Some checks failed
Rust/sat-rs/pipeline/pr-main There was a failure building this commit
151 lines
5.1 KiB
Rust
151 lines
5.1 KiB
Rust
use std::{f32::consts::PI, sync::mpsc, time::Duration};
|
|
|
|
use asynchronix::{
|
|
model::{Model, Output},
|
|
time::Scheduler,
|
|
};
|
|
use satrs::power::{SwitchState, SwitchStateBinary};
|
|
use satrs_minisim::{
|
|
acs::{MgmSensorValues, MgtDipole, MGT_GEN_MAGNETIC_FIELD},
|
|
SimDevice, SimReply,
|
|
};
|
|
|
|
use crate::time::current_millis;
|
|
|
|
// Earth magnetic field varies between -30 uT and 30 uT
|
|
const AMPLITUDE_MGM: f32 = 0.03;
|
|
// Lets start with a simple frequency here.
|
|
const FREQUENCY_MGM: f32 = 1.0;
|
|
const PHASE_X: f32 = 0.0;
|
|
// Different phases to have different values on the other axes.
|
|
const PHASE_Y: f32 = 0.1;
|
|
const PHASE_Z: f32 = 0.2;
|
|
|
|
/// Simple model for a magnetometer where the measure magnetic fields are modeled with sine waves.
|
|
///
|
|
/// Please note that that a more realistic MGM model wouold include the following components
|
|
/// which are not included here to simplify the model:
|
|
///
|
|
/// 1. It would probably generate signed [i16] values which need to be converted to SI units
|
|
/// because it is a digital sensor
|
|
/// 2. It would sample the magnetic field at a high fixed rate. This might not be possible for
|
|
/// a general purpose OS, but self self-sampling at a relatively high rate (20-40 ms) might
|
|
/// stil lbe possible.
|
|
pub struct MagnetometerModel {
|
|
pub switch_state: SwitchStateBinary,
|
|
pub periodicity: Duration,
|
|
pub external_mag_field: Option<MgmSensorValues>,
|
|
pub reply_sender: mpsc::Sender<SimReply>,
|
|
}
|
|
|
|
impl MagnetometerModel {
|
|
pub fn new(periodicity: Duration, reply_sender: mpsc::Sender<SimReply>) -> Self {
|
|
Self {
|
|
switch_state: SwitchStateBinary::Off,
|
|
periodicity,
|
|
external_mag_field: None,
|
|
reply_sender,
|
|
}
|
|
}
|
|
|
|
pub async fn switch_device(&mut self, switch_state: SwitchStateBinary) {
|
|
self.switch_state = switch_state;
|
|
}
|
|
|
|
pub async fn send_sensor_values(&mut self, _: (), scheduler: &Scheduler<Self>) {
|
|
let current_time = scheduler.time();
|
|
println!("current monotonic time: {:?}", current_time);
|
|
let value = self.calculate_current_mgm_tuple(current_millis(scheduler.time()));
|
|
let reply = SimReply {
|
|
device: SimDevice::Mgm,
|
|
reply: serde_json::to_string(&value).unwrap(),
|
|
};
|
|
self.reply_sender
|
|
.send(reply)
|
|
.expect("sending MGM sensor values failed");
|
|
}
|
|
|
|
// Devices like magnetorquers generate a strong magnetic field which overrides the default
|
|
// model for the measured magnetic field.
|
|
pub async fn apply_external_magnetic_field(&mut self, field: MgmSensorValues) {
|
|
self.external_mag_field = Some(field);
|
|
}
|
|
|
|
fn calculate_current_mgm_tuple(&mut self, time_ms: u64) -> MgmSensorValues {
|
|
if SwitchStateBinary::On == self.switch_state {
|
|
if let Some(ext_field) = self.external_mag_field {
|
|
return ext_field;
|
|
}
|
|
let base_sin_val = 2.0 * PI as f32 * FREQUENCY_MGM * (time_ms as f32 / 1000.0);
|
|
return MgmSensorValues {
|
|
x: AMPLITUDE_MGM * (base_sin_val + PHASE_X).sin(),
|
|
y: AMPLITUDE_MGM * (base_sin_val + PHASE_Y).sin(),
|
|
z: AMPLITUDE_MGM * (base_sin_val + PHASE_Z).sin(),
|
|
};
|
|
}
|
|
MgmSensorValues {
|
|
x: 0.0,
|
|
y: 0.0,
|
|
z: 0.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Model for MagnetometerModel {}
|
|
|
|
pub struct MagnetorquerModel {
|
|
switch_state: SwitchState,
|
|
torquing: bool,
|
|
torque_dipole: Option<MgtDipole>,
|
|
gen_magnetic_field: Output<MgmSensorValues>,
|
|
}
|
|
|
|
impl MagnetorquerModel {
|
|
pub async fn apply_torque(
|
|
&mut self,
|
|
dipole: MgtDipole,
|
|
torque_duration: Duration,
|
|
scheduler: &Scheduler<Self>,
|
|
) {
|
|
self.torque_dipole = Some(dipole);
|
|
self.torquing = true;
|
|
if scheduler
|
|
.schedule_event(torque_duration, Self::clear_torque, ())
|
|
.is_err()
|
|
{
|
|
log::warn!("torque clearing can only be set for a future time.");
|
|
}
|
|
self.generate_magnetic_field(()).await;
|
|
}
|
|
|
|
pub async fn clear_torque(&mut self, _: ()) {
|
|
self.torque_dipole = None;
|
|
self.torquing = false;
|
|
self.generate_magnetic_field(()).await;
|
|
}
|
|
|
|
pub async fn switch_device(&mut self, switch_state: SwitchState) {
|
|
self.switch_state = switch_state;
|
|
self.generate_magnetic_field(()).await;
|
|
}
|
|
|
|
fn calc_magnetic_field(&self, _: MgtDipole) -> MgmSensorValues {
|
|
// Simplified model: Just returns some fixed magnetic field for now.
|
|
// Later, we could make this more fancy by incorporating the commanded dipole.
|
|
MGT_GEN_MAGNETIC_FIELD
|
|
}
|
|
|
|
/// A torquing magnetorquer generates a magnetic field. This function can be used to apply
|
|
/// the magnetic field.
|
|
async fn generate_magnetic_field(&mut self, _: ()) {
|
|
if self.switch_state != SwitchState::On || !self.torquing {
|
|
return;
|
|
}
|
|
self.gen_magnetic_field
|
|
.send(self.calc_magnetic_field(self.torque_dipole.expect("expected valid dipole")))
|
|
.await;
|
|
}
|
|
}
|
|
|
|
impl Model for MagnetorquerModel {}
|