685 lines
25 KiB
Rust
685 lines
25 KiB
Rust
#![no_std]
|
|
#![no_main]
|
|
use satrs::pus::verification::{
|
|
FailParams, TcStateAccepted, VerificationReportCreator, VerificationToken,
|
|
};
|
|
use satrs::spacepackets::ecss::tc::PusTcReader;
|
|
use satrs::spacepackets::ecss::tm::{PusTmCreator, PusTmSecondaryHeader};
|
|
use satrs::spacepackets::ecss::EcssEnumU16;
|
|
use satrs::spacepackets::CcsdsPacket;
|
|
use satrs::spacepackets::{ByteConversionError, SpHeader};
|
|
// global logger + panicking-behavior + memory layout
|
|
use satrs_stm32f3_disco_rtic as _;
|
|
|
|
use rtic::app;
|
|
|
|
use heapless::{mpmc::Q8, Vec};
|
|
#[allow(unused_imports)]
|
|
use rtic_monotonics::systick::fugit::{MillisDurationU32, TimerInstantU32};
|
|
use rtic_monotonics::systick::ExtU32;
|
|
use satrs::seq_count::SequenceCountProviderCore;
|
|
use satrs::spacepackets::{ecss::PusPacket, ecss::WritablePusPacket};
|
|
use stm32f3xx_hal::dma::dma1;
|
|
use stm32f3xx_hal::gpio::{PushPull, AF7, PA2, PA3};
|
|
use stm32f3xx_hal::pac::USART2;
|
|
use stm32f3xx_hal::serial::{Rx, RxEvent, Serial, SerialDmaRx, SerialDmaTx, Tx, TxEvent};
|
|
|
|
const UART_BAUD: u32 = 115200;
|
|
const DEFAULT_BLINK_FREQ_MS: u32 = 1000;
|
|
const TX_HANDLER_FREQ_MS: u32 = 20;
|
|
const MIN_DELAY_BETWEEN_TX_PACKETS_MS: u32 = 5;
|
|
const MAX_TC_LEN: usize = 128;
|
|
const MAX_TM_LEN: usize = 128;
|
|
pub const PUS_APID: u16 = 0x02;
|
|
|
|
type TxType = Tx<USART2, PA2<AF7<PushPull>>>;
|
|
type RxType = Rx<USART2, PA3<AF7<PushPull>>>;
|
|
type InstantFugit = TimerInstantU32<1000>;
|
|
type TxDmaTransferType = SerialDmaTx<&'static [u8], dma1::C7, TxType>;
|
|
type RxDmaTransferType = SerialDmaRx<&'static mut [u8], dma1::C6, RxType>;
|
|
|
|
// This is the predictable maximum overhead of the COBS encoding scheme.
|
|
// It is simply the maximum packet lenght dividied by 254 rounded up.
|
|
const COBS_TC_OVERHEAD: usize = (MAX_TC_LEN + 254 - 1) / 254;
|
|
const COBS_TM_OVERHEAD: usize = (MAX_TM_LEN + 254 - 1) / 254;
|
|
|
|
const TC_BUF_LEN: usize = MAX_TC_LEN + COBS_TC_OVERHEAD;
|
|
const TM_BUF_LEN: usize = MAX_TC_LEN + COBS_TM_OVERHEAD;
|
|
|
|
// This is a static buffer which should ONLY (!) be used as the TX DMA
|
|
// transfer buffer.
|
|
static mut DMA_TX_BUF: [u8; TM_BUF_LEN] = [0; TM_BUF_LEN];
|
|
// This is a static buffer which should ONLY (!) be used as the RX DMA
|
|
// transfer buffer.
|
|
static mut DMA_RX_BUF: [u8; TC_BUF_LEN] = [0; TC_BUF_LEN];
|
|
|
|
type TmPacket = Vec<u8, MAX_TM_LEN>;
|
|
type TcPacket = Vec<u8, MAX_TC_LEN>;
|
|
|
|
static TM_REQUESTS: Q8<TmPacket> = Q8::new();
|
|
|
|
use core::sync::atomic::{AtomicU16, Ordering};
|
|
|
|
pub struct SeqCountProviderAtomicRef {
|
|
atomic: AtomicU16,
|
|
ordering: Ordering,
|
|
}
|
|
|
|
impl SeqCountProviderAtomicRef {
|
|
pub const fn new(ordering: Ordering) -> Self {
|
|
Self {
|
|
atomic: AtomicU16::new(0),
|
|
ordering,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SequenceCountProviderCore<u16> for SeqCountProviderAtomicRef {
|
|
fn get(&self) -> u16 {
|
|
self.atomic.load(self.ordering)
|
|
}
|
|
|
|
fn increment(&self) {
|
|
self.atomic.fetch_add(1, self.ordering);
|
|
}
|
|
|
|
fn get_and_increment(&self) -> u16 {
|
|
self.atomic.fetch_add(1, self.ordering)
|
|
}
|
|
}
|
|
|
|
static SEQ_COUNT_PROVIDER: SeqCountProviderAtomicRef =
|
|
SeqCountProviderAtomicRef::new(Ordering::Relaxed);
|
|
|
|
pub struct TxIdle {
|
|
tx: TxType,
|
|
dma_channel: dma1::C7,
|
|
}
|
|
|
|
#[derive(Debug, defmt::Format)]
|
|
pub enum TmSendError {
|
|
ByteConversion(ByteConversionError),
|
|
Queue,
|
|
}
|
|
|
|
impl From<ByteConversionError> for TmSendError {
|
|
fn from(value: ByteConversionError) -> Self {
|
|
Self::ByteConversion(value)
|
|
}
|
|
}
|
|
|
|
fn send_tm(tm_creator: PusTmCreator) -> Result<(), TmSendError> {
|
|
if tm_creator.len_written() > MAX_TM_LEN {
|
|
return Err(ByteConversionError::ToSliceTooSmall {
|
|
expected: tm_creator.len_written(),
|
|
found: MAX_TM_LEN,
|
|
}
|
|
.into());
|
|
}
|
|
let mut tm_vec = TmPacket::new();
|
|
tm_vec
|
|
.resize(tm_creator.len_written(), 0)
|
|
.expect("vec resize failed");
|
|
tm_creator.write_to_bytes(tm_vec.as_mut_slice())?;
|
|
defmt::info!(
|
|
"Sending TM[{},{}] with size {}",
|
|
tm_creator.service(),
|
|
tm_creator.subservice(),
|
|
tm_creator.len_written()
|
|
);
|
|
TM_REQUESTS
|
|
.enqueue(tm_vec)
|
|
.map_err(|_| TmSendError::Queue)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn handle_tm_send_error(error: TmSendError) {
|
|
defmt::warn!("sending tm failed with error {}", error);
|
|
}
|
|
|
|
pub enum UartTxState {
|
|
// Wrapped in an option because we need an owned type later.
|
|
Idle(Option<TxIdle>),
|
|
// Same as above
|
|
Transmitting(Option<TxDmaTransferType>),
|
|
}
|
|
|
|
pub struct UartTxShared {
|
|
last_completed: Option<InstantFugit>,
|
|
state: UartTxState,
|
|
}
|
|
|
|
pub struct RequestWithToken {
|
|
token: VerificationToken<TcStateAccepted>,
|
|
request: Request,
|
|
}
|
|
|
|
#[derive(Debug, defmt::Format)]
|
|
pub enum Request {
|
|
Ping,
|
|
ChangeBlinkFrequency(u32),
|
|
}
|
|
|
|
#[derive(Debug, defmt::Format)]
|
|
pub enum RequestError {
|
|
InvalidApid = 1,
|
|
InvalidService = 2,
|
|
InvalidSubservice = 3,
|
|
NotEnoughAppData = 4,
|
|
}
|
|
|
|
pub fn convert_pus_tc_to_request(
|
|
tc: &PusTcReader,
|
|
verif_reporter: &mut VerificationReportCreator,
|
|
src_data_buf: &mut [u8],
|
|
timestamp: &[u8],
|
|
) -> Result<RequestWithToken, RequestError> {
|
|
defmt::info!(
|
|
"Found PUS TC [{},{}] with length {}",
|
|
tc.service(),
|
|
tc.subservice(),
|
|
tc.len_packed()
|
|
);
|
|
|
|
let token = verif_reporter.add_tc(tc);
|
|
if tc.apid() != PUS_APID {
|
|
defmt::warn!("Received tc with unknown APID {}", tc.apid());
|
|
let result = send_tm(
|
|
verif_reporter
|
|
.acceptance_failure(
|
|
src_data_buf,
|
|
token,
|
|
SEQ_COUNT_PROVIDER.get_and_increment(),
|
|
0,
|
|
FailParams::new(timestamp, &EcssEnumU16::new(0), &[]),
|
|
)
|
|
.unwrap(),
|
|
);
|
|
if let Err(e) = result {
|
|
handle_tm_send_error(e);
|
|
}
|
|
return Err(RequestError::InvalidApid);
|
|
}
|
|
let (tm_creator, accepted_token) = verif_reporter
|
|
.acceptance_success(
|
|
src_data_buf,
|
|
token,
|
|
SEQ_COUNT_PROVIDER.get_and_increment(),
|
|
0,
|
|
timestamp,
|
|
)
|
|
.unwrap();
|
|
|
|
if let Err(e) = send_tm(tm_creator) {
|
|
handle_tm_send_error(e);
|
|
}
|
|
|
|
if tc.service() == 17 && tc.subservice() == 1 {
|
|
if tc.subservice() == 1 {
|
|
return Ok(RequestWithToken {
|
|
request: Request::Ping,
|
|
token: accepted_token,
|
|
});
|
|
} else {
|
|
return Err(RequestError::InvalidSubservice);
|
|
}
|
|
} else if tc.service() == 8 {
|
|
if tc.subservice() == 1 {
|
|
if tc.user_data().len() < 4 {
|
|
return Err(RequestError::NotEnoughAppData);
|
|
}
|
|
let new_freq_ms = u32::from_be_bytes(tc.user_data()[0..4].try_into().unwrap());
|
|
return Ok(RequestWithToken {
|
|
request: Request::ChangeBlinkFrequency(new_freq_ms),
|
|
token: accepted_token,
|
|
});
|
|
} else {
|
|
return Err(RequestError::InvalidSubservice);
|
|
}
|
|
} else {
|
|
return Err(RequestError::InvalidService);
|
|
}
|
|
}
|
|
|
|
#[app(device = stm32f3xx_hal::pac, peripherals = true)]
|
|
mod app {
|
|
use super::*;
|
|
use core::slice::Iter;
|
|
use rtic_monotonics::systick::Systick;
|
|
use rtic_monotonics::Monotonic;
|
|
use satrs::pus::verification::{TcStateStarted, VerificationReportCreator};
|
|
use satrs::spacepackets::{ecss::tc::PusTcReader, time::cds::P_FIELD_BASE};
|
|
#[allow(unused_imports)]
|
|
use stm32f3_discovery::leds::Direction;
|
|
use stm32f3_discovery::leds::Leds;
|
|
use stm32f3xx_hal::prelude::*;
|
|
|
|
use stm32f3_discovery::switch_hal::OutputSwitch;
|
|
use stm32f3xx_hal::Switch;
|
|
#[allow(dead_code)]
|
|
type SerialType = Serial<USART2, (PA2<AF7<PushPull>>, PA3<AF7<PushPull>>)>;
|
|
|
|
#[shared]
|
|
struct Shared {
|
|
blink_freq: MillisDurationU32,
|
|
tx_shared: UartTxShared,
|
|
rx_transfer: Option<RxDmaTransferType>,
|
|
}
|
|
|
|
#[local]
|
|
struct Local {
|
|
verif_reporter: VerificationReportCreator,
|
|
leds: Leds,
|
|
last_dir: Direction,
|
|
curr_dir: Iter<'static, Direction>,
|
|
}
|
|
|
|
#[init]
|
|
fn init(cx: init::Context) -> (Shared, Local) {
|
|
let mut rcc = cx.device.RCC.constrain();
|
|
|
|
// Initialize the systick interrupt & obtain the token to prove that we did
|
|
let systick_mono_token = rtic_monotonics::create_systick_token!();
|
|
Systick::start(cx.core.SYST, 8_000_000, systick_mono_token);
|
|
|
|
let mut flash = cx.device.FLASH.constrain();
|
|
let clocks = rcc
|
|
.cfgr
|
|
.use_hse(8.MHz())
|
|
.sysclk(8.MHz())
|
|
.pclk1(8.MHz())
|
|
.freeze(&mut flash.acr);
|
|
|
|
// Set up monotonic timer.
|
|
//let mono_timer = MonoTimer::new(cx.core.DWT, clocks, &mut cx.core.DCB);
|
|
|
|
defmt::info!("Starting sat-rs demo application for the STM32F3-Discovery");
|
|
let mut gpioe = cx.device.GPIOE.split(&mut rcc.ahb);
|
|
|
|
let leds = Leds::new(
|
|
gpioe.pe8,
|
|
gpioe.pe9,
|
|
gpioe.pe10,
|
|
gpioe.pe11,
|
|
gpioe.pe12,
|
|
gpioe.pe13,
|
|
gpioe.pe14,
|
|
gpioe.pe15,
|
|
&mut gpioe.moder,
|
|
&mut gpioe.otyper,
|
|
);
|
|
let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb);
|
|
// USART2 pins
|
|
let mut pins = (
|
|
// TX pin: PA2
|
|
gpioa
|
|
.pa2
|
|
.into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl),
|
|
// RX pin: PA3
|
|
gpioa
|
|
.pa3
|
|
.into_af_push_pull(&mut gpioa.moder, &mut gpioa.otyper, &mut gpioa.afrl),
|
|
);
|
|
pins.1.internal_pull_up(&mut gpioa.pupdr, true);
|
|
let mut usart2 = Serial::new(
|
|
cx.device.USART2,
|
|
pins,
|
|
UART_BAUD.Bd(),
|
|
clocks,
|
|
&mut rcc.apb1,
|
|
);
|
|
usart2.configure_rx_interrupt(RxEvent::Idle, Switch::On);
|
|
// This interrupt is enabled to re-schedule new transfers in the interrupt handler immediately.
|
|
usart2.configure_tx_interrupt(TxEvent::TransmissionComplete, Switch::On);
|
|
|
|
let dma1 = cx.device.DMA1.split(&mut rcc.ahb);
|
|
let (mut tx_serial, mut rx_serial) = usart2.split();
|
|
|
|
// This interrupt is immediately triggered, clear it. It will only be reset
|
|
// by the hardware when data is received on RX (RXNE event)
|
|
rx_serial.clear_event(RxEvent::Idle);
|
|
// For some reason, this is also immediately triggered..
|
|
tx_serial.clear_event(TxEvent::TransmissionComplete);
|
|
let rx_transfer = rx_serial.read_exact(unsafe { DMA_RX_BUF.as_mut_slice() }, dma1.ch6);
|
|
defmt::info!("Spawning tasks");
|
|
blink::spawn().unwrap();
|
|
serial_tx_handler::spawn().unwrap();
|
|
|
|
let verif_reporter = VerificationReportCreator::new(PUS_APID).unwrap();
|
|
|
|
(
|
|
Shared {
|
|
blink_freq: MillisDurationU32::from_ticks(DEFAULT_BLINK_FREQ_MS),
|
|
tx_shared: UartTxShared {
|
|
last_completed: None,
|
|
state: UartTxState::Idle(Some(TxIdle {
|
|
tx: tx_serial,
|
|
dma_channel: dma1.ch7,
|
|
})),
|
|
},
|
|
rx_transfer: Some(rx_transfer),
|
|
},
|
|
Local {
|
|
verif_reporter,
|
|
leds,
|
|
last_dir: Direction::North,
|
|
curr_dir: Direction::iter(),
|
|
},
|
|
)
|
|
}
|
|
|
|
#[task(local = [leds, curr_dir, last_dir], shared=[blink_freq])]
|
|
async fn blink(mut cx: blink::Context) {
|
|
let blink::LocalResources {
|
|
leds,
|
|
curr_dir,
|
|
last_dir,
|
|
..
|
|
} = cx.local;
|
|
let mut toggle_leds = |dir: &Direction| {
|
|
let last_led = leds.for_direction(*last_dir);
|
|
last_led.off().ok();
|
|
let led = leds.for_direction(*dir);
|
|
led.on().ok();
|
|
*last_dir = *dir;
|
|
};
|
|
loop {
|
|
match curr_dir.next() {
|
|
Some(dir) => {
|
|
toggle_leds(dir);
|
|
}
|
|
None => {
|
|
*curr_dir = Direction::iter();
|
|
toggle_leds(curr_dir.next().unwrap());
|
|
}
|
|
}
|
|
let current_blink_freq = cx.shared.blink_freq.lock(|current| *current);
|
|
Systick::delay(current_blink_freq).await;
|
|
}
|
|
}
|
|
|
|
#[task(
|
|
shared = [tx_shared],
|
|
)]
|
|
async fn serial_tx_handler(mut cx: serial_tx_handler::Context) {
|
|
loop {
|
|
let is_idle = cx.shared.tx_shared.lock(|tx_shared| {
|
|
if let UartTxState::Idle(_) = tx_shared.state {
|
|
return true;
|
|
}
|
|
false
|
|
});
|
|
if is_idle {
|
|
let last_completed = cx.shared.tx_shared.lock(|shared| shared.last_completed);
|
|
if let Some(last_completed) = last_completed {
|
|
let elapsed_ms = (Systick::now() - last_completed).to_millis();
|
|
if elapsed_ms < MIN_DELAY_BETWEEN_TX_PACKETS_MS {
|
|
Systick::delay((MIN_DELAY_BETWEEN_TX_PACKETS_MS - elapsed_ms).millis())
|
|
.await;
|
|
}
|
|
}
|
|
} else {
|
|
// Check for completion after 1 ms
|
|
Systick::delay(1.millis()).await;
|
|
continue;
|
|
}
|
|
if let Some(vec) = TM_REQUESTS.dequeue() {
|
|
cx.shared
|
|
.tx_shared
|
|
.lock(|tx_shared| match &mut tx_shared.state {
|
|
UartTxState::Idle(tx) => {
|
|
let encoded_len;
|
|
//debug!(target: "serial_tx_handler", "bytes: {:x?}", &buf[0..len]);
|
|
// Safety: We only copy the data into the TX DMA buffer in this task.
|
|
// If the DMA is active, another branch will be taken.
|
|
unsafe {
|
|
// 0 sentinel value as start marker
|
|
DMA_TX_BUF[0] = 0;
|
|
encoded_len =
|
|
cobs::encode(&vec[0..vec.len()], &mut DMA_TX_BUF[1..]);
|
|
// Should never panic, we accounted for the overhead.
|
|
// Write into transfer buffer directly, no need for intermediate
|
|
// encoding buffer.
|
|
// 0 end marker
|
|
DMA_TX_BUF[encoded_len + 1] = 0;
|
|
}
|
|
//debug!(target: "serial_tx_handler", "Sending {} bytes", encoded_len + 2);
|
|
//debug!("sent: {:x?}", &mut_tx_dma_buf[0..encoded_len + 2]);
|
|
let tx_idle = tx.take().unwrap();
|
|
// Transfer completion and re-scheduling of new TX transfers will be done
|
|
// by the IRQ handler.
|
|
// SAFETY: The DMA is the exclusive writer to the DMA buffer now.
|
|
let transfer = tx_idle.tx.write_all(
|
|
unsafe { &DMA_TX_BUF[0..encoded_len + 2] },
|
|
tx_idle.dma_channel,
|
|
);
|
|
tx_shared.state = UartTxState::Transmitting(Some(transfer));
|
|
// The memory block is automatically returned to the pool when it is dropped.
|
|
}
|
|
UartTxState::Transmitting(_) => (),
|
|
});
|
|
// Check for completion after 1 ms
|
|
Systick::delay(1.millis()).await;
|
|
continue;
|
|
}
|
|
// Nothing to do, and we are idle.
|
|
Systick::delay(TX_HANDLER_FREQ_MS.millis()).await;
|
|
}
|
|
}
|
|
|
|
#[task(
|
|
local = [
|
|
verif_reporter,
|
|
decode_buf: [u8; MAX_TC_LEN] = [0; MAX_TC_LEN],
|
|
src_data_buf: [u8; MAX_TM_LEN] = [0; MAX_TM_LEN],
|
|
timestamp: [u8; 7] = [0; 7],
|
|
],
|
|
shared = [blink_freq]
|
|
)]
|
|
async fn serial_rx_handler(
|
|
mut cx: serial_rx_handler::Context,
|
|
received_packet: Vec<u8, MAX_TC_LEN>,
|
|
) {
|
|
cx.local.timestamp[0] = P_FIELD_BASE;
|
|
defmt::info!("Received packet with {} bytes", received_packet.len());
|
|
let decode_buf = cx.local.decode_buf;
|
|
let packet = received_packet.as_slice();
|
|
let mut start_idx = None;
|
|
for (idx, byte) in packet.iter().enumerate() {
|
|
if *byte != 0 {
|
|
start_idx = Some(idx);
|
|
break;
|
|
}
|
|
}
|
|
if start_idx.is_none() {
|
|
defmt::warn!("decoding error, can only process cobs encoded frames, data is all 0");
|
|
return;
|
|
}
|
|
let start_idx = start_idx.unwrap();
|
|
match cobs::decode(&received_packet.as_slice()[start_idx..], decode_buf) {
|
|
Ok(len) => {
|
|
defmt::info!("Decoded packet length: {}", len);
|
|
let pus_tc = PusTcReader::new(decode_buf);
|
|
match pus_tc {
|
|
Ok((tc, _tc_len)) => {
|
|
match convert_pus_tc_to_request(
|
|
&tc,
|
|
cx.local.verif_reporter,
|
|
cx.local.src_data_buf,
|
|
cx.local.timestamp,
|
|
) {
|
|
Ok(request_with_token) => {
|
|
let started_token = handle_start_verification(
|
|
request_with_token.token,
|
|
cx.local.verif_reporter,
|
|
cx.local.src_data_buf,
|
|
cx.local.timestamp,
|
|
);
|
|
|
|
match request_with_token.request {
|
|
Request::Ping => {
|
|
handle_ping_request(cx.local.timestamp);
|
|
}
|
|
Request::ChangeBlinkFrequency(new_freq_ms) => {
|
|
defmt::info!("Received blink frequency change request with new frequncy {}", new_freq_ms);
|
|
cx.shared.blink_freq.lock(|blink_freq| {
|
|
*blink_freq =
|
|
MillisDurationU32::from_ticks(new_freq_ms);
|
|
});
|
|
}
|
|
}
|
|
handle_completion_verification(
|
|
started_token,
|
|
cx.local.verif_reporter,
|
|
cx.local.src_data_buf,
|
|
cx.local.timestamp,
|
|
);
|
|
}
|
|
Err(e) => {
|
|
// TODO: Error handling: Send verification failure based on request error.
|
|
defmt::warn!("request error {}", e);
|
|
}
|
|
}
|
|
}
|
|
Err(e) => {
|
|
defmt::warn!("Error unpacking PUS TC: {}", e);
|
|
}
|
|
}
|
|
}
|
|
Err(_) => {
|
|
defmt::warn!("decoding error, can only process cobs encoded frames")
|
|
}
|
|
}
|
|
}
|
|
|
|
fn handle_ping_request(timestamp: &[u8]) {
|
|
defmt::info!("Received PUS ping telecommand, sending ping reply TM[17,2]");
|
|
let sp_header =
|
|
SpHeader::new_for_unseg_tc(PUS_APID, SEQ_COUNT_PROVIDER.get_and_increment(), 0);
|
|
let sec_header = PusTmSecondaryHeader::new_simple(17, 2, timestamp);
|
|
let ping_reply = PusTmCreator::new(sp_header, sec_header, &[], true);
|
|
let mut tm_packet = TmPacket::new();
|
|
tm_packet
|
|
.resize(ping_reply.len_written(), 0)
|
|
.expect("vec resize failed");
|
|
ping_reply.write_to_bytes(&mut tm_packet).unwrap();
|
|
if TM_REQUESTS.enqueue(tm_packet).is_err() {
|
|
defmt::warn!("TC queue full");
|
|
return;
|
|
}
|
|
}
|
|
|
|
fn handle_start_verification(
|
|
accepted_token: VerificationToken<TcStateAccepted>,
|
|
verif_reporter: &mut VerificationReportCreator,
|
|
src_data_buf: &mut [u8],
|
|
timestamp: &[u8],
|
|
) -> VerificationToken<TcStateStarted> {
|
|
let (tm_creator, started_token) = verif_reporter
|
|
.start_success(
|
|
src_data_buf,
|
|
accepted_token,
|
|
SEQ_COUNT_PROVIDER.get(),
|
|
0,
|
|
×tamp,
|
|
)
|
|
.unwrap();
|
|
let result = send_tm(tm_creator);
|
|
if let Err(e) = result {
|
|
handle_tm_send_error(e);
|
|
}
|
|
started_token
|
|
}
|
|
|
|
fn handle_completion_verification(
|
|
started_token: VerificationToken<TcStateStarted>,
|
|
verif_reporter: &mut VerificationReportCreator,
|
|
src_data_buf: &mut [u8],
|
|
timestamp: &[u8],
|
|
) {
|
|
let result = send_tm(
|
|
verif_reporter
|
|
.completion_success(
|
|
src_data_buf,
|
|
started_token,
|
|
SEQ_COUNT_PROVIDER.get(),
|
|
0,
|
|
timestamp,
|
|
)
|
|
.unwrap(),
|
|
);
|
|
if let Err(e) = result {
|
|
handle_tm_send_error(e);
|
|
}
|
|
}
|
|
|
|
#[task(binds = DMA1_CH6, shared = [rx_transfer])]
|
|
fn rx_dma_isr(mut cx: rx_dma_isr::Context) {
|
|
let mut tc_packet = TcPacket::new();
|
|
cx.shared.rx_transfer.lock(|rx_transfer| {
|
|
let rx_ref = rx_transfer.as_ref().unwrap();
|
|
if rx_ref.is_complete() {
|
|
let uart_rx_owned = rx_transfer.take().unwrap();
|
|
let (buf, c, rx) = uart_rx_owned.stop();
|
|
// The received data is transferred to another task now to avoid any processing overhead
|
|
// during the interrupt. There are multiple ways to do this, we use a stack allocaed vector here
|
|
// to do this.
|
|
tc_packet.resize(buf.len(), 0).expect("vec resize failed");
|
|
tc_packet.copy_from_slice(buf);
|
|
|
|
// Start the next transfer as soon as possible.
|
|
*rx_transfer = Some(rx.read_exact(buf, c));
|
|
|
|
// Send the vector to a regular task.
|
|
serial_rx_handler::spawn(tc_packet).expect("spawning rx handler task failed");
|
|
// If this happens, there is a high chance that the maximum packet length was
|
|
// exceeded. Circular mode is not used here, so data might be missed.
|
|
defmt::warn!(
|
|
"rx transfer with maximum length {}, might miss data",
|
|
TC_BUF_LEN
|
|
);
|
|
}
|
|
});
|
|
}
|
|
|
|
#[task(binds = USART2_EXTI26, shared = [rx_transfer, tx_shared])]
|
|
fn serial_isr(mut cx: serial_isr::Context) {
|
|
cx.shared
|
|
.tx_shared
|
|
.lock(|tx_shared| match &mut tx_shared.state {
|
|
UartTxState::Idle(_) => (),
|
|
UartTxState::Transmitting(transfer) => {
|
|
let transfer_ref = transfer.as_ref().unwrap();
|
|
if transfer_ref.is_complete() {
|
|
let transfer = transfer.take().unwrap();
|
|
let (_, dma_channel, mut tx) = transfer.stop();
|
|
tx.clear_event(TxEvent::TransmissionComplete);
|
|
tx_shared.state = UartTxState::Idle(Some(TxIdle { tx, dma_channel }));
|
|
// We cache the last completed time to ensure that there is a minimum delay between consecutive
|
|
// transferred packets.
|
|
tx_shared.last_completed = Some(Systick::now());
|
|
}
|
|
}
|
|
});
|
|
let mut tc_packet = TcPacket::new();
|
|
cx.shared.rx_transfer.lock(|rx_transfer| {
|
|
let rx_transfer_ref = rx_transfer.as_ref().unwrap();
|
|
// Received a partial packet.
|
|
if rx_transfer_ref.is_event_triggered(RxEvent::Idle) {
|
|
let rx_transfer_owned = rx_transfer.take().unwrap();
|
|
let (buf, ch, mut rx, rx_len) = rx_transfer_owned.stop_and_return_received_bytes();
|
|
// The received data is transferred to another task now to avoid any processing overhead
|
|
// during the interrupt. There are multiple ways to do this, we use a stack
|
|
// allocated vector to do this.
|
|
tc_packet
|
|
.resize(rx_len as usize, 0)
|
|
.expect("vec resize failed");
|
|
tc_packet[0..rx_len as usize].copy_from_slice(&buf[0..rx_len as usize]);
|
|
rx.clear_event(RxEvent::Idle);
|
|
serial_rx_handler::spawn(tc_packet).expect("spawning rx handler failed");
|
|
*rx_transfer = Some(rx.read_exact(buf, ch));
|
|
}
|
|
});
|
|
}
|
|
}
|