new(
ServerConfig::new(*addr, Duration::from_millis(2), 1024, 1024),
Box::new(tm_source),
Box::new(tc_receiver),
)
.expect("TCP server generation failed")
}
#[test]
fn test_server_basic_no_tm() {
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let tm_source = SyncTmSource::default();
let mut tcp_server = generic_tmtc_server(&auto_port_addr, tc_receiver.clone(), tm_source);
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 1);
assert_eq!(conn_result.num_sent_tms, 0);
set_if_done.store(true, Ordering::Relaxed);
});
// Send TC to server now.
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.write_all(&encoded_buf[..current_idx])
.expect("writing to TCP server failed");
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that the packet was received and decoded successfully.
let mut tc_queue = tc_receiver
.tc_queue
.lock()
.expect("locking tc queue failed");
assert_eq!(tc_queue.len(), 1);
assert_eq!(tc_queue.pop_front().unwrap(), &SIMPLE_PACKET);
drop(tc_queue);
}
#[test]
fn test_server_basic_multi_tm_multi_tc() {
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let mut tm_source = SyncTmSource::default();
tm_source.add_tm(&INVERTED_PACKET);
tm_source.add_tm(&SIMPLE_PACKET);
let mut tcp_server =
generic_tmtc_server(&auto_port_addr, tc_receiver.clone(), tm_source.clone());
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 2, "Not enough TCs received");
assert_eq!(conn_result.num_sent_tms, 2, "Not enough TMs received");
set_if_done.store(true, Ordering::Relaxed);
});
// Send TC to server now.
let mut encoded_buf: [u8; 32] = [0; 32];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
encode_inverted_packet(&mut encoded_buf, &mut current_idx);
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.set_read_timeout(Some(Duration::from_millis(10)))
.expect("setting reas timeout failed");
stream
.write_all(&encoded_buf[..current_idx])
.expect("writing to TCP server failed");
// Done with writing.
stream
.shutdown(std::net::Shutdown::Write)
.expect("shutting down write failed");
let mut read_buf: [u8; 16] = [0; 16];
let mut read_len_total = 0;
// Timeout ensures this does not block forever.
while read_len_total < 16 {
let read_len = stream.read(&mut read_buf).expect("read failed");
read_len_total += read_len;
// Read until full expected size is available.
if read_len == 16 {
// Read first TM packet.
current_idx = 0;
assert_eq!(read_len, 16);
assert_eq!(read_buf[0], 0);
current_idx += 1;
let mut dec_report = cobs::decode_in_place_report(&mut read_buf[current_idx..])
.expect("COBS decoding failed");
assert_eq!(dec_report.dst_used, 5);
// Skip first sentinel byte.
assert_eq!(
&read_buf[current_idx..current_idx + INVERTED_PACKET.len()],
&INVERTED_PACKET
);
current_idx += dec_report.src_used;
// End sentinel.
assert_eq!(read_buf[current_idx], 0, "invalid sentinel end byte");
current_idx += 1;
// Read second TM packet.
assert_eq!(read_buf[current_idx], 0);
current_idx += 1;
dec_report = cobs::decode_in_place_report(&mut read_buf[current_idx..])
.expect("COBS decoding failed");
assert_eq!(dec_report.dst_used, 5);
// Skip first sentinel byte.
assert_eq!(
&read_buf[current_idx..current_idx + SIMPLE_PACKET.len()],
&SIMPLE_PACKET
);
current_idx += dec_report.src_used;
// End sentinel.
assert_eq!(read_buf[current_idx], 0);
break;
}
}
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that the packet was received and decoded successfully.
let mut tc_queue = tc_receiver
.tc_queue
.lock()
.expect("locking tc queue failed");
assert_eq!(tc_queue.len(), 2);
assert_eq!(tc_queue.pop_front().unwrap(), &SIMPLE_PACKET);
assert_eq!(tc_queue.pop_front().unwrap(), &INVERTED_PACKET);
drop(tc_queue);
}
}

View File

@ -0,0 +1,378 @@
//! Generic TCP TMTC servers with different TMTC format flavours.
use alloc::vec;
use alloc::{boxed::Box, vec::Vec};
use core::time::Duration;
use socket2::{Domain, Socket, Type};
use std::io::Read;
use std::net::TcpListener;
use std::net::{SocketAddr, TcpStream};
use std::thread;
use crate::tmtc::{ReceivesTc, TmPacketSource};
use thiserror::Error;
// Re-export the TMTC in COBS server.
pub use crate::hal::std::tcp_cobs_server::{CobsTcParser, CobsTmSender, TcpTmtcInCobsServer};
pub use crate::hal::std::tcp_spacepackets_server::{
SpacepacketsTcParser, SpacepacketsTmSender, TcpSpacepacketsServer,
};
/// Configuration struct for the generic TCP TMTC server
///
/// ## Parameters
///
/// * `addr` - Address of the TCP server.
/// * `inner_loop_delay` - If a client connects for a longer period, but no TC is received or
/// no TM needs to be sent, the TCP server will delay for the specified amount of time
/// to reduce CPU load.
/// * `tm_buffer_size` - Size of the TM buffer used to read TM from the [TmPacketSource] and
/// encoding of that data. This buffer should at large enough to hold the maximum expected
/// TM size read from the packet source.
/// * `tc_buffer_size` - Size of the TC buffer used to read encoded telecommands sent from
/// the client. It is recommended to make this buffer larger to allow reading multiple
/// consecutive packets as well, for example by using common buffer sizes like 4096 or 8192
/// byte. The buffer should at the very least be large enough to hold the maximum expected
/// telecommand size.
/// * `reuse_addr` - Can be used to set the `SO_REUSEADDR` option on the raw socket. This is
/// especially useful if the address and port are static for the server. Set to false by
/// default.
/// * `reuse_port` - Can be used to set the `SO_REUSEPORT` option on the raw socket. This is
/// especially useful if the address and port are static for the server. Set to false by
/// default.
#[derive(Debug, Copy, Clone)]
pub struct ServerConfig {
pub addr: SocketAddr,
pub inner_loop_delay: Duration,
pub tm_buffer_size: usize,
pub tc_buffer_size: usize,
pub reuse_addr: bool,
pub reuse_port: bool,
}
impl ServerConfig {
pub fn new(
addr: SocketAddr,
inner_loop_delay: Duration,
tm_buffer_size: usize,
tc_buffer_size: usize,
) -> Self {
Self {
addr,
inner_loop_delay,
tm_buffer_size,
tc_buffer_size,
reuse_addr: false,
reuse_port: false,
}
}
}
#[derive(Error, Debug)]
pub enum TcpTmtcError<TmError, TcError> {
#[error("TM retrieval error: {0}")]
TmError(TmError),
#[error("TC retrieval error: {0}")]
TcError(TcError),
#[error("io error: {0}")]
Io(#[from] std::io::Error),
}
/// Result of one connection attempt. Contains the client address if a connection was established,
/// in addition to the number of telecommands and telemetry packets exchanged.
#[derive(Debug, Default)]
pub struct ConnectionResult {
pub addr: Option<SocketAddr>,
pub num_received_tcs: u32,
pub num_sent_tms: u32,
}
/// Generic parser abstraction for an object which can parse for telecommands given a raw
/// bytestream received from a TCP socket and send them to a generic [ReceivesTc] telecommand
/// receiver. This allows different encoding schemes for telecommands.
pub trait TcpTcParser<TmError, TcError> {
fn handle_tc_parsing(
&mut self,
tc_buffer: &mut [u8],
tc_receiver: &mut (impl ReceivesTc<Error = TcError> + ?Sized),
conn_result: &mut ConnectionResult,
current_write_idx: usize,
next_write_idx: &mut usize,
) -> Result<(), TcpTmtcError<TmError, TcError>>;
}
/// Generic sender abstraction for an object which can pull telemetry from a given TM source
/// using a [TmPacketSource] and then send them back to a client using a given [TcpStream].
/// The concrete implementation can also perform any encoding steps which are necessary before
/// sending back the data to a client.
pub trait TcpTmSender<TmError, TcError> {
fn handle_tm_sending(
&mut self,
tm_buffer: &mut [u8],
tm_source: &mut (impl TmPacketSource<Error = TmError> + ?Sized),
conn_result: &mut ConnectionResult,
stream: &mut TcpStream,
) -> Result<bool, TcpTmtcError<TmError, TcError>>;
}
/// TCP TMTC server implementation for exchange of generic TMTC packets in a generic way which
/// stays agnostic to the encoding scheme and format used for both telecommands and telemetry.
///
/// This server implements a generic TMTC handling logic and allows modifying its behaviour
/// through the following 4 core abstractions:
///
/// 1. [TcpTcParser] to parse for telecommands from the raw bytestream received from a client.
/// 2. Parsed telecommands will be sent to the [ReceivesTc] telecommand receiver.
/// 3. [TcpTmSender] to send telemetry pulled from a TM source back to the client.
/// 4. [TmPacketSource] as a generic TM source used by the [TcpTmSender].
///
/// It is possible to specify custom abstractions to build a dedicated TCP TMTC server without
/// having to re-implement common logic.
///
/// Currently, this framework offers the following concrete implementations:
///
/// 1. [TcpTmtcInCobsServer] to exchange TMTC wrapped inside the COBS framing protocol.
pub struct TcpTmtcGenericServer<
TmError,
TcError,
TmHandler: TcpTmSender<TmError, TcError>,
TcHandler: TcpTcParser<TmError, TcError>,
> {
base: TcpTmtcServerBase<TmError, TcError>,
tc_handler: TcHandler,
tm_handler: TmHandler,
}
impl<
TmError: 'static,
TcError: 'static,
TmSender: TcpTmSender<TmError, TcError>,
TcParser: TcpTcParser<TmError, TcError>,
> TcpTmtcGenericServer<TmError, TcError, TmSender, TcParser>
{
/// Create a new generic TMTC server instance.
///
/// ## Parameter
///
/// * `cfg` - Configuration of the server.
/// * `tc_parser` - Parser which extracts telecommands from the raw bytestream received from
/// the client.
/// * `tm_sender` - Sends back telemetry to the client using the specified TM source.
/// * `tm_source` - Generic TM source used by the server to pull telemetry packets which are
/// then sent back to the client.
/// * `tc_receiver` - Any received telecommand which was decoded successfully will be forwarded
/// to this TC receiver.
pub fn new(
cfg: ServerConfig,
tc_parser: TcParser,
tm_sender: TmSender,
tm_source: Box<dyn TmPacketSource<Error = TmError>>,
tc_receiver: Box<dyn ReceivesTc<Error = TcError>>,
) -> Result<TcpTmtcGenericServer<TmError, TcError, TmSender, TcParser>, std::io::Error> {
Ok(Self {
base: TcpTmtcServerBase::new(cfg, tm_source, tc_receiver)?,
tc_handler: tc_parser,
tm_handler: tm_sender,
})
}
/// Retrieve the internal [TcpListener] class.
pub fn listener(&mut self) -> &mut TcpListener {
self.base.listener()
}
/// Can be used to retrieve the local assigned address of the TCP server. This is especially
/// useful if using the port number 0 for OS auto-assignment.
pub fn local_addr(&self) -> std::io::Result<SocketAddr> {
self.base.local_addr()
}
/// This call is used to handle the next connection to a client. Right now, it performs
/// the following steps:
///
/// 1. It calls the [std::net::TcpListener::accept] method internally using the blocking API
/// until a client connects.
/// 2. It reads all the telecommands from the client and parses all received data using the
/// user specified [TcpTcParser].
/// 3. After reading and parsing all telecommands, it sends back all telemetry using the
/// user specified [TcpTmSender].
///
/// The server will delay for a user-specified period if the client connects to the server
/// for prolonged periods and there is no traffic for the server. This is the case if the
/// client does not send any telecommands and no telemetry needs to be sent back to the client.
pub fn handle_next_connection(
&mut self,
) -> Result<ConnectionResult, TcpTmtcError<TmError, TcError>> {
let mut connection_result = ConnectionResult::default();
let mut current_write_idx;
let mut next_write_idx = 0;
let (mut stream, addr) = self.base.listener.accept()?;
stream.set_nonblocking(true)?;
connection_result.addr = Some(addr);
current_write_idx = next_write_idx;
loop {
let read_result = stream.read(&mut self.base.tc_buffer[current_write_idx..]);
match read_result {
Ok(0) => {
// Connection closed by client. If any TC was read, parse for complete packets.
// After that, break the outer loop.
if current_write_idx > 0 {
self.tc_handler.handle_tc_parsing(
&mut self.base.tc_buffer,
self.base.tc_receiver.as_mut(),
&mut connection_result,
current_write_idx,
&mut next_write_idx,
)?;
}
break;
}
Ok(read_len) => {
current_write_idx += read_len;
// TC buffer is full, we must parse for complete packets now.
if current_write_idx == self.base.tc_buffer.capacity() {
self.tc_handler.handle_tc_parsing(
&mut self.base.tc_buffer,
self.base.tc_receiver.as_mut(),
&mut connection_result,
current_write_idx,
&mut next_write_idx,
)?;
current_write_idx = next_write_idx;
}
}
Err(e) => match e.kind() {
// As per [TcpStream::set_read_timeout] documentation, this should work for
// both UNIX and Windows.
std::io::ErrorKind::WouldBlock | std::io::ErrorKind::TimedOut => {
self.tc_handler.handle_tc_parsing(
&mut self.base.tc_buffer,
self.base.tc_receiver.as_mut(),
&mut connection_result,
current_write_idx,
&mut next_write_idx,
)?;
current_write_idx = next_write_idx;
if !self.tm_handler.handle_tm_sending(
&mut self.base.tm_buffer,
self.base.tm_source.as_mut(),
&mut connection_result,
&mut stream,
)? {
// No TC read, no TM was sent, but the client has not disconnected.
// Perform an inner delay to avoid burning CPU time.
thread::sleep(self.base.inner_loop_delay);
}
}
_ => {
return Err(TcpTmtcError::Io(e));
}
},
}
}
self.tm_handler.handle_tm_sending(
&mut self.base.tm_buffer,
self.base.tm_source.as_mut(),
&mut connection_result,
&mut stream,
)?;
Ok(connection_result)
}
}
pub(crate) struct TcpTmtcServerBase<TmError, TcError> {
pub(crate) listener: TcpListener,
pub(crate) inner_loop_delay: Duration,
pub(crate) tm_source: Box<dyn TmPacketSource<Error = TmError>>,
pub(crate) tm_buffer: Vec<u8>,
pub(crate) tc_receiver: Box<dyn ReceivesTc<Error = TcError>>,
pub(crate) tc_buffer: Vec<u8>,
}
impl<TmError, TcError> TcpTmtcServerBase<TmError, TcError> {
pub(crate) fn new(
cfg: ServerConfig,
tm_source: Box<dyn TmPacketSource<Error = TmError>>,
tc_receiver: Box<dyn ReceivesTc<Error = TcError>>,
) -> Result<Self, std::io::Error> {
// Create a TCP listener bound to two addresses.
let socket = Socket::new(Domain::IPV4, Type::STREAM, None)?;
socket.set_reuse_address(cfg.reuse_addr)?;
socket.set_reuse_port(cfg.reuse_port)?;
let addr = (cfg.addr).into();
socket.bind(&addr)?;
socket.listen(128)?;
Ok(Self {
listener: socket.into(),
inner_loop_delay: cfg.inner_loop_delay,
tm_source,
tm_buffer: vec![0; cfg.tm_buffer_size],
tc_receiver,
tc_buffer: vec![0; cfg.tc_buffer_size],
})
}
pub(crate) fn listener(&mut self) -> &mut TcpListener {
&mut self.listener
}
pub(crate) fn local_addr(&self) -> std::io::Result<SocketAddr> {
self.listener.local_addr()
}
}
#[cfg(test)]
pub(crate) mod tests {
use std::sync::Mutex;
use alloc::{collections::VecDeque, sync::Arc, vec::Vec};
use crate::tmtc::{ReceivesTcCore, TmPacketSourceCore};
#[derive(Default, Clone)]
pub(crate) struct SyncTcCacher {
pub(crate) tc_queue: Arc<Mutex<VecDeque<Vec<u8>>>>,
}
impl ReceivesTcCore for SyncTcCacher {
type Error = ();
fn pass_tc(&mut self, tc_raw: &[u8]) -> Result<(), Self::Error> {
let mut tc_queue = self.tc_queue.lock().expect("tc forwarder failed");
tc_queue.push_back(tc_raw.to_vec());
Ok(())
}
}
#[derive(Default, Clone)]
pub(crate) struct SyncTmSource {
tm_queue: Arc<Mutex<VecDeque<Vec<u8>>>>,
}
impl SyncTmSource {
pub(crate) fn add_tm(&mut self, tm: &[u8]) {
let mut tm_queue = self.tm_queue.lock().expect("locking tm queue failec");
tm_queue.push_back(tm.to_vec());
}
}
impl TmPacketSourceCore for SyncTmSource {
type Error = ();
fn retrieve_packet(&mut self, buffer: &mut [u8]) -> Result<usize, Self::Error> {
let mut tm_queue = self.tm_queue.lock().expect("locking tm queue failed");
if !tm_queue.is_empty() {
let next_vec = tm_queue.front().unwrap();
if buffer.len() < next_vec.len() {
panic!(
"provided buffer too small, must be at least {} bytes",
next_vec.len()
);
}
let next_vec = tm_queue.pop_front().unwrap();
buffer[0..next_vec.len()].copy_from_slice(&next_vec);
return Ok(next_vec.len());
}
Ok(0)
}
}
}

View File

@ -0,0 +1,363 @@
use delegate::delegate;
use std::{
io::Write,
net::{SocketAddr, TcpListener, TcpStream},
};
use alloc::boxed::Box;
use crate::{
encoding::{ccsds::PacketIdLookup, parse_buffer_for_ccsds_space_packets},
tmtc::{ReceivesTc, TmPacketSource},
};
use super::tcp_server::{
ConnectionResult, ServerConfig, TcpTcParser, TcpTmSender, TcpTmtcError, TcpTmtcGenericServer,
};
/// Concrete [TcpTcParser] implementation for the [TcpSpacepacketsServer].
pub struct SpacepacketsTcParser {
packet_id_lookup: Box<dyn PacketIdLookup + Send>,
}
impl SpacepacketsTcParser {
pub fn new(packet_id_lookup: Box<dyn PacketIdLookup + Send>) -> Self {
Self { packet_id_lookup }
}
}
impl<TmError, TcError: 'static> TcpTcParser<TmError, TcError> for SpacepacketsTcParser {
fn handle_tc_parsing(
&mut self,
tc_buffer: &mut [u8],
tc_receiver: &mut (impl ReceivesTc<Error = TcError> + ?Sized),
conn_result: &mut ConnectionResult,
current_write_idx: usize,
next_write_idx: &mut usize,
) -> Result<(), TcpTmtcError<TmError, TcError>> {
// Reader vec full, need to parse for packets.
conn_result.num_received_tcs += parse_buffer_for_ccsds_space_packets(
&mut tc_buffer[..current_write_idx],
self.packet_id_lookup.as_ref(),
tc_receiver.upcast_mut(),
next_write_idx,
)
.map_err(|e| TcpTmtcError::TcError(e))?;
Ok(())
}
}
/// Concrete [TcpTmSender] implementation for the [TcpSpacepacketsServer].
#[derive(Default)]
pub struct SpacepacketsTmSender {}
impl<TmError, TcError> TcpTmSender<TmError, TcError> for SpacepacketsTmSender {
fn handle_tm_sending(
&mut self,
tm_buffer: &mut [u8],
tm_source: &mut (impl TmPacketSource<Error = TmError> + ?Sized),
conn_result: &mut ConnectionResult,
stream: &mut TcpStream,
) -> Result<bool, TcpTmtcError<TmError, TcError>> {
let mut tm_was_sent = false;
loop {
// Write TM until TM source is exhausted. For now, there is no limit for the amount
// of TM written this way.
let read_tm_len = tm_source
.retrieve_packet(tm_buffer)
.map_err(|e| TcpTmtcError::TmError(e))?;
if read_tm_len == 0 {
return Ok(tm_was_sent);
}
tm_was_sent = true;
conn_result.num_sent_tms += 1;
stream.write_all(&tm_buffer[..read_tm_len])?;
}
}
}
/// TCP TMTC server implementation for exchange of tightly stuffed
/// [CCSDS space packets](https://public.ccsds.org/Pubs/133x0b2e1.pdf).
///
/// This serves only works if
/// [CCSDS 133.0-B-2 space packets](https://public.ccsds.org/Pubs/133x0b2e1.pdf) are the only
/// packet type being exchanged. It uses the CCSDS [spacepackets::PacketId] as the packet delimiter
/// and start marker when parsing for packets. The user specifies a set of expected
/// [spacepackets::PacketId]s as part of the server configuration for that purpose.
///
/// ## Example
///
/// The [TCP server integration tests](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-core/tests/tcp_servers.rs)
/// also serves as the example application for this module.
pub struct TcpSpacepacketsServer<TmError, TcError: 'static> {
generic_server:
TcpTmtcGenericServer<TmError, TcError, SpacepacketsTmSender, SpacepacketsTcParser>,
}
impl<TmError: 'static, TcError: 'static> TcpSpacepacketsServer<TmError, TcError> {
/// Create a new TCP TMTC server which exchanges CCSDS space packets.
///
/// ## Parameter
///
/// * `cfg` - Configuration of the server.
/// * `tm_source` - Generic TM source used by the server to pull telemetry packets which are
/// then sent back to the client.
/// * `tc_receiver` - Any received telecommands which were decoded successfully will be
/// forwarded to this TC receiver.
/// * `packet_id_lookup` - This lookup table contains the relevant packets IDs for packet
/// parsing. This mechanism is used to have a start marker for finding CCSDS packets.
pub fn new(
cfg: ServerConfig,
tm_source: Box<dyn TmPacketSource<Error = TmError>>,
tc_receiver: Box<dyn ReceivesTc<Error = TcError>>,
packet_id_lookup: Box<dyn PacketIdLookup + Send>,
) -> Result<Self, TcpTmtcError<TmError, TcError>> {
Ok(Self {
generic_server: TcpTmtcGenericServer::new(
cfg,
SpacepacketsTcParser::new(packet_id_lookup),
SpacepacketsTmSender::default(),
tm_source,
tc_receiver,
)?,
})
}
delegate! {
to self.generic_server {
pub fn listener(&mut self) -> &mut TcpListener;
/// Can be used to retrieve the local assigned address of the TCP server. This is especially
/// useful if using the port number 0 for OS auto-assignment.
pub fn local_addr(&self) -> std::io::Result<SocketAddr>;
/// Delegation to the [TcpTmtcGenericServer::handle_next_connection] call.
pub fn handle_next_connection(
&mut self,
) -> Result<ConnectionResult, TcpTmtcError<TmError, TcError>>;
}
}
}
#[cfg(test)]
mod tests {
use core::{
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
#[allow(unused_imports)]
use std::println;
use std::{
io::{Read, Write},
net::{IpAddr, Ipv4Addr, SocketAddr, TcpStream},
thread,
};
use alloc::{boxed::Box, sync::Arc};
use hashbrown::HashSet;
use spacepackets::{
ecss::{tc::PusTcCreator, SerializablePusPacket},
PacketId, SpHeader,
};
use crate::hal::std::tcp_server::{
tests::{SyncTcCacher, SyncTmSource},
ServerConfig,
};
use super::TcpSpacepacketsServer;
const TEST_APID_0: u16 = 0x02;
const TEST_PACKET_ID_0: PacketId = PacketId::const_tc(true, TEST_APID_0);
const TEST_APID_1: u16 = 0x10;
const TEST_PACKET_ID_1: PacketId = PacketId::const_tc(true, TEST_APID_1);
fn generic_tmtc_server(
addr: &SocketAddr,
tc_receiver: SyncTcCacher,
tm_source: SyncTmSource,
packet_id_lookup: HashSet<PacketId>,
) -> TcpSpacepacketsServer<(), ()> {
TcpSpacepacketsServer::new(
ServerConfig::new(*addr, Duration::from_millis(2), 1024, 1024),
Box::new(tm_source),
Box::new(tc_receiver),
Box::new(packet_id_lookup),
)
.expect("TCP server generation failed")
}
#[test]
fn test_basic_tc_only() {
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let tm_source = SyncTmSource::default();
let mut packet_id_lookup = HashSet::new();
packet_id_lookup.insert(TEST_PACKET_ID_0);
let mut tcp_server = generic_tmtc_server(
&auto_port_addr,
tc_receiver.clone(),
tm_source,
packet_id_lookup,
);
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 1);
assert_eq!(conn_result.num_sent_tms, 0);
set_if_done.store(true, Ordering::Relaxed);
});
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
let mut buffer: [u8; 32] = [0; 32];
let packet_len_ping = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.write_all(&buffer[..packet_len_ping])
.expect("writing to TCP server failed");
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that TC has arrived.
let mut tc_queue = tc_receiver.tc_queue.lock().unwrap();
assert_eq!(tc_queue.len(), 1);
assert_eq!(tc_queue.pop_front().unwrap(), buffer[..packet_len_ping]);
}
#[test]
fn test_multi_tc_multi_tm() {
let mut buffer: [u8; 32] = [0; 32];
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let mut tm_source = SyncTmSource::default();
// Add telemetry
let mut total_tm_len = 0;
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let verif_tm = PusTcCreator::new_simple(&mut sph, 1, 1, None, true);
let tm_packet_len = verif_tm
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
total_tm_len += tm_packet_len;
let tm_0 = buffer[..tm_packet_len].to_vec();
tm_source.add_tm(&tm_0);
let mut sph = SpHeader::tc_unseg(TEST_APID_1, 0, 0).unwrap();
let verif_tm = PusTcCreator::new_simple(&mut sph, 1, 3, None, true);
let tm_packet_len = verif_tm
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
total_tm_len += tm_packet_len;
let tm_1 = buffer[..tm_packet_len].to_vec();
tm_source.add_tm(&tm_1);
// Set up server
let mut packet_id_lookup = HashSet::new();
packet_id_lookup.insert(TEST_PACKET_ID_0);
packet_id_lookup.insert(TEST_PACKET_ID_1);
let mut tcp_server = generic_tmtc_server(
&auto_port_addr,
tc_receiver.clone(),
tm_source,
packet_id_lookup,
);
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(
conn_result.num_received_tcs, 2,
"wrong number of received TCs"
);
assert_eq!(conn_result.num_sent_tms, 2, "wrong number of sent TMs");
set_if_done.store(true, Ordering::Relaxed);
});
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.set_read_timeout(Some(Duration::from_millis(10)))
.expect("setting reas timeout failed");
// Send telecommands
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
let packet_len = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let tc_0 = buffer[..packet_len].to_vec();
stream
.write_all(&tc_0)
.expect("writing to TCP server failed");
let mut sph = SpHeader::tc_unseg(TEST_APID_1, 0, 0).unwrap();
let action_tc = PusTcCreator::new_simple(&mut sph, 8, 0, None, true);
let packet_len = action_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
let tc_1 = buffer[..packet_len].to_vec();
stream
.write_all(&tc_1)
.expect("writing to TCP server failed");
// Done with writing.
stream
.shutdown(std::net::Shutdown::Write)
.expect("shutting down write failed");
let mut read_buf: [u8; 32] = [0; 32];
let mut current_idx = 0;
let mut read_len_total = 0;
// Timeout ensures this does not block forever.
while read_len_total < total_tm_len {
let read_len = stream
.read(&mut read_buf[current_idx..])
.expect("read failed");
current_idx += read_len;
read_len_total += read_len;
}
drop(stream);
assert_eq!(read_buf[..tm_0.len()], tm_0);
assert_eq!(read_buf[tm_0.len()..tm_0.len() + tm_1.len()], tm_1);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that TC has arrived.
let mut tc_queue = tc_receiver.tc_queue.lock().unwrap();
assert_eq!(tc_queue.len(), 2);
assert_eq!(tc_queue.pop_front().unwrap(), tc_0);
assert_eq!(tc_queue.pop_front().unwrap(), tc_1);
}
}

View File

@ -1,4 +1,4 @@
//! UDP server helper components
//! Generic UDP TC server.
use crate::tmtc::{ReceivesTc, ReceivesTcCore};
use std::boxed::Box;
use std::io::{Error, ErrorKind};
@ -6,7 +6,8 @@ use std::net::{SocketAddr, ToSocketAddrs, UdpSocket};
use std::vec;
use std::vec::Vec;
/// This TC server helper can be used to receive raw PUS telecommands thorough a UDP interface.
/// This UDP server can be used to receive CCSDS space packet telecommands or any other telecommand
/// format.
///
/// It caches all received telecomands into a vector. The maximum expected telecommand size should
/// be declared upfront. This avoids dynamic allocation during run-time. The user can specify a TC
@ -19,7 +20,7 @@ use std::vec::Vec;
/// ```
/// use std::net::{IpAddr, Ipv4Addr, SocketAddr, UdpSocket};
/// use spacepackets::ecss::SerializablePusPacket;
/// use satrs_core::hal::host::udp_server::UdpTcServer;
/// use satrs_core::hal::std::udp_server::UdpTcServer;
/// use satrs_core::tmtc::{ReceivesTc, ReceivesTcCore};
/// use spacepackets::SpHeader;
/// use spacepackets::ecss::tc::PusTcCreator;
@ -51,7 +52,7 @@ use std::vec::Vec;
/// .expect("Error sending PUS TC via UDP");
/// ```
///
/// The [satrs-example crate](https://egit.irs.uni-stuttgart.de/rust/fsrc-launchpad/src/branch/main/-example)
/// The [satrs-example crate](https://egit.irs.uni-stuttgart.de/rust/fsrc-launchpad/src/branch/main/satrs-example)
/// server code also includes
/// [example code](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-example/src/tmtc.rs#L67)
/// on how to use this TC server. It uses the server to receive PUS telecommands on a specific port
@ -140,7 +141,7 @@ impl<E: 'static> UdpTcServer<E> {
#[cfg(test)]
mod tests {
use crate::hal::host::udp_server::{ReceiveResult, UdpTcServer};
use crate::hal::std::udp_server::{ReceiveResult, UdpTcServer};
use crate::tmtc::ReceivesTcCore;
use spacepackets::ecss::tc::PusTcCreator;
use spacepackets::ecss::SerializablePusPacket;

View File

@ -20,6 +20,8 @@ extern crate downcast_rs;
#[cfg(any(feature = "std", test))]
extern crate std;
pub mod cfdp;
pub mod encoding;
pub mod error;
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]

View File

@ -36,12 +36,33 @@ pub trait ReceivesTcCore {
/// Extension trait of [ReceivesTcCore] which allows downcasting by implementing [Downcast] and
/// is also sendable.
#[cfg(feature = "alloc")]
pub trait ReceivesTc: ReceivesTcCore + Downcast + Send {}
pub trait ReceivesTc: ReceivesTcCore + Downcast + Send {
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn ReceivesTcCore<Error = Self::Error>;
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn ReceivesTcCore<Error = Self::Error>;
}
/// Blanket implementation to automatically implement [ReceivesTc] when the [alloc] feature
/// is enabled.
#[cfg(feature = "alloc")]
impl<T> ReceivesTc for T where T: ReceivesTcCore + Send + 'static {}
impl<T> ReceivesTc for T
where
T: ReceivesTcCore + Send + 'static,
{
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn ReceivesTcCore<Error = Self::Error> {
self
}
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn ReceivesTcCore<Error = Self::Error> {
self
}
}
#[cfg(feature = "alloc")]
impl_downcast!(ReceivesTc assoc Error);
@ -56,3 +77,41 @@ pub trait ReceivesCcsdsTc {
type Error;
fn pass_ccsds(&mut self, header: &SpHeader, tc_raw: &[u8]) -> Result<(), Self::Error>;
}
/// Generic trait for a TM packet source, with no restrictions on the type of TM.
/// Implementors write the telemetry into the provided buffer and return the size of the telemetry.
pub trait TmPacketSourceCore {
type Error;
fn retrieve_packet(&mut self, buffer: &mut [u8]) -> Result<usize, Self::Error>;
}
/// Extension trait of [TmPacketSourceCore] which allows downcasting by implementing [Downcast] and
/// is also sendable.
#[cfg(feature = "alloc")]
pub trait TmPacketSource: TmPacketSourceCore + Downcast + Send {
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn TmPacketSourceCore<Error = Self::Error>;
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn TmPacketSourceCore<Error = Self::Error>;
}
/// Blanket implementation to automatically implement [ReceivesTc] when the [alloc] feature
/// is enabled.
#[cfg(feature = "alloc")]
impl<T> TmPacketSource for T
where
T: TmPacketSourceCore + Send + 'static,
{
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn TmPacketSourceCore<Error = Self::Error> {
self
}
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn TmPacketSourceCore<Error = Self::Error> {
self
}
}

View File

@ -0,0 +1,244 @@
//! This serves as both an integration test and an example application showcasing all major
//! features of the TCP COBS server by performing following steps:
//!
//! 1. It defines both a TC receiver and a TM source which are [Sync].
//! 2. A telemetry packet is inserted into the TM source. The packet will be handled by the
//! TCP server after handling all TCs.
//! 3. It instantiates the TCP server on localhost with automatic port assignment and assigns
//! the TC receiver and TM source created previously.
//! 4. It moves the TCP server to a different thread and calls the
//! [TcpTmtcInCobsServer::handle_next_connection] call inside that thread
//! 5. The main threads connects to the server, sends a test telecommand and then reads back
//! the test telemetry insertd in to the TM source previously.
use core::{
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
use std::{
io::{Read, Write},
net::{IpAddr, Ipv4Addr, SocketAddr, TcpStream},
sync::Mutex,
thread,
};
use hashbrown::HashSet;
use satrs_core::{
encoding::cobs::encode_packet_with_cobs,
hal::std::tcp_server::{ServerConfig, TcpSpacepacketsServer, TcpTmtcInCobsServer},
tmtc::{ReceivesTcCore, TmPacketSourceCore},
};
use spacepackets::{
ecss::{tc::PusTcCreator, SerializablePusPacket},
PacketId, SpHeader,
};
use std::{boxed::Box, collections::VecDeque, sync::Arc, vec::Vec};
#[derive(Default, Clone)]
struct SyncTcCacher {
tc_queue: Arc<Mutex<VecDeque<Vec<u8>>>>,
}
impl ReceivesTcCore for SyncTcCacher {
type Error = ();
fn pass_tc(&mut self, tc_raw: &[u8]) -> Result<(), Self::Error> {
let mut tc_queue = self.tc_queue.lock().expect("tc forwarder failed");
println!("Received TC: {:x?}", tc_raw);
tc_queue.push_back(tc_raw.to_vec());
Ok(())
}
}
#[derive(Default, Clone)]
struct SyncTmSource {
tm_queue: Arc<Mutex<VecDeque<Vec<u8>>>>,
}
impl SyncTmSource {
pub(crate) fn add_tm(&mut self, tm: &[u8]) {
let mut tm_queue = self.tm_queue.lock().expect("locking tm queue failec");
tm_queue.push_back(tm.to_vec());
}
}
impl TmPacketSourceCore for SyncTmSource {
type Error = ();
fn retrieve_packet(&mut self, buffer: &mut [u8]) -> Result<usize, Self::Error> {
let mut tm_queue = self.tm_queue.lock().expect("locking tm queue failed");
if !tm_queue.is_empty() {
let next_vec = tm_queue.front().unwrap();
if buffer.len() < next_vec.len() {
panic!(
"provided buffer too small, must be at least {} bytes",
next_vec.len()
);
}
println!("Sending and encoding TM: {:x?}", next_vec);
let next_vec = tm_queue.pop_front().unwrap();
buffer[0..next_vec.len()].copy_from_slice(&next_vec);
return Ok(next_vec.len());
}
Ok(0)
}
}
const SIMPLE_PACKET: [u8; 5] = [1, 2, 3, 4, 5];
const INVERTED_PACKET: [u8; 5] = [5, 4, 3, 4, 1];
const AUTO_PORT_ADDR: SocketAddr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
#[test]
fn test_cobs_server() {
let tc_receiver = SyncTcCacher::default();
let mut tm_source = SyncTmSource::default();
// Insert a telemetry packet which will be read back by the client at a later stage.
tm_source.add_tm(&INVERTED_PACKET);
let mut tcp_server = TcpTmtcInCobsServer::new(
ServerConfig::new(AUTO_PORT_ADDR, Duration::from_millis(2), 1024, 1024),
Box::new(tm_source),
Box::new(tc_receiver.clone()),
)
.expect("TCP server generation failed");
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 1, "No TC received");
assert_eq!(conn_result.num_sent_tms, 1, "No TM received");
// Signal the main thread we are done.
set_if_done.store(true, Ordering::Relaxed);
});
// Send TC to server now.
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_packet_with_cobs(&SIMPLE_PACKET, &mut encoded_buf, &mut current_idx);
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.write_all(&encoded_buf[..current_idx])
.expect("writing to TCP server failed");
// Done with writing.
stream
.shutdown(std::net::Shutdown::Write)
.expect("shutting down write failed");
let mut read_buf: [u8; 16] = [0; 16];
let read_len = stream.read(&mut read_buf).expect("read failed");
drop(stream);
// 1 byte encoding overhead, 2 sentinel bytes.
assert_eq!(read_len, 8);
assert_eq!(read_buf[0], 0);
assert_eq!(read_buf[read_len - 1], 0);
let decoded_len =
cobs::decode_in_place(&mut read_buf[1..read_len]).expect("COBS decoding failed");
assert_eq!(decoded_len, 5);
// Skip first sentinel byte.
assert_eq!(&read_buf[1..1 + INVERTED_PACKET.len()], &INVERTED_PACKET);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that the packet was received and decoded successfully.
let mut tc_queue = tc_receiver
.tc_queue
.lock()
.expect("locking tc queue failed");
assert_eq!(tc_queue.len(), 1);
assert_eq!(tc_queue.pop_front().unwrap(), &SIMPLE_PACKET);
drop(tc_queue);
}
const TEST_APID_0: u16 = 0x02;
const TEST_PACKET_ID_0: PacketId = PacketId::const_tc(true, TEST_APID_0);
#[test]
fn test_ccsds_server() {
let mut buffer: [u8; 32] = [0; 32];
let tc_receiver = SyncTcCacher::default();
let mut tm_source = SyncTmSource::default();
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let verif_tm = PusTcCreator::new_simple(&mut sph, 1, 1, None, true);
let tm_packet_len = verif_tm
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
tm_source.add_tm(&buffer[..tm_packet_len]);
let tm_vec = buffer[..tm_packet_len].to_vec();
let mut packet_id_lookup = HashSet::new();
packet_id_lookup.insert(TEST_PACKET_ID_0);
let mut tcp_server = TcpSpacepacketsServer::new(
ServerConfig::new(AUTO_PORT_ADDR, Duration::from_millis(2), 1024, 1024),
Box::new(tm_source),
Box::new(tc_receiver.clone()),
Box::new(packet_id_lookup),
)
.expect("TCP server generation failed");
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 1);
assert_eq!(conn_result.num_sent_tms, 1);
set_if_done.store(true, Ordering::Relaxed);
});
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
let mut sph = SpHeader::tc_unseg(TEST_APID_0, 0, 0).unwrap();
let ping_tc = PusTcCreator::new_simple(&mut sph, 17, 1, None, true);
stream
.set_read_timeout(Some(Duration::from_millis(10)))
.expect("setting reas timeout failed");
let packet_len = ping_tc
.write_to_bytes(&mut buffer)
.expect("writing packet failed");
stream
.write_all(&buffer[..packet_len])
.expect("writing to TCP server failed");
// Done with writing.
stream
.shutdown(std::net::Shutdown::Write)
.expect("shutting down write failed");
let mut read_buf: [u8; 16] = [0; 16];
let mut read_len_total = 0;
// Timeout ensures this does not block forever.
while read_len_total < tm_packet_len {
let read_len = stream.read(&mut read_buf).expect("read failed");
read_len_total += read_len;
assert_eq!(read_buf[..read_len], tm_vec);
}
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that TC has arrived.
let mut tc_queue = tc_receiver.tc_queue.lock().unwrap();
assert_eq!(tc_queue.len(), 1);
assert_eq!(tc_queue.pop_front().unwrap(), buffer[..packet_len]);
}