sat-rs/satrs/src/pus/mod.rs

1658 lines
58 KiB
Rust

//! # PUS support modules
//!
//! This module contains structures to make working with the PUS C standard easier.
//! The satrs-example application contains various usage examples of these components.
use crate::pool::{PoolAddr, PoolError};
use crate::pus::verification::{TcStateAccepted, TcStateToken, VerificationToken};
use crate::queue::{GenericReceiveError, GenericSendError};
use crate::request::{GenericMessage, MessageMetadata, RequestId};
#[cfg(feature = "alloc")]
use crate::tmtc::PacketAsVec;
use crate::tmtc::PacketInPool;
use crate::ComponentId;
use core::fmt::{Display, Formatter};
use core::time::Duration;
#[cfg(feature = "alloc")]
use downcast_rs::{impl_downcast, Downcast};
#[cfg(feature = "alloc")]
use dyn_clone::DynClone;
#[cfg(feature = "std")]
use std::error::Error;
use spacepackets::ecss::tc::{PusTcCreator, PusTcReader};
use spacepackets::ecss::tm::PusTmCreator;
use spacepackets::ecss::PusError;
use spacepackets::{ByteConversionError, SpHeader};
pub mod action;
pub mod event;
pub mod event_man;
#[cfg(feature = "std")]
pub mod event_srv;
pub mod mode;
pub mod scheduler;
#[cfg(feature = "std")]
pub mod scheduler_srv;
#[cfg(feature = "std")]
pub mod test;
pub mod verification;
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
#[cfg(feature = "std")]
pub use std_mod::*;
use self::verification::VerificationReportingProvider;
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum PusTmVariant<'time, 'src_data> {
InStore(PoolAddr),
Direct(PusTmCreator<'time, 'src_data>),
}
impl From<PoolAddr> for PusTmVariant<'_, '_> {
fn from(value: PoolAddr) -> Self {
Self::InStore(value)
}
}
impl<'time, 'src_data> From<PusTmCreator<'time, 'src_data>> for PusTmVariant<'time, 'src_data> {
fn from(value: PusTmCreator<'time, 'src_data>) -> Self {
Self::Direct(value)
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum EcssTmtcError {
Store(PoolError),
ByteConversion(ByteConversionError),
Pus(PusError),
CantSendAddr(PoolAddr),
CantSendDirectTm,
Send(GenericSendError),
Receive(GenericReceiveError),
}
impl Display for EcssTmtcError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
EcssTmtcError::Store(store) => {
write!(f, "ecss tmtc error: {store}")
}
EcssTmtcError::ByteConversion(e) => {
write!(f, "ecss tmtc error: {e}")
}
EcssTmtcError::Pus(e) => {
write!(f, "ecss tmtc error: {e}")
}
EcssTmtcError::CantSendAddr(addr) => {
write!(f, "can not send address {addr}")
}
EcssTmtcError::CantSendDirectTm => {
write!(f, "can not send TM directly")
}
EcssTmtcError::Send(e) => {
write!(f, "ecss tmtc error: {e}")
}
EcssTmtcError::Receive(e) => {
write!(f, "ecss tmtc error {e}")
}
}
}
}
impl From<PoolError> for EcssTmtcError {
fn from(value: PoolError) -> Self {
Self::Store(value)
}
}
impl From<PusError> for EcssTmtcError {
fn from(value: PusError) -> Self {
Self::Pus(value)
}
}
impl From<GenericSendError> for EcssTmtcError {
fn from(value: GenericSendError) -> Self {
Self::Send(value)
}
}
impl From<ByteConversionError> for EcssTmtcError {
fn from(value: ByteConversionError) -> Self {
Self::ByteConversion(value)
}
}
impl From<GenericReceiveError> for EcssTmtcError {
fn from(value: GenericReceiveError) -> Self {
Self::Receive(value)
}
}
#[cfg(feature = "std")]
impl Error for EcssTmtcError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
EcssTmtcError::Store(e) => Some(e),
EcssTmtcError::ByteConversion(e) => Some(e),
EcssTmtcError::Pus(e) => Some(e),
EcssTmtcError::Send(e) => Some(e),
EcssTmtcError::Receive(e) => Some(e),
_ => None,
}
}
}
pub trait ChannelWithId: Send {
/// Each sender can have an ID associated with it
fn id(&self) -> ComponentId;
fn name(&self) -> &'static str {
"unset"
}
}
/// Generic trait for a user supplied sender object.
///
/// This sender object is responsible for sending PUS telemetry to a TM sink.
pub trait EcssTmSender: Send {
fn send_tm(&self, sender_id: ComponentId, tm: PusTmVariant) -> Result<(), EcssTmtcError>;
}
/// Generic trait for a user supplied sender object.
///
/// This sender object is responsible for sending PUS telecommands to a TC recipient. Each
/// telecommand can optionally have a token which contains its verification state.
pub trait EcssTcSender {
fn send_tc(&self, tc: PusTcCreator, token: Option<TcStateToken>) -> Result<(), EcssTmtcError>;
}
/// Dummy object which can be useful for tests.
#[derive(Default)]
pub struct EcssTmDummySender {}
impl EcssTmSender for EcssTmDummySender {
fn send_tm(&self, _source_id: ComponentId, _tm: PusTmVariant) -> Result<(), EcssTmtcError> {
Ok(())
}
}
/// A PUS telecommand packet can be stored in memory and sent using different methods. Right now,
/// storage inside a pool structure like [crate::pool::StaticMemoryPool], and storage inside a
/// `Vec<u8>` are supported.
#[non_exhaustive]
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum TcInMemory {
Pool(PacketInPool),
#[cfg(feature = "alloc")]
Vec(PacketAsVec),
}
impl From<PacketInPool> for TcInMemory {
fn from(value: PacketInPool) -> Self {
Self::Pool(value)
}
}
#[cfg(feature = "alloc")]
impl From<PacketAsVec> for TcInMemory {
fn from(value: PacketAsVec) -> Self {
Self::Vec(value)
}
}
/// Generic structure for an ECSS PUS Telecommand and its correspoding verification token.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct EcssTcAndToken {
pub tc_in_memory: TcInMemory,
pub token: Option<TcStateToken>,
}
impl EcssTcAndToken {
pub fn new(tc_in_memory: impl Into<TcInMemory>, token: impl Into<TcStateToken>) -> Self {
Self {
tc_in_memory: tc_in_memory.into(),
token: Some(token.into()),
}
}
}
/// Generic abstraction for a telecommand being sent around after is has been accepted.
pub struct AcceptedEcssTcAndToken {
pub tc_in_memory: TcInMemory,
pub token: VerificationToken<TcStateAccepted>,
}
impl From<AcceptedEcssTcAndToken> for EcssTcAndToken {
fn from(value: AcceptedEcssTcAndToken) -> Self {
EcssTcAndToken {
tc_in_memory: value.tc_in_memory,
token: Some(value.token.into()),
}
}
}
impl TryFrom<EcssTcAndToken> for AcceptedEcssTcAndToken {
type Error = ();
fn try_from(value: EcssTcAndToken) -> Result<Self, Self::Error> {
if let Some(TcStateToken::Accepted(token)) = value.token {
return Ok(AcceptedEcssTcAndToken {
tc_in_memory: value.tc_in_memory,
token,
});
}
Err(())
}
}
#[derive(Debug, Clone)]
pub enum TryRecvTmtcError {
Tmtc(EcssTmtcError),
Empty,
}
impl From<EcssTmtcError> for TryRecvTmtcError {
fn from(value: EcssTmtcError) -> Self {
Self::Tmtc(value)
}
}
impl From<PusError> for TryRecvTmtcError {
fn from(value: PusError) -> Self {
Self::Tmtc(value.into())
}
}
impl From<PoolError> for TryRecvTmtcError {
fn from(value: PoolError) -> Self {
Self::Tmtc(value.into())
}
}
/// Generic trait for a user supplied receiver object.
pub trait EcssTcReceiver {
fn recv_tc(&self) -> Result<EcssTcAndToken, TryRecvTmtcError>;
}
/// Generic trait for objects which can send ECSS PUS telecommands.
pub trait PacketSenderPusTc: Send {
type Error;
fn send_pus_tc(
&self,
sender_id: ComponentId,
header: &SpHeader,
pus_tc: &PusTcReader,
) -> Result<(), Self::Error>;
}
pub trait ActiveRequestMapProvider<V>: Sized {
fn insert(&mut self, request_id: &RequestId, request_info: V);
fn get(&self, request_id: RequestId) -> Option<&V>;
fn get_mut(&mut self, request_id: RequestId) -> Option<&mut V>;
fn remove(&mut self, request_id: RequestId) -> bool;
/// Call a user-supplied closure for each active request.
fn for_each<F: FnMut(&RequestId, &V)>(&self, f: F);
/// Call a user-supplied closure for each active request. Mutable variant.
fn for_each_mut<F: FnMut(&RequestId, &mut V)>(&mut self, f: F);
}
pub trait ActiveRequestProvider {
fn target_id(&self) -> ComponentId;
fn token(&self) -> TcStateToken;
fn set_token(&mut self, token: TcStateToken);
fn has_timed_out(&self) -> bool;
fn timeout(&self) -> Duration;
}
/// This trait is an abstraction for the routing of PUS request to a dedicated
/// recipient using the generic [ComponentId].
pub trait PusRequestRouter<Request> {
type Error;
fn route(
&self,
requestor_info: MessageMetadata,
target_id: ComponentId,
request: Request,
) -> Result<(), Self::Error>;
}
pub trait PusReplyHandler<ActiveRequestInfo: ActiveRequestProvider, ReplyType> {
type Error;
/// This function handles a reply for a given PUS request and returns whether that request
/// is finished. A finished PUS request will be removed from the active request map.
fn handle_reply(
&mut self,
reply: &GenericMessage<ReplyType>,
active_request: &ActiveRequestInfo,
tm_sender: &impl EcssTmSender,
verification_handler: &impl VerificationReportingProvider,
time_stamp: &[u8],
) -> Result<bool, Self::Error>;
fn handle_unrequested_reply(
&mut self,
reply: &GenericMessage<ReplyType>,
tm_sender: &impl EcssTmSender,
) -> Result<(), Self::Error>;
/// Handle the timeout of an active request.
fn handle_request_timeout(
&mut self,
active_request: &ActiveRequestInfo,
tm_sender: &impl EcssTmSender,
verification_handler: &impl VerificationReportingProvider,
time_stamp: &[u8],
) -> Result<(), Self::Error>;
}
#[cfg(feature = "alloc")]
pub mod alloc_mod {
use hashbrown::HashMap;
use super::*;
/// Extension trait for [EcssTmSender].
///
/// It provides additional functionality, for example by implementing the [Downcast] trait
/// and the [DynClone] trait.
///
/// [Downcast] is implemented to allow passing the sender as a boxed trait object and still
/// retrieve the concrete type at a later point.
///
/// [DynClone] allows cloning the trait object as long as the boxed object implements
/// [Clone].
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub trait EcssTmSenderExt: EcssTmSender + Downcast + DynClone {
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn EcssTmSender;
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn EcssTmSender;
}
/// Blanket implementation for all types which implement [EcssTmSender] and are clonable.
impl<T> EcssTmSenderExt for T
where
T: EcssTmSender + Clone + 'static,
{
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast(&self) -> &dyn EcssTmSender {
self
}
// Remove this once trait upcasting coercion has been implemented.
// Tracking issue: https://github.com/rust-lang/rust/issues/65991
fn upcast_mut(&mut self) -> &mut dyn EcssTmSender {
self
}
}
dyn_clone::clone_trait_object!(EcssTmSenderExt);
impl_downcast!(EcssTmSenderExt);
/// Extension trait for [EcssTcSender].
///
/// It provides additional functionality, for example by implementing the [Downcast] trait
/// and the [DynClone] trait.
///
/// [Downcast] is implemented to allow passing the sender as a boxed trait object and still
/// retrieve the concrete type at a later point.
///
/// [DynClone] allows cloning the trait object as long as the boxed object implements
/// [Clone].
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub trait EcssTcSenderExt: EcssTcSender + Downcast + DynClone {}
/// Blanket implementation for all types which implement [EcssTcSender] and are clonable.
impl<T> EcssTcSenderExt for T where T: EcssTcSender + Clone + 'static {}
dyn_clone::clone_trait_object!(EcssTcSenderExt);
impl_downcast!(EcssTcSenderExt);
/// Extension trait for [EcssTcReceiver].
///
/// It provides additional functionality, for example by implementing the [Downcast] trait
/// and the [DynClone] trait.
///
/// [Downcast] is implemented to allow passing the sender as a boxed trait object and still
/// retrieve the concrete type at a later point.
///
/// [DynClone] allows cloning the trait object as long as the boxed object implements
/// [Clone].
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub trait EcssTcReceiverExt: EcssTcReceiver + Downcast {}
/// Blanket implementation for all types which implement [EcssTcReceiver] and are clonable.
impl<T> EcssTcReceiverExt for T where T: EcssTcReceiver + 'static {}
impl_downcast!(EcssTcReceiverExt);
/// This trait is an abstraction for the conversion of a PUS telecommand into a generic request
/// type.
///
/// Having a dedicated trait for this allows maximum flexiblity and tailoring of the standard.
/// The only requirement is that a valid active request information instance and a request
/// are returned by the core conversion function. The active request type needs to fulfill
/// the [ActiveRequestProvider] trait bound.
///
/// The user should take care of performing the error handling as well. Some of the following
/// aspects might be relevant:
///
/// - Checking the validity of the APID, service ID, subservice ID.
/// - Checking the validity of the user data.
///
/// A [VerificationReportingProvider] instance is passed to the user to also allow handling
/// of the verification process as part of the PUS standard requirements.
pub trait PusTcToRequestConverter<ActiveRequestInfo: ActiveRequestProvider, Request> {
type Error;
fn convert(
&mut self,
token: VerificationToken<TcStateAccepted>,
tc: &PusTcReader,
tm_sender: &(impl EcssTmSender + ?Sized),
verif_reporter: &impl VerificationReportingProvider,
time_stamp: &[u8],
) -> Result<(ActiveRequestInfo, Request), Self::Error>;
}
#[derive(Clone, Debug)]
pub struct DefaultActiveRequestMap<V>(pub HashMap<RequestId, V>);
impl<V> Default for DefaultActiveRequestMap<V> {
fn default() -> Self {
Self(HashMap::new())
}
}
impl<V> ActiveRequestMapProvider<V> for DefaultActiveRequestMap<V> {
fn insert(&mut self, request_id: &RequestId, request: V) {
self.0.insert(*request_id, request);
}
fn get(&self, request_id: RequestId) -> Option<&V> {
self.0.get(&request_id)
}
fn get_mut(&mut self, request_id: RequestId) -> Option<&mut V> {
self.0.get_mut(&request_id)
}
fn remove(&mut self, request_id: RequestId) -> bool {
self.0.remove(&request_id).is_some()
}
fn for_each<F: FnMut(&RequestId, &V)>(&self, mut f: F) {
for (req_id, active_req) in &self.0 {
f(req_id, active_req);
}
}
fn for_each_mut<F: FnMut(&RequestId, &mut V)>(&mut self, mut f: F) {
for (req_id, active_req) in &mut self.0 {
f(req_id, active_req);
}
}
}
/*
/// Generic reply handler structure which can be used to handle replies for a specific PUS
/// service.
///
/// This is done by keeping track of active requests using an internal map structure. An API
/// to register new active requests is exposed as well.
/// The reply handler performs boilerplate tasks like performing the verification handling and
/// timeout handling.
///
/// This object is not useful by itself but serves as a common building block for high-level
/// PUS reply handlers. Concrete PUS handlers should constrain the [ActiveRequestProvider] and
/// the `ReplyType` generics to specific types tailored towards PUS services in addition to
/// providing an API which can process received replies and convert them into verification
/// completions or other operation like user hook calls. The framework also provides some
/// concrete PUS handlers for common PUS services like the mode, action and housekeeping
/// service.
///
/// This object does not automatically update its internal time information used to check for
/// timeouts. The user should call the [Self::update_time] and [Self::update_time_from_now]
/// methods to do this.
pub struct PusServiceReplyHandler<
ActiveRequestMap: ActiveRequestMapProvider<ActiveRequestType>,
ReplyHook: ReplyHandlerHook<ActiveRequestType, ReplyType>,
ActiveRequestType: ActiveRequestProvider,
ReplyType,
> {
pub active_request_map: ActiveRequestMap,
pub tm_buf: alloc::vec::Vec<u8>,
pub current_time: UnixTimestamp,
pub user_hook: ReplyHook,
phantom: PhantomData<(ActiveRequestType, ReplyType)>,
}
impl<
ActiveRequestMap: ActiveRequestMapProvider<ActiveRequestType>,
ReplyHook: ReplyHandlerHook<ActiveRequestType, ReplyType>,
ActiveRequestType: ActiveRequestProvider,
ReplyType,
>
PusServiceReplyHandler<
ActiveRequestMap,
ReplyHook,
ActiveRequestType,
ReplyType,
>
{
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn new_from_now(
active_request_map: ActiveRequestMap,
fail_data_buf_size: usize,
user_hook: ReplyHook,
) -> Result<Self, std::time::SystemTimeError> {
let current_time = UnixTimestamp::from_now()?;
Ok(Self::new(
active_request_map,
fail_data_buf_size,
user_hook,
tm_sender,
current_time,
))
}
pub fn new(
active_request_map: ActiveRequestMap,
fail_data_buf_size: usize,
user_hook: ReplyHook,
tm_sender: TmSender,
init_time: UnixTimestamp,
) -> Self {
Self {
active_request_map,
tm_buf: alloc::vec![0; fail_data_buf_size],
current_time: init_time,
user_hook,
tm_sender,
phantom: PhantomData,
}
}
pub fn add_routed_request(
&mut self,
request_id: verification::RequestId,
active_request_type: ActiveRequestType,
) {
self.active_request_map
.insert(&request_id.into(), active_request_type);
}
pub fn request_active(&self, request_id: RequestId) -> bool {
self.active_request_map.get(request_id).is_some()
}
/// Check for timeouts across all active requests.
///
/// It will call [Self::handle_timeout] for all active requests which have timed out.
pub fn check_for_timeouts(&mut self, time_stamp: &[u8]) -> Result<(), EcssTmtcError> {
let mut timed_out_commands = alloc::vec::Vec::new();
self.active_request_map.for_each(|request_id, active_req| {
let diff = self.current_time - active_req.start_time();
if diff.duration_absolute > active_req.timeout() {
self.handle_timeout(active_req, time_stamp);
}
timed_out_commands.push(*request_id);
});
for timed_out_command in timed_out_commands {
self.active_request_map.remove(timed_out_command);
}
Ok(())
}
/// Handle the timeout for a given active request.
///
/// This implementation will report a verification completion failure with a user-provided
/// error code. It supplies the configured request timeout in milliseconds as a [u64]
/// serialized in big-endian format as the failure data.
pub fn handle_timeout(&self, active_request: &ActiveRequestType, time_stamp: &[u8]) {
let timeout = active_request.timeout().as_millis() as u64;
let timeout_raw = timeout.to_be_bytes();
self.verification_reporter
.completion_failure(
active_request.token(),
FailParams::new(
time_stamp,
&self.user_hook.timeout_error_code(),
&timeout_raw,
),
)
.unwrap();
self.user_hook.timeout_callback(active_request);
}
/// Update the current time used for timeout checks based on the current OS time.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_time_from_now(&mut self) -> Result<(), std::time::SystemTimeError> {
self.current_time = UnixTimestamp::from_now()?;
Ok(())
}
/// Update the current time used for timeout checks.
pub fn update_time(&mut self, time: UnixTimestamp) {
self.current_time = time;
}
}
*/
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub mod std_mod {
use crate::pool::{
PoolAddr, PoolError, PoolProvider, PoolProviderWithGuards, SharedStaticMemoryPool,
};
use crate::pus::verification::{TcStateAccepted, VerificationToken};
use crate::pus::{
EcssTcAndToken, EcssTcReceiver, EcssTmSender, EcssTmtcError, GenericReceiveError,
GenericSendError, PusTmVariant, TryRecvTmtcError,
};
use crate::tmtc::{PacketAsVec, PacketSenderWithSharedPool};
use crate::ComponentId;
use alloc::vec::Vec;
use core::time::Duration;
use spacepackets::ecss::tc::PusTcReader;
use spacepackets::ecss::WritablePusPacket;
use spacepackets::time::StdTimestampError;
use spacepackets::ByteConversionError;
use std::string::String;
use std::sync::mpsc;
use std::sync::mpsc::TryRecvError;
use thiserror::Error;
#[cfg(feature = "crossbeam")]
pub use cb_mod::*;
use super::verification::{TcStateToken, VerificationReportingProvider};
use super::{AcceptedEcssTcAndToken, ActiveRequestProvider, TcInMemory};
use crate::tmtc::PacketInPool;
impl From<mpsc::SendError<PoolAddr>> for EcssTmtcError {
fn from(_: mpsc::SendError<PoolAddr>) -> Self {
Self::Send(GenericSendError::RxDisconnected)
}
}
impl EcssTmSender for mpsc::Sender<PacketInPool> {
fn send_tm(&self, source_id: ComponentId, tm: PusTmVariant) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(store_addr) => self
.send(PacketInPool {
sender_id: source_id,
store_addr,
})
.map_err(|_| GenericSendError::RxDisconnected)?,
PusTmVariant::Direct(_) => return Err(EcssTmtcError::CantSendDirectTm),
};
Ok(())
}
}
impl EcssTmSender for mpsc::SyncSender<PacketInPool> {
fn send_tm(&self, source_id: ComponentId, tm: PusTmVariant) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(store_addr) => self
.try_send(PacketInPool {
sender_id: source_id,
store_addr,
})
.map_err(|e| EcssTmtcError::Send(e.into()))?,
PusTmVariant::Direct(_) => return Err(EcssTmtcError::CantSendDirectTm),
};
Ok(())
}
}
pub type MpscTmAsVecSender = mpsc::Sender<PacketAsVec>;
impl EcssTmSender for MpscTmAsVecSender {
fn send_tm(&self, source_id: ComponentId, tm: PusTmVariant) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(addr) => return Err(EcssTmtcError::CantSendAddr(addr)),
PusTmVariant::Direct(tm) => self
.send(PacketAsVec {
sender_id: source_id,
packet: tm.to_vec()?,
})
.map_err(|e| EcssTmtcError::Send(e.into()))?,
};
Ok(())
}
}
pub type MpscTmAsVecSenderBounded = mpsc::SyncSender<PacketAsVec>;
impl EcssTmSender for MpscTmAsVecSenderBounded {
fn send_tm(&self, source_id: ComponentId, tm: PusTmVariant) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(addr) => return Err(EcssTmtcError::CantSendAddr(addr)),
PusTmVariant::Direct(tm) => self
.send(PacketAsVec {
sender_id: source_id,
packet: tm.to_vec()?,
})
.map_err(|e| EcssTmtcError::Send(e.into()))?,
};
Ok(())
}
}
pub type MpscTcReceiver = mpsc::Receiver<EcssTcAndToken>;
impl EcssTcReceiver for MpscTcReceiver {
fn recv_tc(&self) -> Result<EcssTcAndToken, TryRecvTmtcError> {
self.try_recv().map_err(|e| match e {
TryRecvError::Empty => TryRecvTmtcError::Empty,
TryRecvError::Disconnected => TryRecvTmtcError::Tmtc(EcssTmtcError::from(
GenericReceiveError::TxDisconnected(None),
)),
})
}
}
#[cfg(feature = "crossbeam")]
pub mod cb_mod {
use super::*;
use crossbeam_channel as cb;
impl From<cb::SendError<PoolAddr>> for EcssTmtcError {
fn from(_: cb::SendError<PoolAddr>) -> Self {
Self::Send(GenericSendError::RxDisconnected)
}
}
impl From<cb::TrySendError<PoolAddr>> for EcssTmtcError {
fn from(value: cb::TrySendError<PoolAddr>) -> Self {
match value {
cb::TrySendError::Full(_) => Self::Send(GenericSendError::QueueFull(None)),
cb::TrySendError::Disconnected(_) => {
Self::Send(GenericSendError::RxDisconnected)
}
}
}
}
impl EcssTmSender for cb::Sender<PacketInPool> {
fn send_tm(
&self,
sender_id: ComponentId,
tm: PusTmVariant,
) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(addr) => self
.try_send(PacketInPool::new(sender_id, addr))
.map_err(|e| EcssTmtcError::Send(e.into()))?,
PusTmVariant::Direct(_) => return Err(EcssTmtcError::CantSendDirectTm),
};
Ok(())
}
}
impl EcssTmSender for cb::Sender<PacketAsVec> {
fn send_tm(
&self,
sender_id: ComponentId,
tm: PusTmVariant,
) -> Result<(), EcssTmtcError> {
match tm {
PusTmVariant::InStore(addr) => return Err(EcssTmtcError::CantSendAddr(addr)),
PusTmVariant::Direct(tm) => self
.send(PacketAsVec::new(sender_id, tm.to_vec()?))
.map_err(|e| EcssTmtcError::Send(e.into()))?,
};
Ok(())
}
}
pub type CrossbeamTcReceiver = cb::Receiver<EcssTcAndToken>;
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ActivePusRequestStd {
target_id: ComponentId,
token: TcStateToken,
start_time: std::time::Instant,
timeout: Duration,
}
impl ActivePusRequestStd {
pub fn new(
target_id: ComponentId,
token: impl Into<TcStateToken>,
timeout: Duration,
) -> Self {
Self {
target_id,
token: token.into(),
start_time: std::time::Instant::now(),
timeout,
}
}
}
impl ActiveRequestProvider for ActivePusRequestStd {
fn target_id(&self) -> ComponentId {
self.target_id
}
fn token(&self) -> TcStateToken {
self.token
}
fn timeout(&self) -> Duration {
self.timeout
}
fn set_token(&mut self, token: TcStateToken) {
self.token = token;
}
fn has_timed_out(&self) -> bool {
std::time::Instant::now() - self.start_time > self.timeout
}
}
// TODO: All these types could probably be no_std if we implemented error handling ourselves..
// but thiserror is really nice, so keep it like this for simplicity for now. Maybe thiserror
// will be no_std soon, see https://github.com/rust-lang/rust/issues/103765 .
#[derive(Debug, Clone, Error)]
pub enum PusTcFromMemError {
#[error("generic PUS error: {0}")]
EcssTmtc(#[from] EcssTmtcError),
#[error("invalid format of TC in memory: {0:?}")]
InvalidFormat(TcInMemory),
}
#[derive(Debug, Clone, Error)]
pub enum GenericRoutingError {
// #[error("not enough application data, expected at least {expected}, found {found}")]
// NotEnoughAppData { expected: usize, found: usize },
#[error("Unknown target ID {0}")]
UnknownTargetId(ComponentId),
#[error("Sending action request failed: {0}")]
Send(GenericSendError),
}
/// This error can be used for generic conversions from PUS Telecommands to request types.
///
/// Please note that this error can also be used if no request is generated and the PUS
/// service, subservice and application data is used directly to perform some request.
#[derive(Debug, Clone, Error)]
pub enum GenericConversionError {
#[error("wrong service number {0} for packet handler")]
WrongService(u8),
#[error("invalid subservice {0}")]
InvalidSubservice(u8),
#[error("not enough application data, expected at least {expected}, found {found}")]
NotEnoughAppData { expected: usize, found: usize },
#[error("invalid application data")]
InvalidAppData(String),
}
/// Wrapper type which tries to encapsulate all possible errors when handling PUS packets.
#[derive(Debug, Clone, Error)]
pub enum PusPacketHandlingError {
#[error("error polling PUS TC packet: {0}")]
TcPolling(#[from] EcssTmtcError),
#[error("error generating PUS reader from memory: {0}")]
TcFromMem(#[from] PusTcFromMemError),
#[error("generic request conversion error: {0}")]
RequestConversion(#[from] GenericConversionError),
#[error("request routing error: {0}")]
RequestRouting(#[from] GenericRoutingError),
#[error("invalid verification token")]
InvalidVerificationToken,
#[error("other error {0}")]
Other(String),
}
#[derive(Debug, Clone, Error)]
pub enum PartialPusHandlingError {
#[error("generic timestamp generation error")]
Time(#[from] StdTimestampError),
#[error("error sending telemetry: {0}")]
TmSend(#[from] EcssTmtcError),
#[error("error sending verification message")]
Verification,
#[error("invalid verification token")]
NoVerificationToken,
}
/// Generic result type for handlers which can process PUS packets.
#[derive(Debug, Clone)]
pub enum PusPacketHandlerResult {
RequestHandled,
RequestHandledPartialSuccess(PartialPusHandlingError),
SubserviceNotImplemented(u8, VerificationToken<TcStateAccepted>),
CustomSubservice(u8, VerificationToken<TcStateAccepted>),
Empty,
}
impl From<PartialPusHandlingError> for PusPacketHandlerResult {
fn from(value: PartialPusHandlingError) -> Self {
Self::RequestHandledPartialSuccess(value)
}
}
pub trait EcssTcInMemConverter {
fn cache(&mut self, possible_packet: &TcInMemory) -> Result<(), PusTcFromMemError>;
fn tc_slice_raw(&self) -> &[u8];
fn sender_id(&self) -> Option<ComponentId>;
fn cache_and_convert(
&mut self,
possible_packet: &TcInMemory,
) -> Result<PusTcReader<'_>, PusTcFromMemError> {
self.cache(possible_packet)?;
Ok(PusTcReader::new(self.tc_slice_raw())
.map_err(EcssTmtcError::Pus)?
.0)
}
fn convert(&self) -> Result<PusTcReader<'_>, PusTcFromMemError> {
Ok(PusTcReader::new(self.tc_slice_raw())
.map_err(EcssTmtcError::Pus)?
.0)
}
}
/// Converter structure for PUS telecommands which are stored inside a `Vec<u8>` structure.
/// Please note that this structure is not able to convert TCs which are stored inside a
/// [SharedStaticMemoryPool].
#[derive(Default, Clone)]
pub struct EcssTcInVecConverter {
sender_id: Option<ComponentId>,
pub pus_tc_raw: Option<Vec<u8>>,
}
impl EcssTcInMemConverter for EcssTcInVecConverter {
fn cache(&mut self, tc_in_memory: &TcInMemory) -> Result<(), PusTcFromMemError> {
self.pus_tc_raw = None;
match tc_in_memory {
super::TcInMemory::Pool(_packet_in_pool) => {
return Err(PusTcFromMemError::InvalidFormat(tc_in_memory.clone()));
}
super::TcInMemory::Vec(packet_with_sender) => {
self.pus_tc_raw = Some(packet_with_sender.packet.clone());
self.sender_id = Some(packet_with_sender.sender_id);
}
};
Ok(())
}
fn sender_id(&self) -> Option<ComponentId> {
self.sender_id
}
fn tc_slice_raw(&self) -> &[u8] {
if self.pus_tc_raw.is_none() {
return &[];
}
self.pus_tc_raw.as_ref().unwrap()
}
}
/// Converter structure for PUS telecommands which are stored inside
/// [SharedStaticMemoryPool] structure. This is useful if run-time allocation for these
/// packets should be avoided. Please note that this structure is not able to convert TCs which
/// are stored as a `Vec<u8>`.
pub struct EcssTcInSharedStoreConverter {
sender_id: Option<ComponentId>,
shared_tc_store: SharedStaticMemoryPool,
pus_buf: Vec<u8>,
}
impl EcssTcInSharedStoreConverter {
pub fn new(shared_tc_store: SharedStaticMemoryPool, max_expected_tc_size: usize) -> Self {
Self {
sender_id: None,
shared_tc_store,
pus_buf: alloc::vec![0; max_expected_tc_size],
}
}
pub fn copy_tc_to_buf(&mut self, addr: PoolAddr) -> Result<(), PusTcFromMemError> {
// Keep locked section as short as possible.
let mut tc_pool = self.shared_tc_store.write().map_err(|_| {
PusTcFromMemError::EcssTmtc(EcssTmtcError::Store(PoolError::LockError))
})?;
let tc_size = tc_pool.len_of_data(&addr).map_err(EcssTmtcError::Store)?;
if tc_size > self.pus_buf.len() {
return Err(
EcssTmtcError::ByteConversion(ByteConversionError::ToSliceTooSmall {
found: self.pus_buf.len(),
expected: tc_size,
})
.into(),
);
}
let tc_guard = tc_pool.read_with_guard(addr);
// TODO: Proper error handling.
tc_guard.read(&mut self.pus_buf[0..tc_size]).unwrap();
Ok(())
}
}
impl EcssTcInMemConverter for EcssTcInSharedStoreConverter {
fn cache(&mut self, tc_in_memory: &TcInMemory) -> Result<(), PusTcFromMemError> {
match tc_in_memory {
super::TcInMemory::Pool(packet_in_pool) => {
self.copy_tc_to_buf(packet_in_pool.store_addr)?;
self.sender_id = Some(packet_in_pool.sender_id);
}
super::TcInMemory::Vec(_) => {
return Err(PusTcFromMemError::InvalidFormat(tc_in_memory.clone()));
}
};
Ok(())
}
fn tc_slice_raw(&self) -> &[u8] {
self.pus_buf.as_ref()
}
fn sender_id(&self) -> Option<ComponentId> {
self.sender_id
}
}
pub struct PusServiceBase<
TcReceiver: EcssTcReceiver,
TmSender: EcssTmSender,
VerificationReporter: VerificationReportingProvider,
> {
pub id: ComponentId,
pub tc_receiver: TcReceiver,
pub tm_sender: TmSender,
pub verif_reporter: VerificationReporter,
}
/// This is a high-level PUS packet handler helper.
///
/// It performs some of the boilerplate acitivities involved when handling PUS telecommands and
/// it can be used to implement the handling of PUS telecommands for certain PUS telecommands
/// groups (for example individual services).
///
/// This base class can handle PUS telecommands backed by different memory storage machanisms
/// by using the [EcssTcInMemConverter] abstraction. This object provides some convenience
/// methods to make the generic parts of TC handling easier.
pub struct PusServiceHelper<
TcReceiver: EcssTcReceiver,
TmSender: EcssTmSender,
TcInMemConverter: EcssTcInMemConverter,
VerificationReporter: VerificationReportingProvider,
> {
pub common: PusServiceBase<TcReceiver, TmSender, VerificationReporter>,
pub tc_in_mem_converter: TcInMemConverter,
}
impl<
TcReceiver: EcssTcReceiver,
TmSender: EcssTmSender,
TcInMemConverter: EcssTcInMemConverter,
VerificationReporter: VerificationReportingProvider,
> PusServiceHelper<TcReceiver, TmSender, TcInMemConverter, VerificationReporter>
{
pub fn new(
id: ComponentId,
tc_receiver: TcReceiver,
tm_sender: TmSender,
verification_handler: VerificationReporter,
tc_in_mem_converter: TcInMemConverter,
) -> Self {
Self {
common: PusServiceBase {
id,
tc_receiver,
tm_sender,
verif_reporter: verification_handler,
},
tc_in_mem_converter,
}
}
pub fn id(&self) -> ComponentId {
self.common.id
}
pub fn tm_sender(&self) -> &TmSender {
&self.common.tm_sender
}
/// This function can be used to poll the internal [EcssTcReceiver] object for the next
/// telecommand packet. It will return `Ok(None)` if there are not packets available.
/// In any other case, it will perform the acceptance of the ECSS TC packet using the
/// internal [VerificationReportingProvider] object. It will then return the telecommand
/// and the according accepted token.
pub fn retrieve_and_accept_next_packet(
&mut self,
) -> Result<Option<AcceptedEcssTcAndToken>, PusPacketHandlingError> {
match self.common.tc_receiver.recv_tc() {
Ok(EcssTcAndToken {
tc_in_memory,
token,
}) => {
if token.is_none() {
return Err(PusPacketHandlingError::InvalidVerificationToken);
}
let token = token.unwrap();
let accepted_token = VerificationToken::<TcStateAccepted>::try_from(token)
.map_err(|_| PusPacketHandlingError::InvalidVerificationToken)?;
Ok(Some(AcceptedEcssTcAndToken {
tc_in_memory,
token: accepted_token,
}))
}
Err(e) => match e {
TryRecvTmtcError::Tmtc(e) => Err(PusPacketHandlingError::TcPolling(e)),
TryRecvTmtcError::Empty => Ok(None),
},
}
}
pub fn verif_reporter(&self) -> &VerificationReporter {
&self.common.verif_reporter
}
pub fn verif_reporter_mut(&mut self) -> &mut VerificationReporter {
&mut self.common.verif_reporter
}
pub fn tc_in_mem_converter(&self) -> &TcInMemConverter {
&self.tc_in_mem_converter
}
pub fn tc_in_mem_converter_mut(&mut self) -> &mut TcInMemConverter {
&mut self.tc_in_mem_converter
}
}
pub type PusServiceHelperDynWithMpsc<TcInMemConverter, VerificationReporter> =
PusServiceHelper<MpscTcReceiver, MpscTmAsVecSender, TcInMemConverter, VerificationReporter>;
pub type PusServiceHelperDynWithBoundedMpsc<TcInMemConverter, VerificationReporter> =
PusServiceHelper<
MpscTcReceiver,
MpscTmAsVecSenderBounded,
TcInMemConverter,
VerificationReporter,
>;
pub type PusServiceHelperStaticWithMpsc<TcInMemConverter, VerificationReporter> =
PusServiceHelper<
MpscTcReceiver,
PacketSenderWithSharedPool,
TcInMemConverter,
VerificationReporter,
>;
pub type PusServiceHelperStaticWithBoundedMpsc<TcInMemConverter, VerificationReporter> =
PusServiceHelper<
MpscTcReceiver,
PacketSenderWithSharedPool,
TcInMemConverter,
VerificationReporter,
>;
}
pub(crate) fn source_buffer_large_enough(
cap: usize,
len: usize,
) -> Result<(), ByteConversionError> {
if len > cap {
return Err(ByteConversionError::ToSliceTooSmall {
found: cap,
expected: len,
});
}
Ok(())
}
#[cfg(any(feature = "test_util", test))]
pub mod test_util {
use crate::request::UniqueApidTargetId;
use spacepackets::ecss::{tc::PusTcCreator, tm::PusTmReader};
use super::{
verification::{self, TcStateAccepted, VerificationToken},
PusPacketHandlerResult, PusPacketHandlingError,
};
pub const TEST_APID: u16 = 0x101;
pub const TEST_UNIQUE_ID_0: u32 = 0x05;
pub const TEST_UNIQUE_ID_1: u32 = 0x06;
pub const TEST_COMPONENT_ID_0: UniqueApidTargetId =
UniqueApidTargetId::new(TEST_APID, TEST_UNIQUE_ID_0);
pub const TEST_COMPONENT_ID_1: UniqueApidTargetId =
UniqueApidTargetId::new(TEST_APID, TEST_UNIQUE_ID_1);
pub trait PusTestHarness {
fn init_verification(&mut self, tc: &PusTcCreator) -> VerificationToken<TcStateAccepted>;
fn send_tc(&self, token: &VerificationToken<TcStateAccepted>, tc: &PusTcCreator);
fn read_next_tm(&mut self) -> PusTmReader<'_>;
fn check_no_tm_available(&self) -> bool;
fn check_next_verification_tm(
&self,
subservice: u8,
expected_request_id: verification::RequestId,
);
}
pub trait SimplePusPacketHandler {
fn handle_one_tc(&mut self) -> Result<PusPacketHandlerResult, PusPacketHandlingError>;
}
}
#[cfg(test)]
pub mod tests {
use core::cell::RefCell;
use std::sync::mpsc::TryRecvError;
use std::sync::{mpsc, RwLock};
use alloc::collections::VecDeque;
use alloc::vec::Vec;
use satrs_shared::res_code::ResultU16;
use spacepackets::ecss::tc::{PusTcCreator, PusTcReader};
use spacepackets::ecss::tm::{GenericPusTmSecondaryHeader, PusTmCreator, PusTmReader};
use spacepackets::ecss::{PusPacket, WritablePusPacket};
use spacepackets::CcsdsPacket;
use crate::pool::{PoolProvider, SharedStaticMemoryPool, StaticMemoryPool, StaticPoolConfig};
use crate::pus::verification::{RequestId, VerificationReporter};
use crate::tmtc::{PacketAsVec, PacketInPool, PacketSenderWithSharedPool, SharedPacketPool};
use crate::ComponentId;
use super::test_util::{TEST_APID, TEST_COMPONENT_ID_0};
use super::verification::test_util::TestVerificationReporter;
use super::verification::{
TcStateAccepted, VerificationReporterCfg, VerificationReportingProvider, VerificationToken,
};
use super::*;
#[derive(Debug, Eq, PartialEq, Clone)]
pub(crate) struct CommonTmInfo {
pub subservice: u8,
pub apid: u16,
pub seq_count: u16,
pub msg_counter: u16,
pub dest_id: u16,
pub time_stamp: [u8; 7],
}
impl CommonTmInfo {
pub fn new_zero_seq_count(
subservice: u8,
apid: u16,
dest_id: u16,
time_stamp: [u8; 7],
) -> Self {
Self {
subservice,
apid,
seq_count: 0,
msg_counter: 0,
dest_id,
time_stamp,
}
}
pub fn new_from_tm(tm: &PusTmCreator) -> Self {
let mut time_stamp = [0; 7];
time_stamp.clone_from_slice(&tm.timestamp()[0..7]);
Self {
subservice: PusPacket::subservice(tm),
apid: tm.apid(),
seq_count: tm.seq_count(),
msg_counter: tm.msg_counter(),
dest_id: tm.dest_id(),
time_stamp,
}
}
}
/// Common fields for a PUS service test harness.
pub struct PusServiceHandlerWithSharedStoreCommon {
pus_buf: RefCell<[u8; 2048]>,
tm_buf: [u8; 2048],
tc_pool: SharedStaticMemoryPool,
tm_pool: SharedPacketPool,
tc_sender: mpsc::SyncSender<EcssTcAndToken>,
tm_receiver: mpsc::Receiver<PacketInPool>,
}
pub type PusServiceHelperStatic = PusServiceHelper<
MpscTcReceiver,
PacketSenderWithSharedPool,
EcssTcInSharedStoreConverter,
VerificationReporter,
>;
impl PusServiceHandlerWithSharedStoreCommon {
/// This function generates the structure in addition to the PUS service handler
/// [PusServiceHandler] which might be required for a specific PUS service handler.
///
/// The PUS service handler is instantiated with a [EcssTcInStoreConverter].
pub fn new(id: ComponentId) -> (Self, PusServiceHelperStatic) {
let pool_cfg = StaticPoolConfig::new(alloc::vec![(16, 16), (8, 32), (4, 64)], false);
let tc_pool = StaticMemoryPool::new(pool_cfg.clone());
let tm_pool = StaticMemoryPool::new(pool_cfg);
let shared_tc_pool = SharedStaticMemoryPool::new(RwLock::new(tc_pool));
let shared_tm_pool = SharedStaticMemoryPool::new(RwLock::new(tm_pool));
let shared_tm_pool_wrapper = SharedPacketPool::new(&shared_tm_pool);
let (test_srv_tc_tx, test_srv_tc_rx) = mpsc::sync_channel(10);
let (tm_tx, tm_rx) = mpsc::sync_channel(10);
let verif_cfg = VerificationReporterCfg::new(TEST_APID, 1, 2, 8).unwrap();
let verification_handler =
VerificationReporter::new(TEST_COMPONENT_ID_0.id(), &verif_cfg);
let test_srv_tm_sender =
PacketSenderWithSharedPool::new(tm_tx, shared_tm_pool_wrapper.clone());
let in_store_converter =
EcssTcInSharedStoreConverter::new(shared_tc_pool.clone(), 2048);
(
Self {
pus_buf: RefCell::new([0; 2048]),
tm_buf: [0; 2048],
tc_pool: shared_tc_pool,
tm_pool: shared_tm_pool_wrapper,
tc_sender: test_srv_tc_tx,
tm_receiver: tm_rx,
},
PusServiceHelper::new(
id,
test_srv_tc_rx,
test_srv_tm_sender,
verification_handler,
in_store_converter,
),
)
}
pub fn send_tc(
&self,
sender_id: ComponentId,
token: &VerificationToken<TcStateAccepted>,
tc: &PusTcCreator,
) {
let mut mut_buf = self.pus_buf.borrow_mut();
let tc_size = tc.write_to_bytes(mut_buf.as_mut_slice()).unwrap();
let mut tc_pool = self.tc_pool.write().unwrap();
let addr = tc_pool.add(&mut_buf[..tc_size]).unwrap();
drop(tc_pool);
// Send accepted TC to test service handler.
self.tc_sender
.send(EcssTcAndToken::new(
PacketInPool::new(sender_id, addr),
*token,
))
.expect("sending tc failed");
}
pub fn read_next_tm(&mut self) -> PusTmReader<'_> {
let next_msg = self.tm_receiver.try_recv();
assert!(next_msg.is_ok());
let tm_in_pool = next_msg.unwrap();
let tm_pool = self.tm_pool.0.read().unwrap();
let tm_raw = tm_pool.read_as_vec(&tm_in_pool.store_addr).unwrap();
self.tm_buf[0..tm_raw.len()].copy_from_slice(&tm_raw);
PusTmReader::new(&self.tm_buf, 7).unwrap().0
}
pub fn check_no_tm_available(&self) -> bool {
let next_msg = self.tm_receiver.try_recv();
if let TryRecvError::Empty = next_msg.unwrap_err() {
return true;
}
false
}
pub fn check_next_verification_tm(&self, subservice: u8, expected_request_id: RequestId) {
let next_msg = self.tm_receiver.try_recv();
assert!(next_msg.is_ok());
let tm_in_pool = next_msg.unwrap();
let tm_pool = self.tm_pool.0.read().unwrap();
let tm_raw = tm_pool.read_as_vec(&tm_in_pool.store_addr).unwrap();
let tm = PusTmReader::new(&tm_raw, 7).unwrap().0;
assert_eq!(PusPacket::service(&tm), 1);
assert_eq!(PusPacket::subservice(&tm), subservice);
assert_eq!(tm.apid(), TEST_APID);
let req_id =
RequestId::from_bytes(tm.user_data()).expect("generating request ID failed");
assert_eq!(req_id, expected_request_id);
}
}
pub struct PusServiceHandlerWithVecCommon {
current_tm: Option<Vec<u8>>,
tc_sender: mpsc::Sender<EcssTcAndToken>,
tm_receiver: mpsc::Receiver<PacketAsVec>,
}
pub type PusServiceHelperDynamic = PusServiceHelper<
MpscTcReceiver,
MpscTmAsVecSender,
EcssTcInVecConverter,
VerificationReporter,
>;
impl PusServiceHandlerWithVecCommon {
pub fn new_with_standard_verif_reporter(
id: ComponentId,
) -> (Self, PusServiceHelperDynamic) {
let (test_srv_tc_tx, test_srv_tc_rx) = mpsc::channel();
let (tm_tx, tm_rx) = mpsc::channel();
let verif_cfg = VerificationReporterCfg::new(TEST_APID, 1, 2, 8).unwrap();
let verification_handler =
VerificationReporter::new(TEST_COMPONENT_ID_0.id(), &verif_cfg);
let in_store_converter = EcssTcInVecConverter::default();
(
Self {
current_tm: None,
tc_sender: test_srv_tc_tx,
tm_receiver: tm_rx,
},
PusServiceHelper::new(
id,
test_srv_tc_rx,
tm_tx,
verification_handler,
in_store_converter,
),
)
}
}
impl PusServiceHandlerWithVecCommon {
pub fn new_with_test_verif_sender(
id: ComponentId,
) -> (
Self,
PusServiceHelper<
MpscTcReceiver,
MpscTmAsVecSender,
EcssTcInVecConverter,
TestVerificationReporter,
>,
) {
let (test_srv_tc_tx, test_srv_tc_rx) = mpsc::channel();
let (tm_tx, tm_rx) = mpsc::channel();
let in_store_converter = EcssTcInVecConverter::default();
let verification_handler = TestVerificationReporter::new(id);
(
Self {
current_tm: None,
tc_sender: test_srv_tc_tx,
tm_receiver: tm_rx,
//verification_handler: verification_handler.clone(),
},
PusServiceHelper::new(
id,
test_srv_tc_rx,
tm_tx,
verification_handler,
in_store_converter,
),
)
}
}
impl PusServiceHandlerWithVecCommon {
pub fn send_tc(
&self,
sender_id: ComponentId,
token: &VerificationToken<TcStateAccepted>,
tc: &PusTcCreator,
) {
// Send accepted TC to test service handler.
self.tc_sender
.send(EcssTcAndToken::new(
TcInMemory::Vec(PacketAsVec::new(
sender_id,
tc.to_vec().expect("pus tc conversion to vec failed"),
)),
*token,
))
.expect("sending tc failed");
}
pub fn read_next_tm(&mut self) -> PusTmReader<'_> {
let next_msg = self.tm_receiver.try_recv();
assert!(next_msg.is_ok());
self.current_tm = Some(next_msg.unwrap().packet);
PusTmReader::new(self.current_tm.as_ref().unwrap(), 7)
.unwrap()
.0
}
pub fn check_no_tm_available(&self) -> bool {
let next_msg = self.tm_receiver.try_recv();
if let TryRecvError::Empty = next_msg.unwrap_err() {
return true;
}
false
}
pub fn check_next_verification_tm(&self, subservice: u8, expected_request_id: RequestId) {
let next_msg = self.tm_receiver.try_recv();
assert!(next_msg.is_ok());
let next_msg = next_msg.unwrap();
let tm = PusTmReader::new(next_msg.packet.as_slice(), 7).unwrap().0;
assert_eq!(PusPacket::service(&tm), 1);
assert_eq!(PusPacket::subservice(&tm), subservice);
assert_eq!(tm.apid(), TEST_APID);
let req_id =
RequestId::from_bytes(tm.user_data()).expect("generating request ID failed");
assert_eq!(req_id, expected_request_id);
}
}
pub const APP_DATA_TOO_SHORT: ResultU16 = ResultU16::new(1, 1);
#[derive(Default)]
pub struct TestConverter<const SERVICE: u8> {
pub conversion_request: VecDeque<Vec<u8>>,
}
impl<const SERVICE: u8> TestConverter<SERVICE> {
pub fn check_service(&self, tc: &PusTcReader) -> Result<(), PusPacketHandlingError> {
if tc.service() != SERVICE {
return Err(PusPacketHandlingError::RequestConversion(
GenericConversionError::WrongService(tc.service()),
));
}
Ok(())
}
pub fn is_empty(&self) {
self.conversion_request.is_empty();
}
pub fn check_next_conversion(&mut self, tc: &PusTcCreator) {
assert!(!self.conversion_request.is_empty());
assert_eq!(
self.conversion_request.pop_front().unwrap(),
tc.to_vec().unwrap()
);
}
}
pub struct TestRouter<REQUEST> {
pub routing_requests: RefCell<VecDeque<(ComponentId, REQUEST)>>,
pub routing_errors: RefCell<VecDeque<(ComponentId, GenericRoutingError)>>,
pub injected_routing_failure: RefCell<Option<GenericRoutingError>>,
}
impl<REQUEST> Default for TestRouter<REQUEST> {
fn default() -> Self {
Self {
routing_requests: Default::default(),
routing_errors: Default::default(),
injected_routing_failure: Default::default(),
}
}
}
impl<REQUEST> TestRouter<REQUEST> {
pub fn check_for_injected_error(&self) -> Result<(), GenericRoutingError> {
if self.injected_routing_failure.borrow().is_some() {
return Err(self.injected_routing_failure.borrow_mut().take().unwrap());
}
Ok(())
}
pub fn handle_error(
&self,
target_id: ComponentId,
_token: VerificationToken<TcStateAccepted>,
_tc: &PusTcReader,
error: GenericRoutingError,
_time_stamp: &[u8],
_verif_reporter: &impl VerificationReportingProvider,
) {
self.routing_errors
.borrow_mut()
.push_back((target_id, error));
}
pub fn no_routing_errors(&self) -> bool {
self.routing_errors.borrow().is_empty()
}
pub fn retrieve_next_routing_error(&mut self) -> (ComponentId, GenericRoutingError) {
if self.routing_errors.borrow().is_empty() {
panic!("no routing request available");
}
self.routing_errors.borrow_mut().pop_front().unwrap()
}
pub fn inject_routing_error(&mut self, error: GenericRoutingError) {
*self.injected_routing_failure.borrow_mut() = Some(error);
}
pub fn is_empty(&self) -> bool {
self.routing_requests.borrow().is_empty()
}
pub fn retrieve_next_request(&mut self) -> (ComponentId, REQUEST) {
if self.routing_requests.borrow().is_empty() {
panic!("no routing request available");
}
self.routing_requests.borrow_mut().pop_front().unwrap()
}
}
}