Robin Mueller 2679815c28
All checks were successful
Rust/sat-rs/pipeline/pr-main This commit looks good
added some more tests
2024-03-08 16:36:37 +01:00

265 lines
9.2 KiB
Rust

use std::{f32::consts::PI, sync::mpsc, time::Duration};
use asynchronix::{
model::{Model, Output},
time::Scheduler,
};
use satrs::power::SwitchStateBinary;
use satrs_minisim::{
acs::{MgmSensorValues, MgtDipole, MgtReply, MGT_GEN_MAGNETIC_FIELD},
SimDevice, SimReply,
};
use crate::time::current_millis;
// Earth magnetic field varies between -30 uT and 30 uT
const AMPLITUDE_MGM: f32 = 0.03;
// Lets start with a simple frequency here.
const FREQUENCY_MGM: f32 = 1.0;
const PHASE_X: f32 = 0.0;
// Different phases to have different values on the other axes.
const PHASE_Y: f32 = 0.1;
const PHASE_Z: f32 = 0.2;
/// Simple model for a magnetometer where the measure magnetic fields are modeled with sine waves.
///
/// Please note that that a more realistic MGM model wouold include the following components
/// which are not included here to simplify the model:
///
/// 1. It would probably generate signed [i16] values which need to be converted to SI units
/// because it is a digital sensor
/// 2. It would sample the magnetic field at a high fixed rate. This might not be possible for
/// a general purpose OS, but self self-sampling at a relatively high rate (20-40 ms) might
/// stil lbe possible.
pub struct MagnetometerModel {
pub switch_state: SwitchStateBinary,
pub periodicity: Duration,
pub external_mag_field: Option<MgmSensorValues>,
pub reply_sender: mpsc::Sender<SimReply>,
}
impl MagnetometerModel {
pub fn new(periodicity: Duration, reply_sender: mpsc::Sender<SimReply>) -> Self {
Self {
switch_state: SwitchStateBinary::Off,
periodicity,
external_mag_field: None,
reply_sender,
}
}
pub async fn switch_device(&mut self, switch_state: SwitchStateBinary) {
self.switch_state = switch_state;
}
pub async fn send_sensor_values(&mut self, _: (), scheduler: &Scheduler<Self>) {
let current_time = scheduler.time();
println!("current monotonic time: {:?}", current_time);
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
let reply = SimReply {
device: SimDevice::Mgm,
reply: serde_json::to_string(&value).unwrap(),
};
self.reply_sender
.send(reply)
.expect("sending MGM sensor values failed");
}
// Devices like magnetorquers generate a strong magnetic field which overrides the default
// model for the measured magnetic field.
pub async fn apply_external_magnetic_field(&mut self, field: MgmSensorValues) {
self.external_mag_field = Some(field);
}
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmSensorValues {
if SwitchStateBinary::On == self.switch_state {
if let Some(ext_field) = self.external_mag_field {
return ext_field;
}
let base_sin_val = 2.0 * PI * FREQUENCY_MGM * (time_ms as f32 / 1000.0);
return MgmSensorValues {
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
};
}
MgmSensorValues {
x: 0.0,
y: 0.0,
z: 0.0,
}
}
}
impl Model for MagnetometerModel {}
pub struct MagnetorquerModel {
switch_state: SwitchStateBinary,
torquing: bool,
torque_dipole: MgtDipole,
pub gen_magnetic_field: Output<MgmSensorValues>,
reply_sender: mpsc::Sender<SimReply>,
}
impl MagnetorquerModel {
pub fn new(reply_sender: mpsc::Sender<SimReply>) -> Self {
Self {
switch_state: SwitchStateBinary::Off,
torquing: false,
torque_dipole: MgtDipole::default(),
gen_magnetic_field: Output::new(),
reply_sender,
}
}
pub async fn apply_torque(
&mut self,
duration_and_dipole: (Duration, MgtDipole),
scheduler: &Scheduler<Self>,
) {
self.torque_dipole = duration_and_dipole.1;
self.torquing = true;
if scheduler
.schedule_event(duration_and_dipole.0, Self::clear_torque, ())
.is_err()
{
log::warn!("torque clearing can only be set for a future time.");
}
self.generate_magnetic_field(()).await;
}
pub async fn clear_torque(&mut self, _: ()) {
self.torque_dipole = MgtDipole::default();
self.torquing = false;
self.generate_magnetic_field(()).await;
}
pub async fn switch_device(&mut self, switch_state: SwitchStateBinary) {
self.switch_state = switch_state;
self.generate_magnetic_field(()).await;
}
pub async fn request_housekeeping_data(&mut self, _: (), scheduler: &Scheduler<Self>) {
scheduler
.schedule_event(Duration::from_millis(15), Self::send_housekeeping_data, ())
.expect("requesting housekeeping data failed")
}
pub fn send_housekeeping_data(&mut self) {
let mgt_reply = MgtReply::Hk(self.torque_dipole);
self.reply_sender
.send(SimReply {
device: SimDevice::Mgt,
reply: serde_json::to_string(&mgt_reply).expect("failed to serialize MgtReply"),
})
.unwrap();
}
fn calc_magnetic_field(&self, _: MgtDipole) -> MgmSensorValues {
// Simplified model: Just returns some fixed magnetic field for now.
// Later, we could make this more fancy by incorporating the commanded dipole.
MGT_GEN_MAGNETIC_FIELD
}
/// A torquing magnetorquer generates a magnetic field. This function can be used to apply
/// the magnetic field.
async fn generate_magnetic_field(&mut self, _: ()) {
if self.switch_state != SwitchStateBinary::On || !self.torquing {
return;
}
self.gen_magnetic_field
.send(self.calc_magnetic_field(self.torque_dipole))
.await;
}
}
impl Model for MagnetorquerModel {}
#[cfg(test)]
pub mod tests {
use std::time::Duration;
use satrs::power::SwitchStateBinary;
use satrs_minisim::{
acs::{MgmRequest, MgmSensorValues},
SimDevice, SimRequest,
};
use crate::{
eps::{self, PcduRequest},
test_helpers::SimTestbench,
};
#[test]
fn test_basic_mgm_request() {
let mut sim_testbench = SimTestbench::new();
let mgm_request = MgmRequest::RequestSensorData;
let request = SimRequest::new(SimDevice::Mgm, mgm_request);
sim_testbench
.send_request(request)
.expect("sending MGM request failed");
sim_testbench.handle_sim_requests();
sim_testbench.step();
let sim_reply = sim_testbench.try_receive_next_reply();
assert!(sim_reply.is_some());
let sim_reply = sim_reply.unwrap();
assert_eq!(sim_reply.device, SimDevice::Mgm);
let reply: MgmSensorValues = serde_json::from_str(&sim_reply.reply)
.expect("failed to deserialize MGM sensor values");
assert_eq!(reply.x, 0.0);
assert_eq!(reply.y, 0.0);
assert_eq!(reply.z, 0.0);
}
#[test]
fn test_basic_mgm_request_switched_on() {
let mut sim_testbench = SimTestbench::new();
let pcdu_request = PcduRequest::SwitchDevice {
switch: eps::PcduSwitch::Mgm,
state: SwitchStateBinary::On,
};
let mut request = SimRequest::new(SimDevice::Pcdu, pcdu_request);
sim_testbench
.send_request(request)
.expect("sending MGM switch request failed");
sim_testbench.handle_sim_requests();
sim_testbench.step();
let mut sim_reply_res = sim_testbench.try_receive_next_reply();
assert!(sim_reply_res.is_none());
let mgm_request = MgmRequest::RequestSensorData;
request = SimRequest::new(SimDevice::Mgm, mgm_request);
sim_testbench
.send_request(request)
.expect("sending MGM request failed");
sim_testbench.handle_sim_requests();
sim_testbench.step();
sim_reply_res = sim_testbench.try_receive_next_reply();
assert!(sim_reply_res.is_some());
let mut sim_reply = sim_reply_res.unwrap();
assert_eq!(sim_reply.device, SimDevice::Mgm);
let first_reply: MgmSensorValues = serde_json::from_str(&sim_reply.reply)
.expect("failed to deserialize MGM sensor values");
let mgm_request = MgmRequest::RequestSensorData;
sim_testbench.step_by(Duration::from_millis(50));
request = SimRequest::new(SimDevice::Mgm, mgm_request);
sim_testbench
.send_request(request)
.expect("sending MGM request failed");
sim_testbench.handle_sim_requests();
sim_testbench.step();
sim_reply_res = sim_testbench.try_receive_next_reply();
assert!(sim_reply_res.is_some());
sim_reply = sim_reply_res.unwrap();
let second_reply: MgmSensorValues = serde_json::from_str(&sim_reply.reply)
.expect("failed to deserialize MGM sensor values");
// Check that the values are changing.
assert!(first_reply != second_reply);
}
#[test]
fn test_mgm_request_with_mgt_switched_on() {}
}