sat-rs/satrs/src/pus/scheduler.rs

2005 lines
80 KiB
Rust

//! # PUS Service 11 Scheduling Module
//!
//! The core data structure of this module is the [PusScheduler]. This structure can be used
//! to perform the scheduling of telecommands like specified in the ECSS standard.
use core::fmt::{Debug, Display, Formatter};
use core::time::Duration;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use spacepackets::ecss::scheduling::TimeWindowType;
use spacepackets::ecss::tc::{GenericPusTcSecondaryHeader, IsPusTelecommand, PusTcReader};
use spacepackets::ecss::{PusError, PusPacket, WritablePusPacket};
use spacepackets::time::{CcsdsTimeProvider, TimeReader, TimeWriter, TimestampError, UnixTime};
use spacepackets::{ByteConversionError, CcsdsPacket};
#[cfg(feature = "std")]
use std::error::Error;
use crate::pool::{PoolError, PoolProvider};
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
/// This is the request ID as specified in ECSS-E-ST-70-41C 5.4.11.2 of the standard.
///
/// This version of the request ID is used to identify scheduled commands and also contains
/// the source ID found in the secondary header of PUS telecommands.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RequestId {
pub(crate) source_id: u16,
pub(crate) apid: u16,
pub(crate) seq_count: u16,
}
impl RequestId {
pub fn source_id(&self) -> u16 {
self.source_id
}
pub fn apid(&self) -> u16 {
self.apid
}
pub fn seq_count(&self) -> u16 {
self.seq_count
}
pub fn from_tc(
tc: &(impl CcsdsPacket + GenericPusTcSecondaryHeader + IsPusTelecommand),
) -> Self {
RequestId {
source_id: tc.source_id(),
apid: tc.apid(),
seq_count: tc.seq_count(),
}
}
pub fn as_u64(&self) -> u64 {
((self.source_id as u64) << 32) | ((self.apid as u64) << 16) | self.seq_count as u64
}
}
pub type AddrInStore = u64;
/// This is the format stored internally by the TC scheduler for each scheduled telecommand.
/// It consists of a generic address for that telecommand in the TC pool and a request ID.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TcInfo {
addr: AddrInStore,
request_id: RequestId,
}
impl TcInfo {
pub fn addr(&self) -> AddrInStore {
self.addr
}
pub fn request_id(&self) -> RequestId {
self.request_id
}
pub fn new(addr: u64, request_id: RequestId) -> Self {
TcInfo { addr, request_id }
}
}
pub struct TimeWindow<TimeProvder> {
time_window_type: TimeWindowType,
start_time: Option<TimeProvder>,
end_time: Option<TimeProvder>,
}
impl<TimeProvider> TimeWindow<TimeProvider> {
pub fn new_select_all() -> Self {
Self {
time_window_type: TimeWindowType::SelectAll,
start_time: None,
end_time: None,
}
}
pub fn time_window_type(&self) -> TimeWindowType {
self.time_window_type
}
pub fn start_time(&self) -> Option<&TimeProvider> {
self.start_time.as_ref()
}
pub fn end_time(&self) -> Option<&TimeProvider> {
self.end_time.as_ref()
}
}
impl<TimeProvider: CcsdsTimeProvider + Clone> TimeWindow<TimeProvider> {
pub fn new_from_time_to_time(start_time: &TimeProvider, end_time: &TimeProvider) -> Self {
Self {
time_window_type: TimeWindowType::TimeTagToTimeTag,
start_time: Some(start_time.clone()),
end_time: Some(end_time.clone()),
}
}
pub fn new_from_time(start_time: &TimeProvider) -> Self {
Self {
time_window_type: TimeWindowType::FromTimeTag,
start_time: Some(start_time.clone()),
end_time: None,
}
}
pub fn new_to_time(end_time: &TimeProvider) -> Self {
Self {
time_window_type: TimeWindowType::ToTimeTag,
start_time: None,
end_time: Some(end_time.clone()),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ScheduleError {
PusError(PusError),
/// The release time is within the time-margin added on top of the current time.
/// The first parameter is the current time, the second one the time margin, and the third one
/// the release time.
ReleaseTimeInTimeMargin {
current_time: UnixTime,
time_margin: Duration,
release_time: UnixTime,
},
/// Nested time-tagged commands are not allowed.
NestedScheduledTc,
StoreError(PoolError),
TcDataEmpty,
TimestampError(TimestampError),
WrongSubservice(u8),
WrongService(u8),
ByteConversionError(ByteConversionError),
}
impl Display for ScheduleError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self {
ScheduleError::PusError(e) => {
write!(f, "Pus Error: {e}")
}
ScheduleError::ReleaseTimeInTimeMargin {
current_time,
time_margin,
release_time,
} => {
write!(
f,
"time margin too short, current time: {current_time:?}, time margin: {time_margin:?}, release time: {release_time:?}"
)
}
ScheduleError::NestedScheduledTc => {
write!(f, "nested scheduling is not allowed")
}
ScheduleError::StoreError(e) => {
write!(f, "pus scheduling: {e}")
}
ScheduleError::TcDataEmpty => {
write!(f, "empty TC data field")
}
ScheduleError::TimestampError(e) => {
write!(f, "pus scheduling: {e}")
}
ScheduleError::WrongService(srv) => {
write!(f, "pus scheduling: wrong service number {srv}")
}
ScheduleError::WrongSubservice(subsrv) => {
write!(f, "pus scheduling: wrong subservice number {subsrv}")
}
ScheduleError::ByteConversionError(e) => {
write!(f, "pus scheduling: {e}")
}
}
}
}
impl From<PusError> for ScheduleError {
fn from(e: PusError) -> Self {
Self::PusError(e)
}
}
impl From<PoolError> for ScheduleError {
fn from(e: PoolError) -> Self {
Self::StoreError(e)
}
}
impl From<TimestampError> for ScheduleError {
fn from(e: TimestampError) -> Self {
Self::TimestampError(e)
}
}
impl From<ByteConversionError> for ScheduleError {
fn from(e: ByteConversionError) -> Self {
Self::ByteConversionError(e)
}
}
#[cfg(feature = "std")]
impl Error for ScheduleError {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
ScheduleError::PusError(e) => Some(e),
ScheduleError::StoreError(e) => Some(e),
ScheduleError::TimestampError(e) => Some(e),
ScheduleError::ByteConversionError(e) => Some(e),
_ => None,
}
}
}
/// Generic trait for scheduler objects which are able to schedule ECSS PUS C packets.
pub trait PusSchedulerProvider {
type TimeProvider: CcsdsTimeProvider + TimeReader;
fn reset(&mut self, store: &mut (impl PoolProvider + ?Sized)) -> Result<(), PoolError>;
fn is_enabled(&self) -> bool;
fn enable(&mut self);
/// A disabled scheduler should still delete commands where the execution time has been reached
/// but should not release them to be executed.
fn disable(&mut self);
/// Insert a telecommand which was already unwrapped from the outer Service 11 packet and stored
/// inside the telecommand packet pool.
fn insert_unwrapped_and_stored_tc(
&mut self,
time_stamp: UnixTime,
info: TcInfo,
) -> Result<(), ScheduleError>;
/// Insert a telecommand based on the fully wrapped time-tagged telecommand. The timestamp
/// provider needs to be supplied via a generic.
fn insert_wrapped_tc<TimeProvider>(
&mut self,
pus_tc: &(impl IsPusTelecommand + PusPacket + GenericPusTcSecondaryHeader),
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<TcInfo, ScheduleError> {
if PusPacket::service(pus_tc) != 11 {
return Err(ScheduleError::WrongService(PusPacket::service(pus_tc)));
}
if PusPacket::subservice(pus_tc) != 4 {
return Err(ScheduleError::WrongSubservice(PusPacket::subservice(
pus_tc,
)));
}
if pus_tc.user_data().is_empty() {
return Err(ScheduleError::TcDataEmpty);
}
let user_data = pus_tc.user_data();
let stamp: Self::TimeProvider = TimeReader::from_bytes(user_data)?;
let unix_stamp = stamp.unix_time();
let stamp_len = stamp.len_as_bytes();
self.insert_unwrapped_tc(unix_stamp, &user_data[stamp_len..], pool)
}
/// Insert a telecommand which was already unwrapped from the outer Service 11 packet but still
/// needs to be stored inside the telecommand pool.
fn insert_unwrapped_tc(
&mut self,
time_stamp: UnixTime,
tc: &[u8],
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<TcInfo, ScheduleError> {
let check_tc = PusTcReader::new(tc)?;
if PusPacket::service(&check_tc.0) == 11 && PusPacket::subservice(&check_tc.0) == 4 {
return Err(ScheduleError::NestedScheduledTc);
}
let req_id = RequestId::from_tc(&check_tc.0);
match pool.add(tc) {
Ok(addr) => {
let info = TcInfo::new(addr, req_id);
self.insert_unwrapped_and_stored_tc(time_stamp, info)?;
Ok(info)
}
Err(err) => Err(err.into()),
}
}
}
/// Helper function to generate the application data for a PUS telecommand to insert an
/// activity into a time-based schedule according to ECSS-E-ST-70-41C 8.11.2.4
///
/// Please note that the N field is set to a [u16] unsigned bytefield with the value 1.
pub fn generate_insert_telecommand_app_data(
buf: &mut [u8],
release_time: &impl TimeWriter,
request: &impl WritablePusPacket,
) -> Result<usize, ScheduleError> {
let required_len = 2 + release_time.len_written() + request.len_written();
if required_len > buf.len() {
return Err(ByteConversionError::ToSliceTooSmall {
found: buf.len(),
expected: required_len,
}
.into());
}
let mut current_len = 0;
let n = 1_u16;
buf[current_len..current_len + 2].copy_from_slice(&n.to_be_bytes());
current_len += 2;
current_len += release_time
.write_to_bytes(&mut buf[current_len..current_len + release_time.len_written()])?;
current_len +=
request.write_to_bytes(&mut buf[current_len..current_len + request.len_written()])?;
Ok(current_len)
}
#[cfg(feature = "alloc")]
pub mod alloc_mod {
use alloc::{
collections::{
btree_map::{Entry, Range},
BTreeMap,
},
vec::Vec,
};
use spacepackets::time::cds::{self, DaysLen24Bits};
use crate::pool::PoolAddr;
use super::*;
#[cfg(feature = "std")]
use std::time::SystemTimeError;
/// This function is similar to [generate_insert_telecommand_app_data] but returns the application
/// data as a [alloc::vec::Vec].
pub fn generate_insert_telecommand_app_data_as_vec(
release_time: &impl TimeWriter,
request: &impl WritablePusPacket,
) -> Result<alloc::vec::Vec<u8>, ScheduleError> {
let mut vec = alloc::vec::Vec::new();
vec.extend_from_slice(&1_u16.to_be_bytes());
vec.append(&mut release_time.to_vec()?);
vec.append(&mut request.to_vec()?);
Ok(vec)
}
enum DeletionResult {
WithoutStoreDeletion(Option<PoolAddr>),
WithStoreDeletion(Result<bool, PoolError>),
}
/// This is the core data structure for scheduling PUS telecommands with [alloc] support.
///
/// It is assumed that the actual telecommand data is stored in a separate TC pool offering
/// a [crate::pool::PoolProvider] API. This data structure just tracks the store
/// addresses and their release times and offers a convenient API to insert and release
/// telecommands and perform other functionality specified by the ECSS standard in section 6.11.
/// The time is tracked as a [spacepackets::time::UnixTime] but the only requirement to
/// the timekeeping of the user is that it is convertible to that timestamp.
///
/// The standard also specifies that the PUS scheduler can be enabled and disabled.
/// A disabled scheduler should still delete commands where the execution time has been reached
/// but should not release them to be executed.
///
/// The implementation uses an ordered map internally with the release timestamp being the key.
/// This allows efficient time based insertions and extractions which should be the primary use-case
/// for a time-based command scheduler.
/// There is no way to avoid duplicate [RequestId]s during insertion, which can occur even if the
/// user always correctly increment for sequence counter due to overflows. To avoid this issue,
/// it can make sense to split up telecommand groups by the APID to avoid overflows.
///
/// Currently, sub-schedules and groups are not supported.
#[derive(Debug)]
pub struct PusScheduler {
// TODO: Use MonotonicTime from tai-time crate instead of UnixTime and cache leap seconds.
tc_map: BTreeMap<UnixTime, Vec<TcInfo>>,
pub(crate) current_time: UnixTime,
time_margin: Duration,
enabled: bool,
}
impl PusScheduler {
/// Create a new PUS scheduler.
///
/// # Arguments
///
/// * `init_current_time` - The time to initialize the scheduler with.
/// * `time_margin` - This time margin is used when inserting new telecommands into the
/// schedule. If the release time of a new telecommand is earlier than the time margin
/// added to the current time, it will not be inserted into the schedule.
/// * `tc_buf_size` - Buffer for temporary storage of telecommand packets. This buffer
/// should be large enough to accomodate the largest expected TC packets.
pub fn new(init_current_time: UnixTime, time_margin: Duration) -> Self {
PusScheduler {
tc_map: Default::default(),
current_time: init_current_time,
time_margin,
enabled: true,
}
}
/// Like [Self::new], but sets the `init_current_time` parameter to the current system time.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn new_with_current_init_time(time_margin: Duration) -> Result<Self, SystemTimeError> {
Ok(Self::new(UnixTime::now()?, time_margin))
}
pub fn num_scheduled_telecommands(&self) -> u64 {
let mut num_entries = 0;
for entries in &self.tc_map {
num_entries += entries.1.len() as u64;
}
num_entries
}
pub fn update_time(&mut self, current_time: UnixTime) {
self.current_time = current_time;
}
pub fn current_time(&self) -> &UnixTime {
&self.current_time
}
/// Insert a telecommand which was already unwrapped from the outer Service 11 packet and stored
/// inside the telecommand packet pool.
pub fn insert_unwrapped_and_stored_tc(
&mut self,
time_stamp: UnixTime,
info: TcInfo,
) -> Result<(), ScheduleError> {
if time_stamp < self.current_time + self.time_margin {
return Err(ScheduleError::ReleaseTimeInTimeMargin {
current_time: self.current_time,
time_margin: self.time_margin,
release_time: time_stamp,
});
}
match self.tc_map.entry(time_stamp) {
Entry::Vacant(e) => {
e.insert(alloc::vec![info]);
}
Entry::Occupied(mut v) => {
v.get_mut().push(info);
}
}
Ok(())
}
/// Insert a telecommand which was already unwrapped from the outer Service 11 packet but still
/// needs to be stored inside the telecommand pool.
pub fn insert_unwrapped_tc(
&mut self,
time_stamp: UnixTime,
tc: &[u8],
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<TcInfo, ScheduleError> {
let check_tc = PusTcReader::new(tc)?;
if PusPacket::service(&check_tc.0) == 11 && PusPacket::subservice(&check_tc.0) == 4 {
return Err(ScheduleError::NestedScheduledTc);
}
let req_id = RequestId::from_tc(&check_tc.0);
match pool.add(tc) {
Ok(addr) => {
let info = TcInfo::new(addr, req_id);
self.insert_unwrapped_and_stored_tc(time_stamp, info)?;
Ok(info)
}
Err(err) => Err(err.into()),
}
}
/// Insert a telecommand based on the fully wrapped time-tagged telecommand using a CDS
/// short timestamp with 16-bit length of days field.
pub fn insert_wrapped_tc_cds_short(
&mut self,
pus_tc: &(impl IsPusTelecommand + PusPacket + GenericPusTcSecondaryHeader),
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<TcInfo, ScheduleError> {
self.insert_wrapped_tc::<cds::CdsTime>(pus_tc, pool)
}
/// Insert a telecommand based on the fully wrapped time-tagged telecommand using a CDS
/// long timestamp with a 24-bit length of days field.
pub fn insert_wrapped_tc_cds_long(
&mut self,
pus_tc: &(impl IsPusTelecommand + PusPacket + GenericPusTcSecondaryHeader),
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<TcInfo, ScheduleError> {
self.insert_wrapped_tc::<cds::CdsTime<DaysLen24Bits>>(pus_tc, pool)
}
/// This function uses [Self::retrieve_by_time_filter] to extract all scheduled commands inside
/// the time range and then deletes them from the provided store.
///
/// Like specified in the documentation of [Self::retrieve_by_time_filter], the range extraction
/// for deletion is always inclusive.
///
/// This function returns the number of deleted commands on success. In case any deletion fails,
/// the last deletion will be supplied in addition to the number of deleted commands.
pub fn delete_by_time_filter<TimeProvider: CcsdsTimeProvider + Clone>(
&mut self,
time_window: TimeWindow<TimeProvider>,
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<u64, (u64, PoolError)> {
let range = self.retrieve_by_time_filter(time_window);
let mut del_packets = 0;
let mut res_if_fails = None;
let mut keys_to_delete = alloc::vec::Vec::new();
for time_bucket in range {
for tc in time_bucket.1 {
match pool.delete(tc.addr) {
Ok(_) => del_packets += 1,
Err(e) => res_if_fails = Some(e),
}
}
keys_to_delete.push(*time_bucket.0);
}
for key in keys_to_delete {
self.tc_map.remove(&key);
}
if let Some(err) = res_if_fails {
return Err((del_packets, err));
}
Ok(del_packets)
}
/// Deletes all the scheduled commands. This also deletes the packets from the passed TC pool.
///
/// This function returns the number of deleted commands on success. In case any deletion fails,
/// the last deletion will be supplied in addition to the number of deleted commands.
pub fn delete_all(
&mut self,
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<u64, (u64, PoolError)> {
self.delete_by_time_filter(TimeWindow::<cds::CdsTime>::new_select_all(), pool)
}
/// Retrieve a range over all scheduled commands.
pub fn retrieve_all(
&mut self,
) -> alloc::collections::btree_map::Range<'_, UnixTime, alloc::vec::Vec<TcInfo>> {
self.tc_map.range(..)
}
/// This retrieves scheduled telecommands which are inside the provided time window.
///
/// It should be noted that the ranged extraction is always inclusive. For example, a range
/// from 50 to 100 unix seconds would also include command scheduled at 100 unix seconds.
pub fn retrieve_by_time_filter<TimeProvider: CcsdsTimeProvider>(
&mut self,
time_window: TimeWindow<TimeProvider>,
) -> Range<'_, UnixTime, alloc::vec::Vec<TcInfo>> {
match time_window.time_window_type() {
TimeWindowType::SelectAll => self.tc_map.range(..),
TimeWindowType::TimeTagToTimeTag => {
// This should be guaranteed to be valid by library API, so unwrap is okay
let start_time = time_window.start_time().unwrap().unix_time();
let end_time = time_window.end_time().unwrap().unix_time();
self.tc_map.range(start_time..=end_time)
}
TimeWindowType::FromTimeTag => {
// This should be guaranteed to be valid by library API, so unwrap is okay
let start_time = time_window.start_time().unwrap().unix_time();
self.tc_map.range(start_time..)
}
TimeWindowType::ToTimeTag => {
// This should be guaranteed to be valid by library API, so unwrap is okay
let end_time = time_window.end_time().unwrap().unix_time();
self.tc_map.range(..=end_time)
}
}
}
/// Deletes a scheduled command with the given request ID. Returns the store address if a
/// scheduled command was found in the map and deleted, and None otherwise.
///
/// Please note that this function will stop on the first telecommand with a request ID match.
/// In case of duplicate IDs (which should generally not happen), this function needs to be
/// called repeatedly.
pub fn delete_by_request_id(&mut self, req_id: &RequestId) -> Option<PoolAddr> {
if let DeletionResult::WithoutStoreDeletion(v) =
self.delete_by_request_id_internal_without_store_deletion(req_id)
{
return v;
}
panic!("unexpected deletion result");
}
/// This behaves like [Self::delete_by_request_id] but deletes the packet from the pool as well.
pub fn delete_by_request_id_and_from_pool(
&mut self,
req_id: &RequestId,
pool: &mut (impl PoolProvider + ?Sized),
) -> Result<bool, PoolError> {
if let DeletionResult::WithStoreDeletion(v) =
self.delete_by_request_id_internal_with_store_deletion(req_id, pool)
{
return v;
}
panic!("unexpected deletion result");
}
fn delete_by_request_id_internal_without_store_deletion(
&mut self,
req_id: &RequestId,
) -> DeletionResult {
let mut idx_found = None;
for time_bucket in &mut self.tc_map {
for (idx, tc_info) in time_bucket.1.iter().enumerate() {
if &tc_info.request_id == req_id {
idx_found = Some(idx);
}
}
if let Some(idx) = idx_found {
let addr = time_bucket.1.remove(idx).addr;
return DeletionResult::WithoutStoreDeletion(Some(addr));
}
}
DeletionResult::WithoutStoreDeletion(None)
}
fn delete_by_request_id_internal_with_store_deletion(
&mut self,
req_id: &RequestId,
pool: &mut (impl PoolProvider + ?Sized),
) -> DeletionResult {
let mut idx_found = None;
for time_bucket in &mut self.tc_map {
for (idx, tc_info) in time_bucket.1.iter().enumerate() {
if &tc_info.request_id == req_id {
idx_found = Some(idx);
}
}
if let Some(idx) = idx_found {
let addr = time_bucket.1.remove(idx).addr;
return match pool.delete(addr) {
Ok(_) => DeletionResult::WithStoreDeletion(Ok(true)),
Err(e) => DeletionResult::WithStoreDeletion(Err(e)),
};
}
}
DeletionResult::WithStoreDeletion(Ok(false))
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn update_time_from_now(&mut self) -> Result<(), SystemTimeError> {
self.current_time = UnixTime::now()?;
Ok(())
}
/// Utility method which calls [Self::telecommands_to_release] and then calls a releaser
/// closure for each telecommand which should be released. This function will also delete
/// the telecommands from the holding store after calling the release closure if the user
/// returns [true] from the release closure. A buffer must be provided to hold the
/// telecommands for the release process.
///
/// # Arguments
///
/// * `releaser` - Closure where the first argument is whether the scheduler is enabled and
/// the second argument is the telecommand information also containing the store
/// address. This closure should return whether the command should be deleted. Please
/// note that returning false might lead to memory leaks if the TC is not cleared from
/// the store in some other way.
/// * `tc_store` - The holding store of the telecommands.
/// * `tc_buf` - Buffer to hold each telecommand being released.
pub fn release_telecommands_with_buffer<R: FnMut(bool, &TcInfo, &[u8]) -> bool>(
&mut self,
releaser: R,
tc_store: &mut (impl PoolProvider + ?Sized),
tc_buf: &mut [u8],
) -> Result<u64, (u64, PoolError)> {
self.release_telecommands_internal(releaser, tc_store, Some(tc_buf))
}
/// This functions is almost identical to [Self::release_telecommands_with_buffer] but does
/// not require a user provided TC buffer because it will always use the
/// [PoolProvider::read_as_vec] API to read the TC packets.
///
/// However, this might also perform frequent allocations for all telecommands being
/// released.
pub fn release_telecommands<R: FnMut(bool, &TcInfo, &[u8]) -> bool>(
&mut self,
releaser: R,
tc_store: &mut (impl PoolProvider + ?Sized),
) -> Result<u64, (u64, PoolError)> {
self.release_telecommands_internal(releaser, tc_store, None)
}
fn release_telecommands_internal<R: FnMut(bool, &TcInfo, &[u8]) -> bool>(
&mut self,
mut releaser: R,
tc_store: &mut (impl PoolProvider + ?Sized),
mut tc_buf: Option<&mut [u8]>,
) -> Result<u64, (u64, PoolError)> {
let tcs_to_release = self.telecommands_to_release();
let mut released_tcs = 0;
let mut store_error = Ok(());
for tc in tcs_to_release {
for info in tc.1 {
let should_delete = match tc_buf.as_mut() {
Some(buf) => {
tc_store
.read(&info.addr, buf)
.map_err(|e| (released_tcs, e))?;
releaser(self.enabled, info, buf)
}
None => {
let tc = tc_store
.read_as_vec(&info.addr)
.map_err(|e| (released_tcs, e))?;
releaser(self.enabled, info, &tc)
}
};
released_tcs += 1;
if should_delete {
let res = tc_store.delete(info.addr);
if res.is_err() {
store_error = res;
}
}
}
}
self.tc_map.retain(|k, _| k > &self.current_time);
store_error
.map(|_| released_tcs)
.map_err(|e| (released_tcs, e))
}
/// This utility method is similar to [Self::release_telecommands] but will not perform
/// store deletions and thus does not require a mutable reference of the TC store.
///
/// It will returns a [Vec] of [TcInfo]s to transfer the list of released
/// telecommands to the user. The user should take care of deleting those telecommands
/// from the holding store to prevent memory leaks.
pub fn release_telecommands_no_deletion<R: FnMut(bool, &TcInfo, &[u8])>(
&mut self,
mut releaser: R,
tc_store: &(impl PoolProvider + ?Sized),
tc_buf: &mut [u8],
) -> Result<alloc::vec::Vec<TcInfo>, (alloc::vec::Vec<TcInfo>, PoolError)> {
let tcs_to_release = self.telecommands_to_release();
let mut released_tcs = alloc::vec::Vec::new();
for tc in tcs_to_release {
for info in tc.1 {
tc_store
.read(&info.addr, tc_buf)
.map_err(|e| (released_tcs.clone(), e))?;
releaser(self.is_enabled(), info, tc_buf);
released_tcs.push(*info);
}
}
self.tc_map.retain(|k, _| k > &self.current_time);
Ok(released_tcs)
}
/// Retrieve all telecommands which should be release based on the current time.
pub fn telecommands_to_release(&self) -> Range<'_, UnixTime, Vec<TcInfo>> {
self.tc_map.range(..=self.current_time)
}
}
impl PusSchedulerProvider for PusScheduler {
type TimeProvider = cds::CdsTime;
/// This will disable the scheduler and clear the schedule as specified in 6.11.4.4.
/// Be careful with this command as it will delete all the commands in the schedule.
///
/// The holding store for the telecommands needs to be passed so all the stored telecommands
/// can be deleted to avoid a memory leak. If at last one deletion operation fails, the error
/// will be returned but the method will still try to delete all the commands in the schedule.
fn reset(&mut self, store: &mut (impl PoolProvider + ?Sized)) -> Result<(), PoolError> {
self.enabled = false;
let mut deletion_ok = Ok(());
for tc_lists in &mut self.tc_map {
for tc in tc_lists.1 {
let res = store.delete(tc.addr);
if res.is_err() {
deletion_ok = res;
}
}
}
self.tc_map.clear();
deletion_ok
}
fn is_enabled(&self) -> bool {
self.enabled
}
fn enable(&mut self) {
self.enabled = true;
}
/// A disabled scheduler should still delete commands where the execution time has been reached
/// but should not release them to be executed.
fn disable(&mut self) {
self.enabled = false;
}
fn insert_unwrapped_and_stored_tc(
&mut self,
time_stamp: UnixTime,
info: TcInfo,
) -> Result<(), ScheduleError> {
if time_stamp < self.current_time + self.time_margin {
return Err(ScheduleError::ReleaseTimeInTimeMargin {
current_time: self.current_time,
time_margin: self.time_margin,
release_time: time_stamp,
});
}
match self.tc_map.entry(time_stamp) {
Entry::Vacant(e) => {
e.insert(alloc::vec![info]);
}
Entry::Occupied(mut v) => {
v.get_mut().push(info);
}
}
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::pool::{
PoolAddr, PoolError, PoolProvider, StaticMemoryPool, StaticPoolAddr, StaticPoolConfig,
};
use alloc::collections::btree_map::Range;
use spacepackets::ecss::tc::{PusTcCreator, PusTcReader, PusTcSecondaryHeader};
use spacepackets::ecss::WritablePusPacket;
use spacepackets::time::{cds, TimeWriter, UnixTime};
use spacepackets::{PacketId, PacketSequenceCtrl, PacketType, SequenceFlags, SpHeader};
use std::time::Duration;
use std::vec::Vec;
#[allow(unused_imports)]
use std::{println, vec};
fn pus_tc_base(timestamp: UnixTime, buf: &mut [u8]) -> (SpHeader, usize) {
let cds_time =
cds::CdsTime::from_unix_time_with_u16_days(&timestamp, cds::SubmillisPrecision::Absent)
.unwrap();
let len_time_stamp = cds_time.write_to_bytes(buf).unwrap();
let len_packet = base_ping_tc_simple_ctor(0, &[])
.write_to_bytes(&mut buf[len_time_stamp..])
.unwrap();
(
SpHeader::new_for_unseg_tc(0x02, 0x34, len_packet as u16),
len_packet + len_time_stamp,
)
}
fn scheduled_tc(timestamp: UnixTime, buf: &mut [u8]) -> PusTcCreator {
let (sph, len_app_data) = pus_tc_base(timestamp, buf);
PusTcCreator::new_simple(sph, 11, 4, &buf[..len_app_data], true)
}
fn wrong_tc_service(timestamp: UnixTime, buf: &mut [u8]) -> PusTcCreator {
let (sph, len_app_data) = pus_tc_base(timestamp, buf);
PusTcCreator::new_simple(sph, 12, 4, &buf[..len_app_data], true)
}
fn wrong_tc_subservice(timestamp: UnixTime, buf: &mut [u8]) -> PusTcCreator {
let (sph, len_app_data) = pus_tc_base(timestamp, buf);
PusTcCreator::new_simple(sph, 11, 5, &buf[..len_app_data], true)
}
fn double_wrapped_time_tagged_tc(timestamp: UnixTime, buf: &mut [u8]) -> PusTcCreator {
let cds_time =
cds::CdsTime::from_unix_time_with_u16_days(&timestamp, cds::SubmillisPrecision::Absent)
.unwrap();
let len_time_stamp = cds_time.write_to_bytes(buf).unwrap();
let sph = SpHeader::new_for_unseg_tc(0x02, 0x34, 0);
// app data should not matter, double wrapped time-tagged commands should be rejected right
// away
let inner_time_tagged_tc = PusTcCreator::new_simple(sph, 11, 4, &[], true);
let packet_len = inner_time_tagged_tc
.write_to_bytes(&mut buf[len_time_stamp..])
.expect("writing inner time tagged tc failed");
PusTcCreator::new_simple(sph, 11, 4, &buf[..len_time_stamp + packet_len], true)
}
fn invalid_time_tagged_cmd() -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(0x02, 0x34, 1);
PusTcCreator::new_simple(sph, 11, 4, &[], true)
}
fn base_ping_tc_simple_ctor(seq_count: u16, app_data: &'static [u8]) -> PusTcCreator<'static> {
let sph = SpHeader::new_for_unseg_tc(0x02, seq_count, 0);
PusTcCreator::new_simple(sph, 17, 1, app_data, true)
}
fn ping_tc_to_store(
pool: &mut StaticMemoryPool,
buf: &mut [u8],
seq_count: u16,
app_data: &'static [u8],
) -> TcInfo {
let ping_tc = base_ping_tc_simple_ctor(seq_count, app_data);
let ping_size = ping_tc.write_to_bytes(buf).expect("writing ping TC failed");
let first_addr = pool.add(&buf[0..ping_size]).unwrap();
TcInfo::new(first_addr, RequestId::from_tc(&ping_tc))
}
#[test]
fn test_enable_api() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
assert!(scheduler.is_enabled());
scheduler.disable();
assert!(!scheduler.is_enabled());
scheduler.enable();
assert!(scheduler.is_enabled());
}
#[test]
fn test_reset() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(100),
TcInfo::new(tc_info_0.addr, tc_info_0.request_id),
)
.unwrap();
let app_data = &[0, 1, 2];
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, app_data);
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(200),
TcInfo::new(tc_info_1.addr, tc_info_1.request_id),
)
.unwrap();
let app_data = &[0, 1, 2];
let tc_info_2 = ping_tc_to_store(&mut pool, &mut buf, 2, app_data);
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(300),
TcInfo::new(tc_info_2.addr(), tc_info_2.request_id()),
)
.unwrap();
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
assert!(scheduler.is_enabled());
scheduler.reset(&mut pool).expect("deletion of TCs failed");
assert!(!scheduler.is_enabled());
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
assert!(!pool.has_element_at(&tc_info_0.addr()).unwrap());
assert!(!pool.has_element_at(&tc_info_1.addr()).unwrap());
assert!(!pool.has_element_at(&tc_info_2.addr()).unwrap());
}
#[test]
fn insert_multi_with_same_time() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(100),
TcInfo::new(
PoolAddr::from(StaticPoolAddr {
pool_idx: 0,
packet_idx: 1,
}),
RequestId {
seq_count: 1,
apid: 0,
source_id: 0,
},
),
)
.unwrap();
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(100),
TcInfo::new(
PoolAddr::from(StaticPoolAddr {
pool_idx: 0,
packet_idx: 2,
}),
RequestId {
seq_count: 2,
apid: 1,
source_id: 5,
},
),
)
.unwrap();
scheduler
.insert_unwrapped_and_stored_tc(
UnixTime::new_only_secs(300),
TcInfo::new(
StaticPoolAddr {
pool_idx: 0,
packet_idx: 2,
}
.into(),
RequestId {
source_id: 10,
seq_count: 20,
apid: 23,
},
),
)
.unwrap();
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
}
#[test]
fn test_time_update() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let time = UnixTime::new(1, 2_000_000);
scheduler.update_time(time);
assert_eq!(scheduler.current_time(), &time);
}
fn common_check(
enabled: bool,
store_addr: &PoolAddr,
expected_store_addrs: Vec<PoolAddr>,
counter: &mut usize,
) {
assert!(enabled);
assert!(expected_store_addrs.contains(store_addr));
*counter += 1;
}
fn common_check_disabled(
enabled: bool,
store_addr: &PoolAddr,
expected_store_addrs: Vec<PoolAddr>,
counter: &mut usize,
) {
assert!(!enabled);
assert!(expected_store_addrs.contains(store_addr));
*counter += 1;
}
#[test]
fn test_request_id() {
let src_id_to_set = 12;
let apid_to_set = 0x22;
let seq_count = 105;
let sp_header = SpHeader::new_for_unseg_tc(apid_to_set, 105, 0);
let mut sec_header = PusTcSecondaryHeader::new_simple(17, 1);
sec_header.source_id = src_id_to_set;
let ping_tc = PusTcCreator::new_no_app_data(sp_header, sec_header, true);
let req_id = RequestId::from_tc(&ping_tc);
assert_eq!(req_id.source_id(), src_id_to_set);
assert_eq!(req_id.apid(), apid_to_set);
assert_eq!(req_id.seq_count(), seq_count);
assert_eq!(
req_id.as_u64(),
((src_id_to_set as u64) << 32) | (apid_to_set as u64) << 16 | seq_count as u64
);
}
#[test]
fn test_release_telecommands() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(200), tc_info_1)
.expect("insertion failed");
let mut i = 0;
let mut test_closure_1 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check(boolvar, &tc_info.addr, vec![tc_info_0.addr()], &mut i);
true
};
// test 1: too early, no tcs
scheduler.update_time(UnixTime::new_only_secs(99));
let mut tc_buf: [u8; 128] = [0; 128];
scheduler
.release_telecommands_with_buffer(&mut test_closure_1, &mut pool, &mut tc_buf)
.expect("deletion failed");
// test 2: exact time stamp of tc, releases 1 tc
scheduler.update_time(UnixTime::new_only_secs(100));
let mut released = scheduler
.release_telecommands(&mut test_closure_1, &mut pool)
.expect("deletion failed");
assert_eq!(released, 1);
// TC is deleted.
assert!(!pool.has_element_at(&tc_info_0.addr()).unwrap());
// test 3, late timestamp, release 1 overdue tc
let mut test_closure_2 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check(boolvar, &tc_info.addr, vec![tc_info_1.addr()], &mut i);
true
};
scheduler.update_time(UnixTime::new_only_secs(206));
released = scheduler
.release_telecommands_with_buffer(&mut test_closure_2, &mut pool, &mut tc_buf)
.expect("deletion failed");
assert_eq!(released, 1);
// TC is deleted.
assert!(!pool.has_element_at(&tc_info_1.addr()).unwrap());
//test 4: no tcs left
scheduler
.release_telecommands(&mut test_closure_2, &mut pool)
.expect("deletion failed");
// check that 2 total tcs have been released
assert_eq!(i, 2);
}
#[test]
fn release_multi_with_same_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_1)
.expect("insertion failed");
let mut i = 0;
let mut test_closure = |boolvar: bool, store_addr: &TcInfo, _tc: &[u8]| {
common_check(
boolvar,
&store_addr.addr,
vec![tc_info_0.addr(), tc_info_1.addr()],
&mut i,
);
true
};
// test 1: too early, no tcs
scheduler.update_time(UnixTime::new_only_secs(99));
let mut tc_buf: [u8; 128] = [0; 128];
let mut released = scheduler
.release_telecommands_with_buffer(&mut test_closure, &mut pool, &mut tc_buf)
.expect("deletion failed");
assert_eq!(released, 0);
// test 2: exact time stamp of tc, releases 2 tc
scheduler.update_time(UnixTime::new_only_secs(100));
released = scheduler
.release_telecommands(&mut test_closure, &mut pool)
.expect("deletion failed");
assert_eq!(released, 2);
assert!(!pool.has_element_at(&tc_info_0.addr()).unwrap());
assert!(!pool.has_element_at(&tc_info_1.addr()).unwrap());
//test 3: no tcs left
released = scheduler
.release_telecommands(&mut test_closure, &mut pool)
.expect("deletion failed");
assert_eq!(released, 0);
// check that 2 total tcs have been released
assert_eq!(i, 2);
}
#[test]
fn release_with_scheduler_disabled() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
scheduler.disable();
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(200), tc_info_1)
.expect("insertion failed");
let mut i = 0;
let mut test_closure_1 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check_disabled(boolvar, &tc_info.addr, vec![tc_info_0.addr()], &mut i);
true
};
let mut tc_buf: [u8; 128] = [0; 128];
// test 1: too early, no tcs
scheduler.update_time(UnixTime::new_only_secs(99));
scheduler
.release_telecommands_with_buffer(&mut test_closure_1, &mut pool, &mut tc_buf)
.expect("deletion failed");
// test 2: exact time stamp of tc, releases 1 tc
scheduler.update_time(UnixTime::new_only_secs(100));
let mut released = scheduler
.release_telecommands(&mut test_closure_1, &mut pool)
.expect("deletion failed");
assert_eq!(released, 1);
assert!(!pool.has_element_at(&tc_info_0.addr()).unwrap());
// test 3, late timestamp, release 1 overdue tc
let mut test_closure_2 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check_disabled(boolvar, &tc_info.addr, vec![tc_info_1.addr()], &mut i);
true
};
scheduler.update_time(UnixTime::new_only_secs(206));
released = scheduler
.release_telecommands(&mut test_closure_2, &mut pool)
.expect("deletion failed");
assert_eq!(released, 1);
assert!(!pool.has_element_at(&tc_info_1.addr()).unwrap());
//test 4: no tcs left
scheduler
.release_telecommands(&mut test_closure_2, &mut pool)
.expect("deletion failed");
// check that 2 total tcs have been released
assert_eq!(i, 2);
}
#[test]
fn insert_unwrapped_tc() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
let info = scheduler
.insert_unwrapped_tc(
UnixTime::new_only_secs(100),
&buf[..pool.len_of_data(&tc_info_0.addr()).unwrap()],
&mut pool,
)
.unwrap();
assert!(pool.has_element_at(&tc_info_0.addr()).unwrap());
let mut read_buf: [u8; 64] = [0; 64];
pool.read(&tc_info_0.addr(), &mut read_buf).unwrap();
let check_tc = PusTcReader::new(&read_buf).expect("incorrect Pus tc raw data");
assert_eq!(check_tc.0, base_ping_tc_simple_ctor(0, &[]));
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
scheduler.update_time(UnixTime::new_only_secs(101));
let mut addr_vec = Vec::new();
let mut i = 0;
let mut test_closure = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check(boolvar, &tc_info.addr, vec![info.addr], &mut i);
// check that tc remains unchanged
addr_vec.push(tc_info.addr);
false
};
scheduler
.release_telecommands(&mut test_closure, &mut pool)
.unwrap();
let read_len = pool.read(&addr_vec[0], &mut read_buf).unwrap();
let check_tc = PusTcReader::new(&read_buf).expect("incorrect Pus tc raw data");
assert_eq!(read_len, check_tc.1);
assert_eq!(check_tc.0, base_ping_tc_simple_ctor(0, &[]));
}
#[test]
fn insert_wrapped_tc() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 32] = [0; 32];
let tc = scheduled_tc(UnixTime::new_only_secs(100), &mut buf);
let info = match scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool) {
Ok(addr) => addr,
Err(e) => {
panic!("unexpected error {e}");
}
};
assert!(pool.has_element_at(&info.addr).unwrap());
let read_len = pool.read(&info.addr, &mut buf).unwrap();
let check_tc = PusTcReader::new(&buf).expect("incorrect Pus tc raw data");
assert_eq!(read_len, check_tc.1);
assert_eq!(check_tc.0, base_ping_tc_simple_ctor(0, &[]));
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
scheduler.update_time(UnixTime::new_only_secs(101));
let mut addr_vec = Vec::new();
let mut i = 0;
let mut test_closure = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check(boolvar, &tc_info.addr, vec![info.addr], &mut i);
// check that tc remains unchanged
addr_vec.push(tc_info.addr);
false
};
let mut tc_buf: [u8; 64] = [0; 64];
scheduler
.release_telecommands_with_buffer(&mut test_closure, &mut pool, &mut tc_buf)
.unwrap();
let read_len = pool.read(&addr_vec[0], &mut buf).unwrap();
let check_tc = PusTcReader::new(&buf).expect("incorrect PUS tc raw data");
assert_eq!(read_len, check_tc.1);
assert_eq!(check_tc.0, base_ping_tc_simple_ctor(0, &[]));
}
#[test]
fn insert_wrong_service() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 32] = [0; 32];
let tc = wrong_tc_service(UnixTime::new_only_secs(100), &mut buf);
let err = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(err.is_err());
let err = err.unwrap_err();
match err {
ScheduleError::WrongService(wrong_service) => {
assert_eq!(wrong_service, 12);
}
_ => {
panic!("unexpected error")
}
}
}
#[test]
fn insert_wrong_subservice() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 32] = [0; 32];
let tc = wrong_tc_subservice(UnixTime::new_only_secs(100), &mut buf);
let err = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(err.is_err());
let err = err.unwrap_err();
match err {
ScheduleError::WrongSubservice(wrong_subsrv) => {
assert_eq!(wrong_subsrv, 5);
}
_ => {
panic!("unexpected error")
}
}
}
#[test]
fn insert_wrapped_tc_faulty_app_data() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let tc = invalid_time_tagged_cmd();
let insert_res = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(insert_res.is_err());
let err = insert_res.unwrap_err();
match err {
ScheduleError::TcDataEmpty => {}
_ => panic!("unexpected error {err}"),
}
}
#[test]
fn insert_doubly_wrapped_time_tagged_cmd() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 64] = [0; 64];
let tc = double_wrapped_time_tagged_tc(UnixTime::new_only_secs(50), &mut buf);
let insert_res = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(insert_res.is_err());
let err = insert_res.unwrap_err();
match err {
ScheduleError::NestedScheduledTc => {}
_ => panic!("unexpected error {err}"),
}
}
#[test]
fn test_ctor_from_current() {
let scheduler = PusScheduler::new_with_current_init_time(Duration::from_secs(5))
.expect("creation from current time failed");
let current_time = scheduler.current_time;
assert!(current_time.as_secs() > 0);
}
#[test]
fn test_update_from_current() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
assert_eq!(scheduler.current_time.as_secs(), 0);
scheduler
.update_time_from_now()
.expect("updating scheduler time from now failed");
assert!(scheduler.current_time.as_secs() > 0);
}
#[test]
fn release_time_within_time_margin() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut buf: [u8; 32] = [0; 32];
let tc = scheduled_tc(UnixTime::new_only_secs(4), &mut buf);
let insert_res = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(insert_res.is_err());
let err = insert_res.unwrap_err();
match err {
ScheduleError::ReleaseTimeInTimeMargin {
current_time,
time_margin,
release_time,
} => {
assert_eq!(current_time, UnixTime::new_only_secs(0));
assert_eq!(time_margin, Duration::from_secs(5));
assert_eq!(release_time, UnixTime::new_only_secs(4));
}
_ => panic!("unexepcted error {err}"),
}
}
#[test]
fn test_store_error_propagation_release() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
let mut i = 0;
let test_closure_1 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check_disabled(boolvar, &tc_info.addr, vec![tc_info_0.addr()], &mut i);
true
};
// premature deletion
pool.delete(tc_info_0.addr()).expect("deletion failed");
// scheduler will only auto-delete if it is disabled.
scheduler.disable();
scheduler.update_time(UnixTime::new_only_secs(100));
let release_res = scheduler.release_telecommands(test_closure_1, &mut pool);
assert!(release_res.is_err());
let err = release_res.unwrap_err();
// TC could not even be read..
assert_eq!(err.0, 0);
match err.1 {
PoolError::DataDoesNotExist(addr) => {
assert_eq!(tc_info_0.addr(), addr);
}
_ => panic!("unexpected error {}", err.1),
}
}
#[test]
fn test_store_error_propagation_reset() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
// premature deletion
pool.delete(tc_info_0.addr()).expect("deletion failed");
let reset_res = scheduler.reset(&mut pool);
assert!(reset_res.is_err());
let err = reset_res.unwrap_err();
match err {
PoolError::DataDoesNotExist(addr) => {
assert_eq!(addr, tc_info_0.addr());
}
_ => panic!("unexpected error {err}"),
}
}
#[test]
fn test_delete_by_req_id_simple_retrieve_addr() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("inserting tc failed");
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
let addr = scheduler
.delete_by_request_id(&tc_info_0.request_id())
.unwrap();
assert!(pool.has_element_at(&tc_info_0.addr()).unwrap());
assert_eq!(tc_info_0.addr(), addr);
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
}
#[test]
fn test_delete_by_req_id_simple_delete_all() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("inserting tc failed");
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
let del_res =
scheduler.delete_by_request_id_and_from_pool(&tc_info_0.request_id(), &mut pool);
assert!(del_res.is_ok());
assert!(del_res.unwrap());
assert!(!pool.has_element_at(&tc_info_0.addr()).unwrap());
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
}
#[test]
fn test_delete_by_req_id_complex() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("inserting tc failed");
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_1)
.expect("inserting tc failed");
let tc_info_2 = ping_tc_to_store(&mut pool, &mut buf, 2, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_2)
.expect("inserting tc failed");
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
// Delete first packet
let addr_0 = scheduler.delete_by_request_id(&tc_info_0.request_id());
assert!(addr_0.is_some());
assert_eq!(addr_0.unwrap(), tc_info_0.addr());
assert!(pool.has_element_at(&tc_info_0.addr()).unwrap());
assert_eq!(scheduler.num_scheduled_telecommands(), 2);
// Delete next packet
let del_res =
scheduler.delete_by_request_id_and_from_pool(&tc_info_2.request_id(), &mut pool);
assert!(del_res.is_ok());
assert!(del_res.unwrap());
assert!(!pool.has_element_at(&tc_info_2.addr()).unwrap());
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
// Delete last packet
let addr_1 =
scheduler.delete_by_request_id_and_from_pool(&tc_info_1.request_id(), &mut pool);
assert!(addr_1.is_ok());
assert!(addr_1.unwrap());
assert!(!pool.has_element_at(&tc_info_1.addr()).unwrap());
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
}
#[test]
fn insert_full_store_test() {
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(1, 64)], false));
let mut buf: [u8; 32] = [0; 32];
// Store is full after this.
pool.add(&[0, 1, 2]).unwrap();
let tc = scheduled_tc(UnixTime::new_only_secs(100), &mut buf);
let insert_res = scheduler.insert_wrapped_tc::<cds::CdsTime>(&tc, &mut pool);
assert!(insert_res.is_err());
let err = insert_res.unwrap_err();
match err {
ScheduleError::StoreError(e) => match e {
PoolError::StoreFull(_) => {}
_ => panic!("unexpected store error {e}"),
},
_ => panic!("unexpected error {err}"),
}
}
fn insert_command_with_release_time(
pool: &mut StaticMemoryPool,
scheduler: &mut PusScheduler,
seq_count: u16,
release_secs: u64,
) -> TcInfo {
let mut buf: [u8; 32] = [0; 32];
let tc_info = ping_tc_to_store(pool, &mut buf, seq_count, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(release_secs as i64), tc_info)
.expect("inserting tc failed");
tc_info
}
#[test]
fn test_time_window_retrieval_select_all() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let tc_info_0 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let tc_info_1 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
assert_eq!(scheduler.num_scheduled_telecommands(), 2);
let check_range = |range: Range<UnixTime, Vec<TcInfo>>| {
let mut tcs_in_range = 0;
for (idx, time_bucket) in range.enumerate() {
tcs_in_range += 1;
if idx == 0 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(50));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_0.request_id);
} else if idx == 1 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(100));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_1.request_id);
}
}
assert_eq!(tcs_in_range, 2);
};
let range = scheduler.retrieve_all();
check_range(range);
let range = scheduler.retrieve_by_time_filter(TimeWindow::<cds::CdsTime>::new_select_all());
check_range(range);
}
#[test]
fn test_time_window_retrieval_select_from_stamp() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let _ = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let tc_info_1 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
let tc_info_2 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
let start_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let time_window = TimeWindow::new_from_time(&start_stamp);
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
let range = scheduler.retrieve_by_time_filter(time_window);
let mut tcs_in_range = 0;
for (idx, time_bucket) in range.enumerate() {
tcs_in_range += 1;
if idx == 0 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(100));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_1.request_id());
} else if idx == 1 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(150));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_2.request_id());
}
}
assert_eq!(tcs_in_range, 2);
}
#[test]
fn test_time_window_retrieval_select_to_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let tc_info_0 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let tc_info_1 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
let _ = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
let end_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let time_window = TimeWindow::new_to_time(&end_stamp);
let range = scheduler.retrieve_by_time_filter(time_window);
let mut tcs_in_range = 0;
for (idx, time_bucket) in range.enumerate() {
tcs_in_range += 1;
if idx == 0 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(50));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_0.request_id());
} else if idx == 1 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(100));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_1.request_id());
}
}
assert_eq!(tcs_in_range, 2);
}
#[test]
fn test_time_window_retrieval_select_from_time_to_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let _ = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let tc_info_1 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
let tc_info_2 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
let _ = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 200);
assert_eq!(scheduler.num_scheduled_telecommands(), 4);
let start_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let end_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(150),
cds::SubmillisPrecision::Absent,
)
.expect("creating end stamp failed");
let time_window = TimeWindow::new_from_time_to_time(&start_stamp, &end_stamp);
let range = scheduler.retrieve_by_time_filter(time_window);
let mut tcs_in_range = 0;
for (idx, time_bucket) in range.enumerate() {
tcs_in_range += 1;
if idx == 0 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(100));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_1.request_id());
} else if idx == 1 {
assert_eq!(*time_bucket.0, UnixTime::new_only_secs(150));
assert_eq!(time_bucket.1.len(), 1);
assert_eq!(time_bucket.1[0].request_id, tc_info_2.request_id());
}
}
assert_eq!(tcs_in_range, 2);
}
#[test]
fn test_deletion_all() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
assert_eq!(scheduler.num_scheduled_telecommands(), 2);
let del_res = scheduler.delete_all(&mut pool);
assert!(del_res.is_ok());
assert_eq!(del_res.unwrap(), 2);
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
// Contrary to reset, this does not disable the scheduler.
assert!(scheduler.is_enabled());
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
assert_eq!(scheduler.num_scheduled_telecommands(), 2);
let del_res = scheduler
.delete_by_time_filter(TimeWindow::<cds::CdsTime>::new_select_all(), &mut pool);
assert!(del_res.is_ok());
assert_eq!(del_res.unwrap(), 2);
assert_eq!(scheduler.num_scheduled_telecommands(), 0);
// Contrary to reset, this does not disable the scheduler.
assert!(scheduler.is_enabled());
}
#[test]
fn test_deletion_from_start_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let cmd_0_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
let cmd_1_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
let start_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let time_window = TimeWindow::new_from_time(&start_stamp);
let del_res = scheduler.delete_by_time_filter(time_window, &mut pool);
assert!(del_res.is_ok());
assert_eq!(del_res.unwrap(), 2);
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
assert!(!pool.has_element_at(&cmd_0_to_delete.addr()).unwrap());
assert!(!pool.has_element_at(&cmd_1_to_delete.addr()).unwrap());
}
#[test]
fn test_deletion_to_end_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let cmd_0_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let cmd_1_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
assert_eq!(scheduler.num_scheduled_telecommands(), 3);
let end_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let time_window = TimeWindow::new_to_time(&end_stamp);
let del_res = scheduler.delete_by_time_filter(time_window, &mut pool);
assert!(del_res.is_ok());
assert_eq!(del_res.unwrap(), 2);
assert_eq!(scheduler.num_scheduled_telecommands(), 1);
assert!(!pool.has_element_at(&cmd_0_to_delete.addr()).unwrap());
assert!(!pool.has_element_at(&cmd_1_to_delete.addr()).unwrap());
}
#[test]
fn test_deletion_from_start_time_to_end_time() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let cmd_out_of_range_0 = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 50);
let cmd_0_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 100);
let cmd_1_to_delete = insert_command_with_release_time(&mut pool, &mut scheduler, 0, 150);
let cmd_out_of_range_1 =
insert_command_with_release_time(&mut pool, &mut scheduler, 0, 200);
assert_eq!(scheduler.num_scheduled_telecommands(), 4);
let start_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(100),
cds::SubmillisPrecision::Absent,
)
.expect("creating start stamp failed");
let end_stamp = cds::CdsTime::from_unix_time_with_u16_days(
&UnixTime::new_only_secs(150),
cds::SubmillisPrecision::Absent,
)
.expect("creating end stamp failed");
let time_window = TimeWindow::new_from_time_to_time(&start_stamp, &end_stamp);
let del_res = scheduler.delete_by_time_filter(time_window, &mut pool);
assert!(del_res.is_ok());
assert_eq!(del_res.unwrap(), 2);
assert_eq!(scheduler.num_scheduled_telecommands(), 2);
assert!(pool.has_element_at(&cmd_out_of_range_0.addr()).unwrap());
assert!(!pool.has_element_at(&cmd_0_to_delete.addr()).unwrap());
assert!(!pool.has_element_at(&cmd_1_to_delete.addr()).unwrap());
assert!(pool.has_element_at(&cmd_out_of_range_1.addr()).unwrap());
}
#[test]
fn test_release_without_deletion() {
let mut pool = StaticMemoryPool::new(StaticPoolConfig::new(vec![(10, 32), (5, 64)], false));
let mut scheduler = PusScheduler::new(UnixTime::new_only_secs(0), Duration::from_secs(5));
let mut buf: [u8; 32] = [0; 32];
let tc_info_0 = ping_tc_to_store(&mut pool, &mut buf, 0, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(100), tc_info_0)
.expect("insertion failed");
let tc_info_1 = ping_tc_to_store(&mut pool, &mut buf, 1, &[]);
scheduler
.insert_unwrapped_and_stored_tc(UnixTime::new_only_secs(200), tc_info_1)
.expect("insertion failed");
let mut i = 0;
let mut test_closure_1 = |boolvar: bool, tc_info: &TcInfo, _tc: &[u8]| {
common_check(
boolvar,
&tc_info.addr,
vec![tc_info_0.addr(), tc_info_1.addr()],
&mut i,
);
};
scheduler.update_time(UnixTime::new_only_secs(205));
let mut tc_buf: [u8; 64] = [0; 64];
let tc_info_vec = scheduler
.release_telecommands_no_deletion(&mut test_closure_1, &pool, &mut tc_buf)
.expect("deletion failed");
assert_eq!(tc_info_vec[0], tc_info_0);
assert_eq!(tc_info_vec[1], tc_info_1);
}
#[test]
fn test_generic_insert_app_data_test() {
let time_writer = cds::CdsTime::new_with_u16_days(1, 1);
let sph = SpHeader::new(
PacketId::new(PacketType::Tc, true, 0x002),
PacketSequenceCtrl::new(SequenceFlags::Unsegmented, 5),
0,
);
let sec_header = PusTcSecondaryHeader::new_simple(17, 1);
let ping_tc = PusTcCreator::new_no_app_data(sph, sec_header, true);
let mut buf: [u8; 64] = [0; 64];
let result = generate_insert_telecommand_app_data(&mut buf, &time_writer, &ping_tc);
assert!(result.is_ok());
assert_eq!(result.unwrap(), 2 + 7 + ping_tc.len_written());
let n = u16::from_be_bytes(buf[0..2].try_into().unwrap());
assert_eq!(n, 1);
let time_reader = cds::CdsTime::from_bytes_with_u16_days(&buf[2..2 + 7]).unwrap();
assert_eq!(time_reader, time_writer);
let pus_tc_reader = PusTcReader::new(&buf[9..]).unwrap().0;
assert_eq!(pus_tc_reader, ping_tc);
}
#[test]
fn test_generic_insert_app_data_test_byte_conv_error() {
let time_writer = cds::CdsTime::new_with_u16_days(1, 1);
let sph = SpHeader::new(
PacketId::new(PacketType::Tc, true, 0x002),
PacketSequenceCtrl::new(SequenceFlags::Unsegmented, 5),
0,
);
let sec_header = PusTcSecondaryHeader::new_simple(17, 1);
let ping_tc = PusTcCreator::new_no_app_data(sph, sec_header, true);
let mut buf: [u8; 16] = [0; 16];
let result = generate_insert_telecommand_app_data(&mut buf, &time_writer, &ping_tc);
assert!(result.is_err());
let error = result.unwrap_err();
if let ScheduleError::ByteConversionError(ByteConversionError::ToSliceTooSmall {
found,
expected,
}) = error
{
assert_eq!(found, 16);
assert_eq!(
expected,
2 + time_writer.len_written() + ping_tc.len_written()
);
} else {
panic!("unexpected error {error}")
}
}
#[test]
fn test_generic_insert_app_data_test_as_vec() {
let time_writer = cds::CdsTime::new_with_u16_days(1, 1);
let sph = SpHeader::new(
PacketId::new(PacketType::Tc, true, 0x002),
PacketSequenceCtrl::new(SequenceFlags::Unsegmented, 5),
0,
);
let sec_header = PusTcSecondaryHeader::new_simple(17, 1);
let ping_tc = PusTcCreator::new_no_app_data(sph, sec_header, true);
let mut buf: [u8; 64] = [0; 64];
generate_insert_telecommand_app_data(&mut buf, &time_writer, &ping_tc).unwrap();
let vec = generate_insert_telecommand_app_data_as_vec(&time_writer, &ping_tc)
.expect("vec generation failed");
assert_eq!(&buf[..vec.len()], vec);
}
}