sat-rs/satrs-core/src/hal/std/tcp_cobs_server.rs

380 lines
14 KiB
Rust

use alloc::vec;
use cobs::encode;
use delegate::delegate;
use std::io::Write;
use std::net::SocketAddr;
use std::net::TcpListener;
use std::net::TcpStream;
use std::vec::Vec;
use crate::encoding::parse_buffer_for_cobs_encoded_packets;
use crate::tmtc::ReceivesTc;
use crate::tmtc::TmPacketSource;
use crate::hal::std::tcp_server::{
ConnectionResult, ServerConfig, TcpTcParser, TcpTmSender, TcpTmtcError, TcpTmtcGenericServer,
};
/// Concrete [TcpTcParser] implementation for the [TcpTmtcInCobsServer].
#[derive(Default)]
pub struct CobsTcParser {}
impl<TmError, TcError: 'static> TcpTcParser<TmError, TcError> for CobsTcParser {
fn handle_tc_parsing(
&mut self,
tc_buffer: &mut [u8],
tc_receiver: &mut (impl ReceivesTc<Error = TcError> + ?Sized),
conn_result: &mut ConnectionResult,
current_write_idx: usize,
next_write_idx: &mut usize,
) -> Result<(), TcpTmtcError<TmError, TcError>> {
conn_result.num_received_tcs += parse_buffer_for_cobs_encoded_packets(
&mut tc_buffer[..current_write_idx],
tc_receiver.upcast_mut(),
next_write_idx,
)
.map_err(|e| TcpTmtcError::TcError(e))?;
Ok(())
}
}
/// Concrete [TcpTmSender] implementation for the [TcpTmtcInCobsServer].
pub struct CobsTmSender {
tm_encoding_buffer: Vec<u8>,
}
impl CobsTmSender {
fn new(tm_buffer_size: usize) -> Self {
Self {
// The buffer should be large enough to hold the maximum expected TM size encoded with
// COBS.
tm_encoding_buffer: vec![0; cobs::max_encoding_length(tm_buffer_size)],
}
}
}
impl<TmError, TcError> TcpTmSender<TmError, TcError> for CobsTmSender {
fn handle_tm_sending(
&mut self,
tm_buffer: &mut [u8],
tm_source: &mut (impl TmPacketSource<Error = TmError> + ?Sized),
conn_result: &mut ConnectionResult,
stream: &mut TcpStream,
) -> Result<bool, TcpTmtcError<TmError, TcError>> {
let mut tm_was_sent = false;
loop {
// Write TM until TM source is exhausted. For now, there is no limit for the amount
// of TM written this way.
let read_tm_len = tm_source
.retrieve_packet(tm_buffer)
.map_err(|e| TcpTmtcError::TmError(e))?;
if read_tm_len == 0 {
return Ok(tm_was_sent);
}
tm_was_sent = true;
conn_result.num_sent_tms += 1;
// Encode into COBS and sent to client.
let mut current_idx = 0;
self.tm_encoding_buffer[current_idx] = 0;
current_idx += 1;
current_idx += encode(
&tm_buffer[..read_tm_len],
&mut self.tm_encoding_buffer[current_idx..],
);
self.tm_encoding_buffer[current_idx] = 0;
current_idx += 1;
stream.write_all(&self.tm_encoding_buffer[..current_idx])?;
}
}
}
/// TCP TMTC server implementation for exchange of generic TMTC packets which are framed with the
/// [COBS protocol](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing).
///
/// Telemetry will be encoded with the COBS protocol using [cobs::encode] in addition to being
/// wrapped with the sentinel value 0 as the packet delimiter as well before being sent back to
/// the client. Please note that the server will send as much data as it can retrieve from the
/// [TmPacketSource] in its current implementation.
///
/// Using a framing protocol like COBS imposes minimal restrictions on the type of TMTC data
/// exchanged while also allowing packets with flexible size and a reliable way to reconstruct full
/// packets even from a data stream which is split up. The server wil use the
/// [parse_buffer_for_cobs_encoded_packets] function to parse for packets and pass them to a
/// generic TC receiver. The user can use [crate::encoding::encode_packet_with_cobs] to encode
/// telecommands sent to the server.
///
/// ## Example
///
/// The [TCP integration tests](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs-core/tests/tcp_servers.rs)
/// test also serves as the example application for this module.
pub struct TcpTmtcInCobsServer<
TmError,
TcError: 'static,
TmSource: TmPacketSource<Error = TmError>,
TcReceiver: ReceivesTc<Error = TcError>,
> {
generic_server:
TcpTmtcGenericServer<TmError, TcError, TmSource, TcReceiver, CobsTmSender, CobsTcParser>,
}
impl<
TmError: 'static,
TcError: 'static,
TmSource: TmPacketSource<Error = TmError>,
TcReceiver: ReceivesTc<Error = TcError>,
> TcpTmtcInCobsServer<TmError, TcError, TmSource, TcReceiver>
{
/// Create a new TCP TMTC server which exchanges TMTC packets encoded with
/// [COBS protocol](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing).
///
/// ## Parameter
///
/// * `cfg` - Configuration of the server.
/// * `tm_source` - Generic TM source used by the server to pull telemetry packets which are
/// then sent back to the client.
/// * `tc_receiver` - Any received telecommands which were decoded successfully will be
/// forwarded to this TC receiver.
pub fn new(
cfg: ServerConfig,
tm_source: TmSource,
tc_receiver: TcReceiver,
) -> Result<Self, std::io::Error> {
Ok(Self {
generic_server: TcpTmtcGenericServer::new(
cfg,
CobsTcParser::default(),
CobsTmSender::new(cfg.tm_buffer_size),
tm_source,
tc_receiver,
)?,
})
}
delegate! {
to self.generic_server {
pub fn listener(&mut self) -> &mut TcpListener;
/// Can be used to retrieve the local assigned address of the TCP server. This is especially
/// useful if using the port number 0 for OS auto-assignment.
pub fn local_addr(&self) -> std::io::Result<SocketAddr>;
/// Delegation to the [TcpTmtcGenericServer::handle_next_connection] call.
pub fn handle_next_connection(
&mut self,
) -> Result<ConnectionResult, TcpTmtcError<TmError, TcError>>;
}
}
}
#[cfg(test)]
mod tests {
use core::{
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
use std::{
io::{Read, Write},
net::{IpAddr, Ipv4Addr, SocketAddr, TcpStream},
thread,
};
use crate::{
encoding::tests::{INVERTED_PACKET, SIMPLE_PACKET},
hal::std::tcp_server::{
tests::{SyncTcCacher, SyncTmSource},
ServerConfig,
},
};
use alloc::sync::Arc;
use cobs::encode;
use super::TcpTmtcInCobsServer;
fn encode_simple_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet(&SIMPLE_PACKET, encoded_buf, current_idx)
}
fn encode_inverted_packet(encoded_buf: &mut [u8], current_idx: &mut usize) {
encode_packet(&INVERTED_PACKET, encoded_buf, current_idx)
}
fn encode_packet(packet: &[u8], encoded_buf: &mut [u8], current_idx: &mut usize) {
encoded_buf[*current_idx] = 0;
*current_idx += 1;
*current_idx += encode(packet, &mut encoded_buf[*current_idx..]);
encoded_buf[*current_idx] = 0;
*current_idx += 1;
}
fn generic_tmtc_server(
addr: &SocketAddr,
tc_receiver: SyncTcCacher,
tm_source: SyncTmSource,
) -> TcpTmtcInCobsServer<(), (), SyncTmSource, SyncTcCacher> {
TcpTmtcInCobsServer::new(
ServerConfig::new(*addr, Duration::from_millis(2), 1024, 1024),
tm_source,
tc_receiver,
)
.expect("TCP server generation failed")
}
#[test]
fn test_server_basic_no_tm() {
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let tm_source = SyncTmSource::default();
let mut tcp_server = generic_tmtc_server(&auto_port_addr, tc_receiver.clone(), tm_source);
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 1);
assert_eq!(conn_result.num_sent_tms, 0);
set_if_done.store(true, Ordering::Relaxed);
});
// Send TC to server now.
let mut encoded_buf: [u8; 16] = [0; 16];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.write_all(&encoded_buf[..current_idx])
.expect("writing to TCP server failed");
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that the packet was received and decoded successfully.
let mut tc_queue = tc_receiver
.tc_queue
.lock()
.expect("locking tc queue failed");
assert_eq!(tc_queue.len(), 1);
assert_eq!(tc_queue.pop_front().unwrap(), &SIMPLE_PACKET);
drop(tc_queue);
}
#[test]
fn test_server_basic_multi_tm_multi_tc() {
let auto_port_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 0);
let tc_receiver = SyncTcCacher::default();
let mut tm_source = SyncTmSource::default();
tm_source.add_tm(&INVERTED_PACKET);
tm_source.add_tm(&SIMPLE_PACKET);
let mut tcp_server =
generic_tmtc_server(&auto_port_addr, tc_receiver.clone(), tm_source.clone());
let dest_addr = tcp_server
.local_addr()
.expect("retrieving dest addr failed");
let conn_handled: Arc<AtomicBool> = Default::default();
let set_if_done = conn_handled.clone();
// Call the connection handler in separate thread, does block.
thread::spawn(move || {
let result = tcp_server.handle_next_connection();
if result.is_err() {
panic!("handling connection failed: {:?}", result.unwrap_err());
}
let conn_result = result.unwrap();
assert_eq!(conn_result.num_received_tcs, 2, "Not enough TCs received");
assert_eq!(conn_result.num_sent_tms, 2, "Not enough TMs received");
set_if_done.store(true, Ordering::Relaxed);
});
// Send TC to server now.
let mut encoded_buf: [u8; 32] = [0; 32];
let mut current_idx = 0;
encode_simple_packet(&mut encoded_buf, &mut current_idx);
encode_inverted_packet(&mut encoded_buf, &mut current_idx);
let mut stream = TcpStream::connect(dest_addr).expect("connecting to TCP server failed");
stream
.set_read_timeout(Some(Duration::from_millis(10)))
.expect("setting reas timeout failed");
stream
.write_all(&encoded_buf[..current_idx])
.expect("writing to TCP server failed");
// Done with writing.
stream
.shutdown(std::net::Shutdown::Write)
.expect("shutting down write failed");
let mut read_buf: [u8; 16] = [0; 16];
let mut read_len_total = 0;
// Timeout ensures this does not block forever.
while read_len_total < 16 {
let read_len = stream.read(&mut read_buf).expect("read failed");
read_len_total += read_len;
// Read until full expected size is available.
if read_len == 16 {
// Read first TM packet.
current_idx = 0;
assert_eq!(read_len, 16);
assert_eq!(read_buf[0], 0);
current_idx += 1;
let mut dec_report = cobs::decode_in_place_report(&mut read_buf[current_idx..])
.expect("COBS decoding failed");
assert_eq!(dec_report.dst_used, 5);
// Skip first sentinel byte.
assert_eq!(
&read_buf[current_idx..current_idx + INVERTED_PACKET.len()],
&INVERTED_PACKET
);
current_idx += dec_report.src_used;
// End sentinel.
assert_eq!(read_buf[current_idx], 0, "invalid sentinel end byte");
current_idx += 1;
// Read second TM packet.
assert_eq!(read_buf[current_idx], 0);
current_idx += 1;
dec_report = cobs::decode_in_place_report(&mut read_buf[current_idx..])
.expect("COBS decoding failed");
assert_eq!(dec_report.dst_used, 5);
// Skip first sentinel byte.
assert_eq!(
&read_buf[current_idx..current_idx + SIMPLE_PACKET.len()],
&SIMPLE_PACKET
);
current_idx += dec_report.src_used;
// End sentinel.
assert_eq!(read_buf[current_idx], 0);
break;
}
}
drop(stream);
// A certain amount of time is allowed for the transaction to complete.
for _ in 0..3 {
if !conn_handled.load(Ordering::Relaxed) {
thread::sleep(Duration::from_millis(5));
}
}
if !conn_handled.load(Ordering::Relaxed) {
panic!("connection was not handled properly");
}
// Check that the packet was received and decoded successfully.
let mut tc_queue = tc_receiver
.tc_queue
.lock()
.expect("locking tc queue failed");
assert_eq!(tc_queue.len(), 2);
assert_eq!(tc_queue.pop_front().unwrap(), &SIMPLE_PACKET);
assert_eq!(tc_queue.pop_front().unwrap(), &INVERTED_PACKET);
drop(tc_queue);
}
}