sat-rs/satrs/src/cfdp/mod.rs
Robin Mueller de4e6183b3
All checks were successful
Rust/sat-rs/pipeline/pr-main This commit looks good
Re-structure sat-rs
- Add new shared subcrate satrs-shared to split off some shared
  components not expected to change very often.
- Renmame `satrs-core` to `satrs`. It is expected that sat-rs will remain
  the primary crate, so the core information is superfluous, and core also
  implies stability, which will not be the case for some time.
2024-02-12 15:51:37 +01:00

672 lines
26 KiB
Rust

//! This module contains the implementation of the CFDP high level classes as specified in the
//! CCSDS 727.0-B-5.
use core::{cell::RefCell, fmt::Debug, hash::Hash};
use crc::{Crc, CRC_32_CKSUM};
use hashbrown::HashMap;
use spacepackets::{
cfdp::{
pdu::{FileDirectiveType, PduError, PduHeader},
ChecksumType, ConditionCode, FaultHandlerCode, PduType, TransmissionMode,
},
util::UnsignedByteField,
};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
pub mod dest;
#[cfg(feature = "alloc")]
pub mod filestore;
#[cfg(feature = "std")]
pub mod source;
pub mod user;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum EntityType {
Sending,
Receiving,
}
pub enum TimerContext {
CheckLimit {
local_id: UnsignedByteField,
remote_id: UnsignedByteField,
entity_type: EntityType,
},
NakActivity {
expiry_time_seconds: f32,
},
PositiveAck {
expiry_time_seconds: f32,
},
}
/// Generic abstraction for a check timer which is used by 3 mechanisms of the CFDP protocol.
///
/// ## 1. Check limit handling
///
/// The first mechanism is the check limit handling for unacknowledged transfers as specified
/// in 4.6.3.2 and 4.6.3.3 of the CFDP standard.
/// For this mechanism, the timer has different functionality depending on whether
/// the using entity is the sending entity or the receiving entity for the unacknowledged
/// transmission mode.
///
/// For the sending entity, this timer determines the expiry period for declaring a check limit
/// fault after sending an EOF PDU with requested closure. This allows a timeout of the transfer.
/// Also see 4.6.3.2 of the CFDP standard.
///
/// For the receiving entity, this timer determines the expiry period for incrementing a check
/// counter after an EOF PDU is received for an incomplete file transfer. This allows out-of-order
/// reception of file data PDUs and EOF PDUs. Also see 4.6.3.3 of the CFDP standard.
///
/// ## 2. NAK activity limit
///
/// The timer will be used to perform the NAK activity check as specified in 4.6.4.7 of the CFDP
/// standard. The expiration period will be provided by the NAK timer expiration limit of the
/// remote entity configuration.
///
/// ## 3. Positive ACK procedures
///
/// The timer will be used to perform the Positive Acknowledgement Procedures as specified in
/// 4.7. 1of the CFDP standard. The expiration period will be provided by the Positive ACK timer
/// interval of the remote entity configuration.
pub trait CheckTimer: Debug {
fn has_expired(&self) -> bool;
fn reset(&mut self);
}
/// A generic trait which allows CFDP entities to create check timers which are required to
/// implement special procedures in unacknowledged transmission mode, as specified in 4.6.3.2
/// and 4.6.3.3. The [CheckTimer] documentation provides more information about the purpose of the
/// check timer in the context of CFDP.
///
/// This trait also allows the creation of different check timers depending on context and purpose
/// of the timer, the runtime environment (e.g. standard clock timer vs. timer using a RTC) or
/// other factors.
#[cfg(feature = "alloc")]
pub trait CheckTimerCreator {
fn get_check_timer_provider(&self, timer_context: TimerContext) -> Box<dyn CheckTimer>;
}
/// Simple implementation of the [CheckTimerCreator] trait assuming a standard runtime.
/// It also assumes that a second accuracy of the check timer period is sufficient.
#[cfg(feature = "std")]
#[derive(Debug)]
pub struct StdCheckTimer {
expiry_time_seconds: u64,
start_time: std::time::Instant,
}
#[cfg(feature = "std")]
impl StdCheckTimer {
pub fn new(expiry_time_seconds: u64) -> Self {
Self {
expiry_time_seconds,
start_time: std::time::Instant::now(),
}
}
}
#[cfg(feature = "std")]
impl CheckTimer for StdCheckTimer {
fn has_expired(&self) -> bool {
let elapsed_time = self.start_time.elapsed();
if elapsed_time.as_secs() > self.expiry_time_seconds {
return true;
}
false
}
fn reset(&mut self) {
self.start_time = std::time::Instant::now();
}
}
/// This structure models the remote entity configuration information as specified in chapter 8.3
/// of the CFDP standard.
/// Some of the fields which were not considered necessary for the Rust implementation
/// were omitted. Some other fields which are not contained inside the standard but are considered
/// necessary for the Rust implementation are included.
///
/// ## Notes on Positive Acknowledgment Procedures
///
/// The `positive_ack_timer_interval_seconds` and `positive_ack_timer_expiration_limit` will
/// be used for positive acknowledgement procedures as specified in CFDP chapter 4.7. The sending
/// entity will start the timer for any PDUs where an acknowledgment is required (e.g. EOF PDU).
/// Once the expected ACK response has not been received for that interval, as counter will be
/// incremented and the timer will be reset. Once the counter exceeds the
/// `positive_ack_timer_expiration_limit`, a Positive ACK Limit Reached fault will be declared.
///
/// ## Notes on Deferred Lost Segment Procedures
///
/// This procedure will be active if an EOF (No Error) PDU is received in acknowledged mode. After
/// issuing the NAK sequence which has the whole file scope, a timer will be started. The timer is
/// reset when missing segments or missing metadata is received. The timer will be deactivated if
/// all missing data is received. If the timer expires, a new NAK sequence will be issued and a
/// counter will be incremented, which can lead to a NAK Limit Reached fault being declared.
///
/// ## Fields
///
/// * `entity_id` - The ID of the remote entity.
/// * `max_packet_len` - This determines of all PDUs generated for that remote entity in addition
/// to the `max_file_segment_len` attribute which also determines the size of file data PDUs.
/// * `max_file_segment_len` The maximum file segment length which determines the maximum size
/// of file data PDUs in addition to the `max_packet_len` attribute. If this field is set
/// to None, the maximum file segment length will be derived from the maximum packet length.
/// If this has some value which is smaller than the segment value derived from
/// `max_packet_len`, this value will be picked.
/// * `closure_requested_by_default` - If the closure requested field is not supplied as part of
/// the Put Request, it will be determined from this field in the remote configuration.
/// * `crc_on_transmission_by_default` - If the CRC option is not supplied as part of the Put
/// Request, it will be determined from this field in the remote configuration.
/// * `default_transmission_mode` - If the transmission mode is not supplied as part of the
/// Put Request, it will be determined from this field in the remote configuration.
/// * `disposition_on_cancellation` - Determines whether an incomplete received file is discard on
/// transaction cancellation. Defaults to False.
/// * `default_crc_type` - Default checksum type used to calculate for all file transmissions to
/// this remote entity.
/// * `check_limit` - This timer determines the expiry period for incrementing a check counter
/// after an EOF PDU is received for an incomplete file transfer. This allows out-of-order
/// reception of file data PDUs and EOF PDUs. Also see 4.6.3.3 of the CFDP standard. Defaults to
/// 2, so the check limit timer may expire twice.
/// * `positive_ack_timer_interval_seconds`- See the notes on the Positive Acknowledgment
/// Procedures inside the class documentation. Expected as floating point seconds. Defaults to
/// 10 seconds.
/// * `positive_ack_timer_expiration_limit` - See the notes on the Positive Acknowledgment
/// Procedures inside the class documentation. Defaults to 2, so the timer may expire twice.
/// * `immediate_nak_mode` - Specifies whether a NAK sequence should be issued immediately when a
/// file data gap or lost metadata is detected in the acknowledged mode. Defaults to True.
/// * `nak_timer_interval_seconds` - See the notes on the Deferred Lost Segment Procedure inside
/// the class documentation. Expected as floating point seconds. Defaults to 10 seconds.
/// * `nak_timer_expiration_limit` - See the notes on the Deferred Lost Segment Procedure inside
/// the class documentation. Defaults to 2, so the timer may expire two times.
#[derive(Debug, Copy, Clone)]
pub struct RemoteEntityConfig {
pub entity_id: UnsignedByteField,
pub max_packet_len: usize,
pub max_file_segment_len: usize,
pub closure_requested_by_default: bool,
pub crc_on_transmission_by_default: bool,
pub default_transmission_mode: TransmissionMode,
pub default_crc_type: ChecksumType,
pub positive_ack_timer_interval_seconds: f32,
pub positive_ack_timer_expiration_limit: u32,
pub check_limit: u32,
pub disposition_on_cancellation: bool,
pub immediate_nak_mode: bool,
pub nak_timer_interval_seconds: f32,
pub nak_timer_expiration_limit: u32,
}
impl RemoteEntityConfig {
pub fn new_with_default_values(
entity_id: UnsignedByteField,
max_file_segment_len: usize,
max_packet_len: usize,
closure_requested_by_default: bool,
crc_on_transmission_by_default: bool,
default_transmission_mode: TransmissionMode,
default_crc_type: ChecksumType,
) -> Self {
Self {
entity_id,
max_file_segment_len,
max_packet_len,
closure_requested_by_default,
crc_on_transmission_by_default,
default_transmission_mode,
default_crc_type,
check_limit: 2,
positive_ack_timer_interval_seconds: 10.0,
positive_ack_timer_expiration_limit: 2,
disposition_on_cancellation: false,
immediate_nak_mode: true,
nak_timer_interval_seconds: 10.0,
nak_timer_expiration_limit: 2,
}
}
}
pub trait RemoteEntityConfigProvider {
/// Retrieve the remote entity configuration for the given remote ID.
fn get_remote_config(&self, remote_id: u64) -> Option<&RemoteEntityConfig>;
fn get_remote_config_mut(&mut self, remote_id: u64) -> Option<&mut RemoteEntityConfig>;
/// Add a new remote configuration. Return [true] if the configuration was
/// inserted successfully, and [false] if a configuration already exists.
fn add_config(&mut self, cfg: &RemoteEntityConfig) -> bool;
/// Remote a configuration. Returns [true] if the configuration was removed successfully,
/// and [false] if no configuration exists for the given remote ID.
fn remove_config(&mut self, remote_id: u64) -> bool;
}
#[cfg(feature = "std")]
#[derive(Default)]
pub struct StdRemoteEntityConfigProvider {
remote_cfg_table: HashMap<u64, RemoteEntityConfig>,
}
#[cfg(feature = "std")]
impl RemoteEntityConfigProvider for StdRemoteEntityConfigProvider {
fn get_remote_config(&self, remote_id: u64) -> Option<&RemoteEntityConfig> {
self.remote_cfg_table.get(&remote_id)
}
fn get_remote_config_mut(&mut self, remote_id: u64) -> Option<&mut RemoteEntityConfig> {
self.remote_cfg_table.get_mut(&remote_id)
}
fn add_config(&mut self, cfg: &RemoteEntityConfig) -> bool {
self.remote_cfg_table
.insert(cfg.entity_id.value(), *cfg)
.is_some()
}
fn remove_config(&mut self, remote_id: u64) -> bool {
self.remote_cfg_table.remove(&remote_id).is_some()
}
}
/// This trait introduces some callbacks which will be called when a particular CFDP fault
/// handler is called.
///
/// It is passed into the CFDP handlers as part of the [DefaultFaultHandler] and the local entity
/// configuration and provides a way to specify custom user error handlers. This allows to
/// implement some CFDP features like fault handler logging, which would not be possible
/// generically otherwise.
///
/// For each error reported by the [DefaultFaultHandler], the appropriate fault handler callback
/// will be called depending on the [FaultHandlerCode].
pub trait UserFaultHandler {
fn notice_of_suspension_cb(
&mut self,
transaction_id: TransactionId,
cond: ConditionCode,
progress: u64,
);
fn notice_of_cancellation_cb(
&mut self,
transaction_id: TransactionId,
cond: ConditionCode,
progress: u64,
);
fn abandoned_cb(&mut self, transaction_id: TransactionId, cond: ConditionCode, progress: u64);
fn ignore_cb(&mut self, transaction_id: TransactionId, cond: ConditionCode, progress: u64);
}
/// This structure is used to implement the fault handling as specified in chapter 4.8 of the CFDP
/// standard.
///
/// It does so by mapping each applicable [spacepackets::cfdp::ConditionCode] to a fault handler
/// which is denoted by the four [spacepackets::cfdp::FaultHandlerCode]s. This code is used
/// to select the error handling inside the CFDP handler itself in addition to dispatching to a
/// user-provided callback function provided by the [UserFaultHandler].
///
/// Some note on the provided default settings:
///
/// - Checksum failures will be ignored by default. This is because for unacknowledged transfers,
/// cancelling the transfer immediately would interfere with the check limit mechanism specified
/// in chapter 4.6.3.3.
/// - Unsupported checksum types will also be ignored by default. Even if the checksum type is
/// not supported the file transfer might still have worked properly.
///
/// For all other faults, the default fault handling operation will be to cancel the transaction.
/// These defaults can be overriden by using the [Self::set_fault_handler] method.
/// Please note that in any case, fault handler overrides can be specified by the sending CFDP
/// entity.
pub struct DefaultFaultHandler {
handler_array: [FaultHandlerCode; 10],
// Could also change the user fault handler trait to have non mutable methods, but that limits
// flexbility on the user side..
user_fault_handler: RefCell<Box<dyn UserFaultHandler + Send>>,
}
impl DefaultFaultHandler {
fn condition_code_to_array_index(conditon_code: ConditionCode) -> Option<usize> {
Some(match conditon_code {
ConditionCode::PositiveAckLimitReached => 0,
ConditionCode::KeepAliveLimitReached => 1,
ConditionCode::InvalidTransmissionMode => 2,
ConditionCode::FilestoreRejection => 3,
ConditionCode::FileChecksumFailure => 4,
ConditionCode::FileSizeError => 5,
ConditionCode::NakLimitReached => 6,
ConditionCode::InactivityDetected => 7,
ConditionCode::CheckLimitReached => 8,
ConditionCode::UnsupportedChecksumType => 9,
_ => return None,
})
}
pub fn set_fault_handler(
&mut self,
condition_code: ConditionCode,
fault_handler: FaultHandlerCode,
) {
let array_idx = Self::condition_code_to_array_index(condition_code);
if array_idx.is_none() {
return;
}
self.handler_array[array_idx.unwrap()] = fault_handler;
}
pub fn new(user_fault_handler: Box<dyn UserFaultHandler + Send>) -> Self {
let mut init_array = [FaultHandlerCode::NoticeOfCancellation; 10];
init_array
[Self::condition_code_to_array_index(ConditionCode::FileChecksumFailure).unwrap()] =
FaultHandlerCode::IgnoreError;
init_array[Self::condition_code_to_array_index(ConditionCode::UnsupportedChecksumType)
.unwrap()] = FaultHandlerCode::IgnoreError;
Self {
handler_array: init_array,
user_fault_handler: RefCell::new(user_fault_handler),
}
}
pub fn get_fault_handler(&self, condition_code: ConditionCode) -> FaultHandlerCode {
let array_idx = Self::condition_code_to_array_index(condition_code);
if array_idx.is_none() {
return FaultHandlerCode::IgnoreError;
}
self.handler_array[array_idx.unwrap()]
}
pub fn report_fault(
&self,
transaction_id: TransactionId,
condition: ConditionCode,
progress: u64,
) -> FaultHandlerCode {
let array_idx = Self::condition_code_to_array_index(condition);
if array_idx.is_none() {
return FaultHandlerCode::IgnoreError;
}
let fh_code = self.handler_array[array_idx.unwrap()];
let mut handler_mut = self.user_fault_handler.borrow_mut();
match fh_code {
FaultHandlerCode::NoticeOfCancellation => {
handler_mut.notice_of_cancellation_cb(transaction_id, condition, progress);
}
FaultHandlerCode::NoticeOfSuspension => {
handler_mut.notice_of_suspension_cb(transaction_id, condition, progress);
}
FaultHandlerCode::IgnoreError => {
handler_mut.ignore_cb(transaction_id, condition, progress);
}
FaultHandlerCode::AbandonTransaction => {
handler_mut.abandoned_cb(transaction_id, condition, progress);
}
}
fh_code
}
}
pub struct IndicationConfig {
pub eof_sent: bool,
pub eof_recv: bool,
pub file_segment_recv: bool,
pub transaction_finished: bool,
pub suspended: bool,
pub resumed: bool,
}
impl Default for IndicationConfig {
fn default() -> Self {
Self {
eof_sent: true,
eof_recv: true,
file_segment_recv: true,
transaction_finished: true,
suspended: true,
resumed: true,
}
}
}
pub struct LocalEntityConfig {
pub id: UnsignedByteField,
pub indication_cfg: IndicationConfig,
pub default_fault_handler: DefaultFaultHandler,
}
/// The CFDP transaction ID of a CFDP transaction consists of the source entity ID and the sequence
/// number of that transfer which is also determined by the CFDP source entity.
#[derive(Debug, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TransactionId {
source_id: UnsignedByteField,
seq_num: UnsignedByteField,
}
impl TransactionId {
pub fn new(source_id: UnsignedByteField, seq_num: UnsignedByteField) -> Self {
Self { source_id, seq_num }
}
pub fn source_id(&self) -> &UnsignedByteField {
&self.source_id
}
pub fn seq_num(&self) -> &UnsignedByteField {
&self.seq_num
}
}
impl Hash for TransactionId {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.source_id.value().hash(state);
self.seq_num.value().hash(state);
}
}
impl PartialEq for TransactionId {
fn eq(&self, other: &Self) -> bool {
self.source_id.value() == other.source_id.value()
&& self.seq_num.value() == other.seq_num.value()
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TransactionStep {
Idle = 0,
TransactionStart = 1,
ReceivingFileDataPdus = 2,
ReceivingFileDataPdusWithCheckLimitHandling = 3,
SendingAckPdu = 4,
TransferCompletion = 5,
SendingFinishedPdu = 6,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum State {
Idle = 0,
Busy = 1,
Suspended = 2,
}
pub const CRC_32: Crc<u32> = Crc::<u32>::new(&CRC_32_CKSUM);
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PacketTarget {
SourceEntity,
DestEntity,
}
/// This is a helper struct which contains base information about a particular PDU packet.
/// This is also necessary information for CFDP packet routing. For example, some packet types
/// like file data PDUs can only be used by CFDP source entities.
pub struct PacketInfo<'raw_packet> {
pdu_type: PduType,
pdu_directive: Option<FileDirectiveType>,
target: PacketTarget,
raw_packet: &'raw_packet [u8],
}
impl<'raw> PacketInfo<'raw> {
pub fn new(raw_packet: &'raw [u8]) -> Result<Self, PduError> {
let (pdu_header, header_len) = PduHeader::from_bytes(raw_packet)?;
if pdu_header.pdu_type() == PduType::FileData {
return Ok(Self {
pdu_type: pdu_header.pdu_type(),
pdu_directive: None,
target: PacketTarget::DestEntity,
raw_packet,
});
}
if pdu_header.pdu_datafield_len() < 1 {
return Err(PduError::FormatError);
}
// Route depending on PDU type and directive type if applicable. Retrieve directive type
// from the raw stream for better performance (with sanity and directive code check).
// The routing is based on section 4.5 of the CFDP standard which specifies the PDU forwarding
// procedure.
let directive = FileDirectiveType::try_from(raw_packet[header_len]).map_err(|_| {
PduError::InvalidDirectiveType {
found: raw_packet[header_len],
expected: None,
}
})?;
let packet_target = match directive {
// Section c) of 4.5.3: These PDUs should always be targeted towards the file sender a.k.a.
// the source handler
FileDirectiveType::NakPdu
| FileDirectiveType::FinishedPdu
| FileDirectiveType::KeepAlivePdu => PacketTarget::SourceEntity,
// Section b) of 4.5.3: These PDUs should always be targeted towards the file receiver a.k.a.
// the destination handler
FileDirectiveType::MetadataPdu
| FileDirectiveType::EofPdu
| FileDirectiveType::PromptPdu => PacketTarget::DestEntity,
// Section a): Recipient depends of the type of PDU that is being acknowledged. We can simply
// extract the PDU type from the raw stream. If it is an EOF PDU, this packet is passed to
// the source handler, for a Finished PDU, it is passed to the destination handler.
FileDirectiveType::AckPdu => {
let acked_directive = FileDirectiveType::try_from(raw_packet[header_len + 1])
.map_err(|_| PduError::InvalidDirectiveType {
found: raw_packet[header_len],
expected: None,
})?;
if acked_directive == FileDirectiveType::EofPdu {
PacketTarget::SourceEntity
} else if acked_directive == FileDirectiveType::FinishedPdu {
PacketTarget::DestEntity
} else {
// TODO: Maybe a better error? This might be confusing..
return Err(PduError::InvalidDirectiveType {
found: raw_packet[header_len + 1],
expected: None,
});
}
}
};
Ok(Self {
pdu_type: pdu_header.pdu_type(),
pdu_directive: Some(directive),
target: packet_target,
raw_packet,
})
}
pub fn pdu_type(&self) -> PduType {
self.pdu_type
}
pub fn pdu_directive(&self) -> Option<FileDirectiveType> {
self.pdu_directive
}
pub fn target(&self) -> PacketTarget {
self.target
}
pub fn raw_packet(&self) -> &[u8] {
self.raw_packet
}
}
#[cfg(test)]
mod tests {
use spacepackets::cfdp::{
lv::Lv,
pdu::{
eof::EofPdu,
file_data::FileDataPdu,
metadata::{MetadataGenericParams, MetadataPduCreator},
CommonPduConfig, FileDirectiveType, PduHeader, WritablePduPacket,
},
PduType,
};
use crate::cfdp::PacketTarget;
use super::PacketInfo;
fn generic_pdu_header() -> PduHeader {
let pdu_conf = CommonPduConfig::default();
PduHeader::new_no_file_data(pdu_conf, 0)
}
#[test]
fn test_metadata_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let metadata_params = MetadataGenericParams::default();
let src_file_name = "hello.txt";
let dest_file_name = "hello-dest.txt";
let src_lv = Lv::new_from_str(src_file_name).unwrap();
let dest_lv = Lv::new_from_str(dest_file_name).unwrap();
let metadata_pdu =
MetadataPduCreator::new_no_opts(pdu_header, metadata_params, src_lv, dest_lv);
metadata_pdu
.write_to_bytes(&mut buf)
.expect("writing metadata PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileDirective);
assert!(packet_info.pdu_directive().is_some());
assert_eq!(
packet_info.pdu_directive().unwrap(),
FileDirectiveType::MetadataPdu
);
assert_eq!(packet_info.target(), PacketTarget::DestEntity);
}
#[test]
fn test_filedata_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let file_data_pdu = FileDataPdu::new_no_seg_metadata(pdu_header, 0, &[]);
file_data_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileData);
assert!(packet_info.pdu_directive().is_none());
assert_eq!(packet_info.target(), PacketTarget::DestEntity);
}
#[test]
fn test_eof_pdu_info() {
let mut buf: [u8; 128] = [0; 128];
let pdu_header = generic_pdu_header();
let eof_pdu = EofPdu::new_no_error(pdu_header, 0, 0);
eof_pdu
.write_to_bytes(&mut buf)
.expect("writing file data PDU failed");
let packet_info = PacketInfo::new(&buf).expect("creating packet info failed");
assert_eq!(packet_info.pdu_type(), PduType::FileDirective);
assert!(packet_info.pdu_directive().is_some());
assert_eq!(
packet_info.pdu_directive().unwrap(),
FileDirectiveType::EofPdu
);
}
}