re-add satrs-core without git submoudule

This commit is contained in:
2023-01-11 10:30:03 +01:00
parent eeccc66f0a
commit a665b04844
35 changed files with 9437 additions and 0 deletions

View File

@ -0,0 +1,333 @@
//! CCSDS packet routing components.
//!
//! The routing components consist of two core components:
//! 1. [CcsdsDistributor] component which dispatches received packets to a user-provided handler
//! 2. [CcsdsPacketHandler] trait which should be implemented by the user-provided packet handler.
//!
//! The [CcsdsDistributor] implements the [ReceivesCcsdsTc] and [ReceivesTcCore] trait which allows to
//! pass raw or CCSDS packets to it. Upon receiving a packet, it performs the following steps:
//!
//! 1. It tries to identify the target Application Process Identifier (APID) based on the
//! respective CCSDS space packet header field. If that process fails, a [ByteConversionError] is
//! returned to the user
//! 2. If a valid APID is found and matches one of the APIDs provided by
//! [CcsdsPacketHandler::valid_apids], it will pass the packet to the user provided
//! [CcsdsPacketHandler::handle_known_apid] function. If no valid APID is found, the packet
//! will be passed to the [CcsdsPacketHandler::handle_unknown_apid] function.
//!
//! # Example
//!
//! ```rust
//! use satrs_core::tmtc::ccsds_distrib::{CcsdsPacketHandler, CcsdsDistributor};
//! use satrs_core::tmtc::{ReceivesTc, ReceivesTcCore};
//! use spacepackets::{CcsdsPacket, SpHeader};
//! use spacepackets::tc::PusTc;
//!
//! #[derive (Default)]
//! struct ConcreteApidHandler {
//! known_call_count: u32,
//! unknown_call_count: u32
//! }
//!
//! impl ConcreteApidHandler {
//! fn mutable_foo(&mut self) {}
//! }
//!
//! impl CcsdsPacketHandler for ConcreteApidHandler {
//! type Error = ();
//! fn valid_apids(&self) -> &'static [u16] { &[0x002] }
//! fn handle_known_apid(&mut self, sp_header: &SpHeader, tc_raw: &[u8]) -> Result<(), Self::Error> {
//! assert_eq!(sp_header.apid(), 0x002);
//! assert_eq!(tc_raw.len(), 13);
//! self.known_call_count += 1;
//! Ok(())
//! }
//! fn handle_unknown_apid(&mut self, sp_header: &SpHeader, tc_raw: &[u8]) -> Result<(), Self::Error> {
//! assert_eq!(sp_header.apid(), 0x003);
//! assert_eq!(tc_raw.len(), 13);
//! self.unknown_call_count += 1;
//! Ok(())
//! }
//! }
//!
//! let apid_handler = ConcreteApidHandler::default();
//! let mut ccsds_distributor = CcsdsDistributor::new(Box::new(apid_handler));
//!
//! // Create and pass PUS telecommand with a valid APID
//! let mut space_packet_header = SpHeader::tc_unseg(0x002, 0x34, 0).unwrap();
//! let mut pus_tc = PusTc::new_simple(&mut space_packet_header, 17, 1, None, true);
//! let mut test_buf: [u8; 32] = [0; 32];
//! let mut size = pus_tc
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! let tc_slice = &test_buf[0..size];
//! ccsds_distributor.pass_tc(&tc_slice).expect("Passing TC slice failed");
//!
//! // Now pass a packet with an unknown APID to the distributor
//! pus_tc.set_apid(0x003);
//! size = pus_tc
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! let tc_slice = &test_buf[0..size];
//! ccsds_distributor.pass_tc(&tc_slice).expect("Passing TC slice failed");
//!
//! // User helper function to retrieve concrete class
//! let concrete_handler_ref: &ConcreteApidHandler = ccsds_distributor
//! .apid_handler_ref()
//! .expect("Casting back to concrete type failed");
//! assert_eq!(concrete_handler_ref.known_call_count, 1);
//! assert_eq!(concrete_handler_ref.unknown_call_count, 1);
//!
//! // It's also possible to retrieve a mutable reference
//! let mutable_ref: &mut ConcreteApidHandler = ccsds_distributor
//! .apid_handler_mut()
//! .expect("Casting back to concrete type failed");
//! mutable_ref.mutable_foo();
//! ```
use crate::tmtc::{ReceivesCcsdsTc, ReceivesTcCore};
use alloc::boxed::Box;
use downcast_rs::Downcast;
use spacepackets::{ByteConversionError, CcsdsPacket, SizeMissmatch, SpHeader};
/// Generic trait for a handler or dispatcher object handling CCSDS packets.
///
/// Users should implement this trait on their custom CCSDS packet handler and then pass a boxed
/// instance of this handler to the [CcsdsDistributor]. The distributor will use the trait
/// interface to dispatch received packets to the user based on the Application Process Identifier
/// (APID) field of the CCSDS packet.
///
/// This trait automatically implements the [downcast_rs::Downcast] to allow a more convenient API
/// to cast trait objects back to their concrete type after the handler was passed to the
/// distributor.
pub trait CcsdsPacketHandler: Downcast + Send {
type Error;
fn valid_apids(&self) -> &'static [u16];
fn handle_known_apid(&mut self, sp_header: &SpHeader, tc_raw: &[u8])
-> Result<(), Self::Error>;
fn handle_unknown_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error>;
}
downcast_rs::impl_downcast!(CcsdsPacketHandler assoc Error);
/// The CCSDS distributor dispatches received CCSDS packets to a user provided packet handler.
pub struct CcsdsDistributor<E> {
/// User provided APID handler stored as a generic trait object.
/// It can be cast back to the original concrete type using the [Self::apid_handler_ref] or
/// the [Self::apid_handler_mut] method.
pub apid_handler: Box<dyn CcsdsPacketHandler<Error = E>>,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum CcsdsError<E> {
CustomError(E),
PacketError(ByteConversionError),
}
impl<E: 'static> ReceivesCcsdsTc for CcsdsDistributor<E> {
type Error = CcsdsError<E>;
fn pass_ccsds(&mut self, header: &SpHeader, tc_raw: &[u8]) -> Result<(), Self::Error> {
self.dispatch_ccsds(header, tc_raw)
}
}
impl<E: 'static> ReceivesTcCore for CcsdsDistributor<E> {
type Error = CcsdsError<E>;
fn pass_tc(&mut self, tc_raw: &[u8]) -> Result<(), Self::Error> {
if tc_raw.len() < 7 {
return Err(CcsdsError::PacketError(
ByteConversionError::FromSliceTooSmall(SizeMissmatch {
found: tc_raw.len(),
expected: 7,
}),
));
}
let (sp_header, _) =
SpHeader::from_be_bytes(tc_raw).map_err(|e| CcsdsError::PacketError(e))?;
self.dispatch_ccsds(&sp_header, tc_raw)
}
}
impl<E: 'static> CcsdsDistributor<E> {
pub fn new(apid_handler: Box<dyn CcsdsPacketHandler<Error = E>>) -> Self {
CcsdsDistributor { apid_handler }
}
/// This function can be used to retrieve a reference to the concrete instance of the APID
/// handler after it was passed to the distributor. See the
/// [module documentation][crate::tmtc::ccsds_distrib] for an fsrc-example.
pub fn apid_handler_ref<T: CcsdsPacketHandler<Error = E>>(&self) -> Option<&T> {
self.apid_handler.downcast_ref::<T>()
}
/// This function can be used to retrieve a mutable reference to the concrete instance of the
/// APID handler after it was passed to the distributor.
pub fn apid_handler_mut<T: CcsdsPacketHandler<Error = E>>(&mut self) -> Option<&mut T> {
self.apid_handler.downcast_mut::<T>()
}
fn dispatch_ccsds(&mut self, sp_header: &SpHeader, tc_raw: &[u8]) -> Result<(), CcsdsError<E>> {
let apid = sp_header.apid();
let valid_apids = self.apid_handler.valid_apids();
for &valid_apid in valid_apids {
if valid_apid == apid {
return self
.apid_handler
.handle_known_apid(sp_header, tc_raw)
.map_err(|e| CcsdsError::CustomError(e));
}
}
self.apid_handler
.handle_unknown_apid(sp_header, tc_raw)
.map_err(|e| CcsdsError::CustomError(e))
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::*;
use crate::tmtc::ccsds_distrib::{CcsdsDistributor, CcsdsPacketHandler};
use spacepackets::tc::PusTc;
use spacepackets::CcsdsPacket;
use std::collections::VecDeque;
use std::sync::{Arc, Mutex};
use std::vec::Vec;
fn is_send<T: Send>(_: &T) {}
pub fn generate_ping_tc(buf: &mut [u8]) -> &[u8] {
let mut sph = SpHeader::tc_unseg(0x002, 0x34, 0).unwrap();
let pus_tc = PusTc::new_simple(&mut sph, 17, 1, None, true);
let size = pus_tc
.write_to_bytes(buf)
.expect("Error writing TC to buffer");
assert_eq!(size, 13);
&buf[0..size]
}
pub struct BasicApidHandlerSharedQueue {
pub known_packet_queue: Arc<Mutex<VecDeque<(u16, Vec<u8>)>>>,
pub unknown_packet_queue: Arc<Mutex<VecDeque<(u16, Vec<u8>)>>>,
}
#[derive(Default)]
pub struct BasicApidHandlerOwnedQueue {
pub known_packet_queue: VecDeque<(u16, Vec<u8>)>,
pub unknown_packet_queue: VecDeque<(u16, Vec<u8>)>,
}
impl CcsdsPacketHandler for BasicApidHandlerSharedQueue {
type Error = ();
fn valid_apids(&self) -> &'static [u16] {
&[0x000, 0x002]
}
fn handle_known_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
let mut vec = Vec::new();
vec.extend_from_slice(tc_raw);
Ok(self
.known_packet_queue
.lock()
.unwrap()
.push_back((sp_header.apid(), vec)))
}
fn handle_unknown_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
let mut vec = Vec::new();
vec.extend_from_slice(tc_raw);
Ok(self
.unknown_packet_queue
.lock()
.unwrap()
.push_back((sp_header.apid(), vec)))
}
}
impl CcsdsPacketHandler for BasicApidHandlerOwnedQueue {
type Error = ();
fn valid_apids(&self) -> &'static [u16] {
&[0x000, 0x002]
}
fn handle_known_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
let mut vec = Vec::new();
vec.extend_from_slice(tc_raw);
Ok(self.known_packet_queue.push_back((sp_header.apid(), vec)))
}
fn handle_unknown_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
let mut vec = Vec::new();
vec.extend_from_slice(tc_raw);
Ok(self.unknown_packet_queue.push_back((sp_header.apid(), vec)))
}
}
#[test]
fn test_distribs_known_apid() {
let known_packet_queue = Arc::new(Mutex::default());
let unknown_packet_queue = Arc::new(Mutex::default());
let apid_handler = BasicApidHandlerSharedQueue {
known_packet_queue: known_packet_queue.clone(),
unknown_packet_queue: unknown_packet_queue.clone(),
};
let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));
is_send(&ccsds_distrib);
let mut test_buf: [u8; 32] = [0; 32];
let tc_slice = generate_ping_tc(test_buf.as_mut_slice());
ccsds_distrib.pass_tc(tc_slice).expect("Passing TC failed");
let recvd = known_packet_queue.lock().unwrap().pop_front();
assert!(unknown_packet_queue.lock().unwrap().is_empty());
assert!(recvd.is_some());
let (apid, packet) = recvd.unwrap();
assert_eq!(apid, 0x002);
assert_eq!(packet, tc_slice);
}
#[test]
fn test_distribs_unknown_apid() {
let known_packet_queue = Arc::new(Mutex::default());
let unknown_packet_queue = Arc::new(Mutex::default());
let apid_handler = BasicApidHandlerSharedQueue {
known_packet_queue: known_packet_queue.clone(),
unknown_packet_queue: unknown_packet_queue.clone(),
};
let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));
let mut sph = SpHeader::tc_unseg(0x004, 0x34, 0).unwrap();
let pus_tc = PusTc::new_simple(&mut sph, 17, 1, None, true);
let mut test_buf: [u8; 32] = [0; 32];
pus_tc
.write_to_bytes(test_buf.as_mut_slice())
.expect("Error writing TC to buffer");
ccsds_distrib.pass_tc(&test_buf).expect("Passing TC failed");
let recvd = unknown_packet_queue.lock().unwrap().pop_front();
assert!(known_packet_queue.lock().unwrap().is_empty());
assert!(recvd.is_some());
let (apid, packet) = recvd.unwrap();
assert_eq!(apid, 0x004);
assert_eq!(packet.as_slice(), test_buf);
}
}

100
satrs-core/src/tmtc/mod.rs Normal file
View File

@ -0,0 +1,100 @@
//! Telemetry and Telecommanding (TMTC) module. Contains packet routing components with special
//! support for CCSDS and ECSS packets.
//!
//! The distributor modules provided by this module use trait objects provided by the user to
//! directly dispatch received packets to packet listeners based on packet fields like the CCSDS
//! Application Process ID (APID) or the ECSS PUS service type. This allows for fast packet
//! routing without the overhead and complication of using message queues. However, it also requires
#[cfg(feature = "alloc")]
use downcast_rs::{impl_downcast, Downcast};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use spacepackets::tc::PusTc;
use spacepackets::{ByteConversionError, SizeMissmatch, SpHeader};
#[cfg(feature = "alloc")]
pub mod ccsds_distrib;
#[cfg(feature = "alloc")]
pub mod pus_distrib;
pub mod tm_helper;
#[cfg(feature = "alloc")]
pub use ccsds_distrib::{CcsdsDistributor, CcsdsError, CcsdsPacketHandler};
#[cfg(feature = "alloc")]
pub use pus_distrib::{PusDistributor, PusServiceProvider};
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct AddressableId {
pub target_id: u32,
pub unique_id: u32,
}
impl AddressableId {
pub fn from_raw_be(buf: &[u8]) -> Result<Self, ByteConversionError> {
if buf.len() < 8 {
return Err(ByteConversionError::FromSliceTooSmall(SizeMissmatch {
found: buf.len(),
expected: 8,
}));
}
Ok(Self {
target_id: u32::from_be_bytes(buf[0..4].try_into().unwrap()),
unique_id: u32::from_be_bytes(buf[4..8].try_into().unwrap()),
})
}
pub fn write_to_be_bytes(&self, buf: &mut [u8]) -> Result<usize, ByteConversionError> {
if buf.len() < 8 {
return Err(ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: buf.len(),
expected: 8,
}));
}
buf[0..4].copy_from_slice(&self.target_id.to_be_bytes());
buf[4..8].copy_from_slice(&self.unique_id.to_be_bytes());
Ok(8)
}
}
/// Generic trait for object which can receive any telecommands in form of a raw bytestream, with
/// no assumptions about the received protocol.
///
/// This trait is implemented by both the [crate::tmtc::pus_distrib::PusDistributor] and the
/// [crate::tmtc::ccsds_distrib::CcsdsDistributor] which allows to pass the respective packets in
/// raw byte format into them.
pub trait ReceivesTcCore: Send {
type Error;
fn pass_tc(&mut self, tc_raw: &[u8]) -> Result<(), Self::Error>;
}
/// Extension trait of [ReceivesTcCore] which allows downcasting by implementing [Downcast]
#[cfg(feature = "alloc")]
pub trait ReceivesTc: ReceivesTcCore + Downcast {}
/// Blanket implementation to automatically implement [ReceivesTc] when the [alloc] feature
/// is enabled.
#[cfg(feature = "alloc")]
impl<T> ReceivesTc for T where T: ReceivesTcCore + 'static {}
#[cfg(feature = "alloc")]
impl_downcast!(ReceivesTc assoc Error);
/// Generic trait for object which can receive CCSDS space packets, for example ECSS PUS packets
/// for CCSDS File Delivery Protocol (CFDP) packets.
///
/// This trait is implemented by both the [crate::tmtc::pus_distrib::PusDistributor] and the
/// [crate::tmtc::ccsds_distrib::CcsdsDistributor] which allows
/// to pass the respective packets in raw byte format or in CCSDS format into them.
pub trait ReceivesCcsdsTc {
type Error;
fn pass_ccsds(&mut self, header: &SpHeader, tc_raw: &[u8]) -> Result<(), Self::Error>;
}
/// Generic trait for objects which can receive ECSS PUS telecommands. This trait is
/// implemented by the [crate::tmtc::pus_distrib::PusDistributor] objects to allow passing PUS TC
/// packets into it.
pub trait ReceivesEcssPusTc {
type Error;
fn pass_pus_tc(&mut self, header: &SpHeader, pus_tc: &PusTc) -> Result<(), Self::Error>;
}

View File

@ -0,0 +1,333 @@
//! ECSS PUS packet routing components.
//!
//! The routing components consist of two core components:
//! 1. [PusDistributor] component which dispatches received packets to a user-provided handler.
//! 2. [PusServiceProvider] trait which should be implemented by the user-provided PUS packet
//! handler.
//!
//! The [PusDistributor] implements the [ReceivesEcssPusTc], [ReceivesCcsdsTc] and the
//! [ReceivesTcCore] trait which allows to pass raw packets, CCSDS packets and PUS TC packets into
//! it. Upon receiving a packet, it performs the following steps:
//!
//! 1. It tries to extract the [SpHeader] and [PusTc] objects from the raw bytestream. If this
//! process fails, a [PusDistribError::PusError] is returned to the user.
//! 2. If it was possible to extract both components, the packet will be passed to the
//! [PusServiceProvider::handle_pus_tc_packet] method provided by the user.
//!
//! # Example
//!
//! ```rust
//! use satrs_core::tmtc::pus_distrib::{PusDistributor, PusServiceProvider};
//! use satrs_core::tmtc::{ReceivesTc, ReceivesTcCore};
//! use spacepackets::SpHeader;
//! use spacepackets::tc::PusTc;
//! struct ConcretePusHandler {
//! handler_call_count: u32
//! }
//!
//! // This is a very simple possible service provider. It increments an internal call count field,
//! // which is used to verify the handler was called
//! impl PusServiceProvider for ConcretePusHandler {
//! type Error = ();
//! fn handle_pus_tc_packet(&mut self, service: u8, header: &SpHeader, pus_tc: &PusTc) -> Result<(), Self::Error> {
//! assert_eq!(service, 17);
//! assert_eq!(pus_tc.len_packed(), 13);
//! self.handler_call_count += 1;
//! Ok(())
//! }
//! }
//!
//! let service_handler = ConcretePusHandler {
//! handler_call_count: 0
//! };
//! let mut pus_distributor = PusDistributor::new(Box::new(service_handler));
//!
//! // Create and pass PUS ping telecommand with a valid APID
//! let mut space_packet_header = SpHeader::tc_unseg(0x002, 0x34, 0).unwrap();
//! let mut pus_tc = PusTc::new_simple(&mut space_packet_header, 17, 1, None, true);
//! let mut test_buf: [u8; 32] = [0; 32];
//! let mut size = pus_tc
//! .write_to_bytes(test_buf.as_mut_slice())
//! .expect("Error writing TC to buffer");
//! let tc_slice = &test_buf[0..size];
//!
//! pus_distributor.pass_tc(tc_slice).expect("Passing PUS telecommand failed");
//!
//! // User helper function to retrieve concrete class. We check the call count here to verify
//! // that the PUS ping telecommand was routed successfully.
//! let concrete_handler_ref: &ConcretePusHandler = pus_distributor
//! .service_provider_ref()
//! .expect("Casting back to concrete type failed");
//! assert_eq!(concrete_handler_ref.handler_call_count, 1);
//! ```
use crate::tmtc::{ReceivesCcsdsTc, ReceivesEcssPusTc, ReceivesTcCore};
use alloc::boxed::Box;
use downcast_rs::Downcast;
use spacepackets::ecss::{PusError, PusPacket};
use spacepackets::tc::PusTc;
use spacepackets::SpHeader;
pub trait PusServiceProvider: Downcast + Send {
type Error;
fn handle_pus_tc_packet(
&mut self,
service: u8,
header: &SpHeader,
pus_tc: &PusTc,
) -> Result<(), Self::Error>;
}
downcast_rs::impl_downcast!(PusServiceProvider assoc Error);
pub struct PusDistributor<E> {
pub service_provider: Box<dyn PusServiceProvider<Error = E>>,
}
impl<E> PusDistributor<E> {
pub fn new(service_provider: Box<dyn PusServiceProvider<Error = E>>) -> Self {
PusDistributor { service_provider }
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PusDistribError<E> {
CustomError(E),
PusError(PusError),
}
impl<E: 'static> ReceivesTcCore for PusDistributor<E> {
type Error = PusDistribError<E>;
fn pass_tc(&mut self, tm_raw: &[u8]) -> Result<(), Self::Error> {
// Convert to ccsds and call pass_ccsds
let (sp_header, _) = SpHeader::from_be_bytes(tm_raw)
.map_err(|e| PusDistribError::PusError(PusError::ByteConversionError(e)))?;
self.pass_ccsds(&sp_header, tm_raw)
}
}
impl<E: 'static> ReceivesCcsdsTc for PusDistributor<E> {
type Error = PusDistribError<E>;
fn pass_ccsds(&mut self, header: &SpHeader, tm_raw: &[u8]) -> Result<(), Self::Error> {
let (tc, _) = PusTc::from_bytes(tm_raw).map_err(|e| PusDistribError::PusError(e))?;
self.pass_pus_tc(header, &tc)
}
}
impl<E: 'static> ReceivesEcssPusTc for PusDistributor<E> {
type Error = PusDistribError<E>;
fn pass_pus_tc(&mut self, header: &SpHeader, pus_tc: &PusTc) -> Result<(), Self::Error> {
self.service_provider
.handle_pus_tc_packet(pus_tc.service(), header, pus_tc)
.map_err(|e| PusDistribError::CustomError(e))
}
}
impl<E: 'static> PusDistributor<E> {
pub fn service_provider_ref<T: PusServiceProvider<Error = E>>(&self) -> Option<&T> {
self.service_provider.downcast_ref::<T>()
}
pub fn service_provider_mut<T: PusServiceProvider<Error = E>>(&mut self) -> Option<&mut T> {
self.service_provider.downcast_mut::<T>()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tmtc::ccsds_distrib::tests::{
generate_ping_tc, BasicApidHandlerOwnedQueue, BasicApidHandlerSharedQueue,
};
use crate::tmtc::ccsds_distrib::{CcsdsDistributor, CcsdsPacketHandler};
use alloc::vec::Vec;
use spacepackets::ecss::PusError;
use spacepackets::tc::PusTc;
use spacepackets::CcsdsPacket;
#[cfg(feature = "std")]
use std::collections::VecDeque;
#[cfg(feature = "std")]
use std::sync::{Arc, Mutex};
fn is_send<T: Send>(_: &T) {}
struct PusHandlerSharedQueue {
pub pus_queue: Arc<Mutex<VecDeque<(u8, u16, Vec<u8>)>>>,
}
#[derive(Default)]
struct PusHandlerOwnedQueue {
pub pus_queue: VecDeque<(u8, u16, Vec<u8>)>,
}
impl PusServiceProvider for PusHandlerSharedQueue {
type Error = PusError;
fn handle_pus_tc_packet(
&mut self,
service: u8,
sp_header: &SpHeader,
pus_tc: &PusTc,
) -> Result<(), Self::Error> {
let mut vec: Vec<u8> = Vec::new();
pus_tc.append_to_vec(&mut vec)?;
Ok(self
.pus_queue
.lock()
.expect("Mutex lock failed")
.push_back((service, sp_header.apid(), vec)))
}
}
impl PusServiceProvider for PusHandlerOwnedQueue {
type Error = PusError;
fn handle_pus_tc_packet(
&mut self,
service: u8,
sp_header: &SpHeader,
pus_tc: &PusTc,
) -> Result<(), Self::Error> {
let mut vec: Vec<u8> = Vec::new();
pus_tc.append_to_vec(&mut vec)?;
Ok(self.pus_queue.push_back((service, sp_header.apid(), vec)))
}
}
struct ApidHandlerShared {
pub pus_distrib: PusDistributor<PusError>,
pub handler_base: BasicApidHandlerSharedQueue,
}
struct ApidHandlerOwned {
pub pus_distrib: PusDistributor<PusError>,
handler_base: BasicApidHandlerOwnedQueue,
}
macro_rules! apid_handler_impl {
() => {
type Error = PusError;
fn valid_apids(&self) -> &'static [u16] {
&[0x000, 0x002]
}
fn handle_known_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
self.handler_base
.handle_known_apid(&sp_header, tc_raw)
.ok()
.expect("Unexpected error");
match self.pus_distrib.pass_ccsds(&sp_header, tc_raw) {
Ok(_) => Ok(()),
Err(e) => match e {
PusDistribError::CustomError(_) => Ok(()),
PusDistribError::PusError(e) => Err(e),
},
}
}
fn handle_unknown_apid(
&mut self,
sp_header: &SpHeader,
tc_raw: &[u8],
) -> Result<(), Self::Error> {
self.handler_base
.handle_unknown_apid(&sp_header, tc_raw)
.ok()
.expect("Unexpected error");
Ok(())
}
};
}
impl CcsdsPacketHandler for ApidHandlerOwned {
apid_handler_impl!();
}
impl CcsdsPacketHandler for ApidHandlerShared {
apid_handler_impl!();
}
#[test]
#[cfg(feature = "std")]
fn test_pus_distribution() {
let known_packet_queue = Arc::new(Mutex::default());
let unknown_packet_queue = Arc::new(Mutex::default());
let pus_queue = Arc::new(Mutex::default());
let pus_handler = PusHandlerSharedQueue {
pus_queue: pus_queue.clone(),
};
let handler_base = BasicApidHandlerSharedQueue {
known_packet_queue: known_packet_queue.clone(),
unknown_packet_queue: unknown_packet_queue.clone(),
};
let pus_distrib = PusDistributor {
service_provider: Box::new(pus_handler),
};
is_send(&pus_distrib);
let apid_handler = ApidHandlerShared {
pus_distrib,
handler_base,
};
let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));
let mut test_buf: [u8; 32] = [0; 32];
let tc_slice = generate_ping_tc(test_buf.as_mut_slice());
// Pass packet to distributor
ccsds_distrib
.pass_tc(tc_slice)
.expect("Passing TC slice failed");
let recvd_ccsds = known_packet_queue.lock().unwrap().pop_front();
assert!(unknown_packet_queue.lock().unwrap().is_empty());
assert!(recvd_ccsds.is_some());
let (apid, packet) = recvd_ccsds.unwrap();
assert_eq!(apid, 0x002);
assert_eq!(packet.as_slice(), tc_slice);
let recvd_pus = pus_queue.lock().unwrap().pop_front();
assert!(recvd_pus.is_some());
let (service, apid, tc_raw) = recvd_pus.unwrap();
assert_eq!(service, 17);
assert_eq!(apid, 0x002);
assert_eq!(tc_raw, tc_slice);
}
#[test]
fn test_as_any_cast() {
let pus_handler = PusHandlerOwnedQueue::default();
let handler_base = BasicApidHandlerOwnedQueue::default();
let pus_distrib = PusDistributor {
service_provider: Box::new(pus_handler),
};
let apid_handler = ApidHandlerOwned {
pus_distrib,
handler_base,
};
let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));
let mut test_buf: [u8; 32] = [0; 32];
let tc_slice = generate_ping_tc(test_buf.as_mut_slice());
ccsds_distrib
.pass_tc(tc_slice)
.expect("Passing TC slice failed");
let apid_handler_casted_back: &mut ApidHandlerOwned = ccsds_distrib
.apid_handler_mut()
.expect("Cast to concrete type ApidHandler failed");
assert!(!apid_handler_casted_back
.handler_base
.known_packet_queue
.is_empty());
let handler_casted_back: &mut PusHandlerOwnedQueue = apid_handler_casted_back
.pus_distrib
.service_provider_mut()
.expect("Cast to concrete type PusHandlerOwnedQueue failed");
assert!(!handler_casted_back.pus_queue.is_empty());
let (service, apid, packet_raw) = handler_casted_back.pus_queue.pop_front().unwrap();
assert_eq!(service, 17);
assert_eq!(apid, 0x002);
assert_eq!(packet_raw.as_slice(), tc_slice);
}
}

View File

@ -0,0 +1,52 @@
use spacepackets::time::cds::TimeProvider;
use spacepackets::time::TimeWriter;
use spacepackets::tm::{PusTm, PusTmSecondaryHeader};
use spacepackets::SpHeader;
pub struct PusTmWithCdsShortHelper {
apid: u16,
cds_short_buf: [u8; 7],
}
impl PusTmWithCdsShortHelper {
pub fn new(apid: u16) -> Self {
Self {
apid,
cds_short_buf: [0; 7],
}
}
#[cfg(feature = "std")]
pub fn create_pus_tm_timestamp_now<'a>(
&'a mut self,
service: u8,
subservice: u8,
source_data: Option<&'a [u8]>,
) -> PusTm {
let time_stamp = TimeProvider::from_now_with_u16_days().unwrap();
time_stamp.write_to_bytes(&mut self.cds_short_buf).unwrap();
self.create_pus_tm_common(service, subservice, source_data)
}
pub fn create_pus_tm_with_stamp<'a>(
&'a mut self,
service: u8,
subservice: u8,
source_data: Option<&'a [u8]>,
stamper: &TimeProvider,
) -> PusTm {
stamper.write_to_bytes(&mut self.cds_short_buf).unwrap();
self.create_pus_tm_common(service, subservice, source_data)
}
fn create_pus_tm_common<'a>(
&'a self,
service: u8,
subservice: u8,
source_data: Option<&'a [u8]>,
) -> PusTm {
let mut reply_header = SpHeader::tm_unseg(self.apid, 0, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(service, subservice, &self.cds_short_buf);
PusTm::new(&mut reply_header, tc_header, source_data, true)
}
}