add MGT and PCDU model

This commit is contained in:
Robin Müller 2024-03-05 00:43:01 +01:00
parent 96f0c90838
commit db814189a0
Signed by: muellerr
GPG Key ID: A649FB78196E3849
2 changed files with 137 additions and 54 deletions

View File

@ -6,7 +6,10 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies] [dependencies]
asynchronix = "0.2.0" asynchronix = "0.2"
serde = { version = "1", features = ["derive"] } serde = { version = "1", features = ["derive"] }
serde_json = "1" serde_json = "1"
log = "0.4" log = "0.4"
[dependencies.satrs]
path = "../satrs"

View File

@ -2,33 +2,149 @@ use asynchronix::model::{Model, Output};
use asynchronix::simulation::{EventSlot, Mailbox, SimInit}; use asynchronix::simulation::{EventSlot, Mailbox, SimInit};
use asynchronix::time::{MonotonicTime, Scheduler}; use asynchronix::time::{MonotonicTime, Scheduler};
use log::warn; use log::warn;
use satrs::power::SwitchState;
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use std::f64::consts::PI; use std::f64::consts::PI;
use std::net::UdpSocket; use std::net::UdpSocket;
use std::time::Duration; use std::time::Duration;
use std::{io, thread}; use std::{io, thread};
#[derive(Debug, Clone, PartialEq, Serialize)] // Normally, small magnetometers generate their output as a signed 16 bit raw format or something
// similar which needs to be converted to a signed float value with physical units. We will
// simplify this now and generate the signed float values directly.
#[derive(Debug, Copy, Clone, PartialEq, Serialize)]
pub struct MgmTuple { pub struct MgmTuple {
x: f64, x: f32,
y: f64, y: f32,
z: f64, z: f32,
} }
// Earth magnetic field varies between -30 uT and 30 uT // Earth magnetic field varies between -30 uT and 30 uT
const AMPLITUDE_MGM: f64 = 0.03; const AMPLITUDE_MGM: f32 = 0.03;
// Lets start with a simple frequency here. // Lets start with a simple frequency here.
const FREQUENCY_MGM: f64 = 1.0; const FREQUENCY_MGM: f32 = 1.0;
const PHASE_X: f64 = 0.0; const PHASE_X: f32 = 0.0;
// Different phases to have different values on the other axes. // Different phases to have different values on the other axes.
const PHASE_Y: f64 = 0.1; const PHASE_Y: f32 = 0.1;
const PHASE_Z: f64 = 0.2; const PHASE_Z: f32 = 0.2;
#[derive(Default)] pub struct MagnetometerModel {
pub struct SimMgm { pub switch_state: SwitchState,
pub output: Output<MgmTuple>, pub external_mag_field: Option<MgmTuple>,
pub sensor_values: Output<MgmTuple>,
} }
impl Default for MagnetometerModel {
fn default() -> Self {
Self {
switch_state: SwitchState::Off,
external_mag_field: None,
sensor_values: Default::default(),
}
}
}
impl MagnetometerModel {
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmTuple {
if let SwitchState::On = self.switch_state {
if let Some(ext_field) = self.external_mag_field {
return ext_field;
}
let base_sin_val = 2.0 * PI as f32 * FREQUENCY_MGM * (time_ms as f32 / 1000.0);
return MgmTuple {
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
};
}
MgmTuple {
x: 0.0,
y: 0.0,
z: 0.0,
}
}
pub async fn switch_device(&mut self, switch_state: SwitchState) {
self.switch_state = switch_state;
}
// Simple unit input to request MGM tuple for current time.
pub async fn generate_output(&mut self, _: (), scheduler: &Scheduler<Self>) {
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
self.sensor_values.send(value).await;
}
// Devices like magnetorquers generate a strong magnetic field which overrides the default
// model for the measure magnetic field.
pub async fn apply_external_magnetic_field(&mut self, field: MgmTuple) {
self.external_mag_field = Some(field);
}
}
impl Model for MagnetometerModel {}
#[derive(Debug, Clone, PartialEq, Serialize)]
pub struct PcduTuple {}
pub enum PcduSwitches {
Mgm,
Mgt,
}
pub struct PcduModel {
pub mgm_switch: Output<SwitchState>,
pub mgt_switch: Output<SwitchState>,
}
impl PcduModel {
pub async fn switch_device(&mut self, switch: PcduSwitches, switch_state: SwitchState) {
match switch {
PcduSwitches::Mgm => {
self.mgm_switch.send(switch_state).await;
}
PcduSwitches::Mgt => {
self.mgt_switch.send(switch_state).await;
}
}
}
}
impl Model for PcduModel {}
// TODO: How to model this? And how to translate the dipole to the generated magnetic field?
pub struct Dipole {}
pub struct MagnetorquerModel {
switch_state: SwitchState,
torquing: bool,
torque_duration: Duration,
torque_dipole: Option<Dipole>,
gen_magnetic_field: Output<MgmTuple>,
}
impl MagnetorquerModel {
pub async fn apply_torque(&mut self, dipole: Dipole, torque_duration: Duration) {
self.torque_dipole = Some(dipole);
self.torque_duration = torque_duration;
self.torquing = true;
}
pub async fn switch_device(&mut self, switch_state: SwitchState) {
self.switch_state = switch_state;
}
pub async fn generate_output(&mut self, _: ()) {
if self.switch_state != SwitchState::On || !self.torquing {
return;
}
// TODO: Calculate generated magnetic field based on dipole.. some really simple model
// should suffice here for now.
// self.gen_magnetic_field.send().await;
}
}
impl Model for MagnetorquerModel {}
// A UDP server which exposes all values generated by the simulator. // A UDP server which exposes all values generated by the simulator.
pub struct UdpServer { pub struct UdpServer {
socket: UdpSocket, socket: UdpSocket,
@ -96,52 +212,16 @@ pub fn current_millis(time: MonotonicTime) -> u64 {
(time.as_secs() as u64 * 1000) + (time.subsec_nanos() as u64 / 1_000_000) (time.as_secs() as u64 * 1000) + (time.subsec_nanos() as u64 / 1_000_000)
} }
impl SimMgm {
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmTuple {
let base_sin_val = 2.0 * PI * FREQUENCY_MGM * (time_ms as f64 / 1000.0);
MgmTuple {
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
}
}
// Simple unit input to request MGM tuple for current time.
pub async fn input(&mut self, _: (), scheduler: &Scheduler<Self>) {
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
self.output.send(value).await;
}
}
impl Model for SimMgm {
fn init(
self,
scheduler: &Scheduler<Self>,
) -> std::pin::Pin<
Box<
dyn std::future::Future<Output = asynchronix::model::InitializedModel<Self>>
+ Send
+ '_,
>,
> {
//scheduler.schedule_periodic_event(Duration::from_secs(1), Self::send, value).unwrap();
Box::pin(async move {
let _ = scheduler; // suppress the unused argument warning
self.into()
})
}
}
fn main() { fn main() {
// Instantiate models and their mailboxes. // Instantiate models and their mailboxes.
let mut mgm_sim = SimMgm::default(); let mut mgm_sim = MagnetometerModel::default();
let mgm_mailbox = Mailbox::new(); let mgm_mailbox = Mailbox::new();
let mgm_input_addr = mgm_mailbox.address(); let mgm_input_addr = mgm_mailbox.address();
// Keep handles to the main input and output. // Keep handles to the main input and output.
let output_slot = mgm_sim.output.connect_slot().0; let output_slot = mgm_sim.sensor_values.connect_slot().0;
let mut output_slot_2 = mgm_sim.output.connect_slot().0; let mut output_slot_2 = mgm_sim.sensor_values.connect_slot().0;
// Instantiate the simulator // Instantiate the simulator
let t0 = MonotonicTime::EPOCH; // arbitrary start time let t0 = MonotonicTime::EPOCH; // arbitrary start time
@ -149,12 +229,12 @@ fn main() {
// This thread schedules the simulator. // This thread schedules the simulator.
thread::spawn(move || { thread::spawn(move || {
simu.send_event(SimMgm::input, (), &mgm_input_addr); simu.send_event(MagnetometerModel::generate_output, (), &mgm_input_addr);
let mut tuple = output_slot_2.take().expect("expected output"); let mut tuple = output_slot_2.take().expect("expected output");
println!("output at {:?}: {tuple:?}", simu.time()); println!("output at {:?}: {tuple:?}", simu.time());
for _ in 0..100 { for _ in 0..100 {
simu.step_by(Duration::from_millis(100)); simu.step_by(Duration::from_millis(100));
simu.send_event(SimMgm::input, (), &mgm_input_addr); simu.send_event(MagnetometerModel::generate_output, (), &mgm_input_addr);
tuple = output_slot_2.take().expect("expected output"); tuple = output_slot_2.take().expect("expected output");
println!("output at {:?}: {tuple:?}", simu.time()); println!("output at {:?}: {tuple:?}", simu.time());
} }