sat-rs/satrs/src/event_man.rs

851 lines
34 KiB
Rust

//! Event management and forwarding
//!
//! This module provides components to perform event routing. The most important component for this
//! task is the [EventManager]. It receives all events and then routes them to event subscribers
//! where appropriate. One common use case for satellite systems is to offer a light-weight
//! publish-subscribe mechanism and IPC mechanism for software and hardware events which are also
//! packaged as telemetry (TM) or can trigger a system response.
//!
//! It is recommended to read the
//! [sat-rs book chapter](https://absatsw.irs.uni-stuttgart.de/projects/sat-rs/book/events.html)
//! about events first:
//!
//! The event manager has a listener table abstracted by the [ListenerMapProvider], which maps
//! listener groups identified by [ListenerKey]s to a [listener ID][ComponentId].
//! It also contains a sender table abstracted by the [SenderMapProvider] which maps these sender
//! IDs to concrete [EventSendProvider]s. A simple approach would be to use one send event provider
//! for each OBSW thread and then subscribe for all interesting events for a particular thread
//! using the send event provider ID.
//!
//! This can be done with the [EventManager] like this:
//!
//! 1. Provide a concrete [EventReceiveProvider] implementation. This abstraction allow to use different
//! message queue backends. A straightforward implementation where dynamic memory allocation is
//! not a big concern could use [std::sync::mpsc::channel] to do this and is provided in
//! form of the [MpscEventReceiver].
//! 2. To set up event creators, create channel pairs using some message queue implementation.
//! Each event creator gets a (cloned) sender component which allows it to send events to the
//! manager.
//! 3. The event manager receives the receiver component as part of a [EventReceiveProvider]
//! implementation so all events are routed to the manager.
//! 4. Create the [event sender map][SenderMapProvider]s which allow routing events to
//! subscribers. You can now use the subscriber component IDs to subscribe
//! for event groups, for example by using the [EventManager::subscribe_single] method.
//! 5. Add the send provider as well using the [EventManager::add_sender] call so the event
//! manager can route listener groups to a the send provider.
//!
//! Some components like a PUS Event Service or PUS Event Action Service might require all
//! events to package them as telemetry or start actions where applicable.
//! Other components might only be interested in certain events. For example, a thermal system
//! handler might only be interested in temperature events generated by a thermal sensor component.
//!
//! # Examples
//!
//! You can check [integration test](https://egit.irs.uni-stuttgart.de/rust/sat-rs/src/branch/main/satrs/tests/pus_events.rs)
//! for a concrete example using multi-threading where events are routed to
//! different threads.
use crate::events::{EventU16, EventU32, GenericEvent, LargestEventRaw, LargestGroupIdRaw};
use crate::params::Params;
use crate::queue::GenericSendError;
use core::fmt::Debug;
use core::marker::PhantomData;
use core::slice::Iter;
use crate::ComponentId;
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
#[cfg(feature = "std")]
pub use std_mod::*;
#[derive(PartialEq, Eq, Hash, Copy, Clone, Debug)]
pub enum ListenerKey {
Single(LargestEventRaw),
Group(LargestGroupIdRaw),
All,
}
#[derive(Debug)]
pub struct EventMessage<Event: GenericEvent, ParamProvider: Debug = Params> {
sender_id: ComponentId,
event: Event,
params: Option<ParamProvider>,
}
impl<Event: GenericEvent, ParamProvider: Debug + Clone> EventMessage<Event, ParamProvider> {
pub fn new_generic(
sender_id: ComponentId,
event: Event,
params: Option<&ParamProvider>,
) -> Self {
Self {
sender_id,
event,
params: params.cloned(),
}
}
pub fn sender_id(&self) -> ComponentId {
self.sender_id
}
pub fn event(&self) -> Event {
self.event
}
pub fn params(&self) -> Option<&ParamProvider> {
self.params.as_ref()
}
pub fn new(sender_id: ComponentId, event: Event) -> Self {
Self::new_generic(sender_id, event, None)
}
pub fn new_with_params(sender_id: ComponentId, event: Event, params: &ParamProvider) -> Self {
Self::new_generic(sender_id, event, Some(params))
}
}
pub type EventMessageU32 = EventMessage<EventU32, Params>;
pub type EventMessageU16 = EventMessage<EventU16, Params>;
/// Generic abstraction
pub trait EventSendProvider<Event: GenericEvent, ParamProvider: Debug = Params> {
type Error;
fn target_id(&self) -> ComponentId;
fn send(&self, message: EventMessage<Event, ParamProvider>) -> Result<(), Self::Error>;
}
/// Generic abstraction for an event receiver.
pub trait EventReceiveProvider<Event: GenericEvent, ParamsProvider: Debug = Params> {
type Error;
/// This function has to be provided by any event receiver. A call may or may not return
/// an event and optional auxiliary data.
fn try_recv_event(&self) -> Result<Option<EventMessage<Event, ParamsProvider>>, Self::Error>;
}
pub trait ListenerMapProvider {
#[cfg(feature = "alloc")]
fn get_listeners(&self) -> alloc::vec::Vec<ListenerKey>;
fn contains_listener(&self, key: &ListenerKey) -> bool;
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<ComponentId>>;
fn add_listener(&mut self, key: ListenerKey, listener_id: ComponentId) -> bool;
fn remove_duplicates(&mut self, key: &ListenerKey);
}
pub trait SenderMapProvider<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
>
{
fn contains_send_event_provider(&self, target_id: &ComponentId) -> bool;
fn get_send_event_provider(&self, target_id: &ComponentId) -> Option<&EventSender>;
fn add_send_event_provider(&mut self, send_provider: EventSender) -> bool;
}
/// Generic event manager implementation.
///
/// # Generics
///
/// * `EventReceiver`: [EventReceiveProvider] used to receive all events.
/// * `SenderMap`: [SenderMapProvider] which maps channel IDs to send providers.
/// * `ListenerMap`: [ListenerMapProvider] which maps listener keys to channel IDs.
/// * `EventSender`: [EventSendProvider] contained within the sender map which sends the events.
/// * `Ev`: The event type. This type must implement the [GenericEvent]. Currently only [EventU32]
/// and [EventU16] are supported.
/// * `Data`: Auxiliary data which is sent with the event to provide optional context information
pub struct EventManager<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSender, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
> {
event_receiver: EventReceiver,
sender_map: SenderMap,
listener_map: ListenerMap,
phantom: core::marker::PhantomData<(EventSender, Event, ParamProvider)>,
}
#[derive(Debug)]
pub enum EventRoutingResult<Event: GenericEvent, ParamProvider: Debug> {
/// No event was received
Empty,
/// An event was received and routed to listeners.
Handled {
num_recipients: u32,
event_msg: EventMessage<Event, ParamProvider>,
},
}
#[derive(Debug)]
pub enum EventRoutingError {
Send(GenericSendError),
NoSendersForKey(ListenerKey),
NoSenderForId(ComponentId),
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSender, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSender, Event, ParamProvider>
{
pub fn remove_duplicates(&mut self, key: &ListenerKey) {
self.listener_map.remove_duplicates(key)
}
/// Subscribe for a unique event.
pub fn subscribe_single(&mut self, event: &Event, sender_id: ComponentId) {
self.update_listeners(ListenerKey::Single(event.raw_as_largest_type()), sender_id);
}
/// Subscribe for an event group.
pub fn subscribe_group(&mut self, group_id: LargestGroupIdRaw, sender_id: ComponentId) {
self.update_listeners(ListenerKey::Group(group_id), sender_id);
}
/// Subscribe for all events received by the manager.
///
/// For example, this can be useful for a handler component which sends every event as
/// a telemetry packet.
pub fn subscribe_all(&mut self, sender_id: ComponentId) {
self.update_listeners(ListenerKey::All, sender_id);
}
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSenderMap, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSenderMap: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSenderMap, Event, ParamProvider>
{
pub fn new_with_custom_maps(
event_receiver: EventReceiver,
sender_map: SenderMap,
listener_map: ListenerMap,
) -> Self {
EventManager {
listener_map,
sender_map,
event_receiver,
phantom: PhantomData,
}
}
/// Add a new sender component which can be used to send events to subscribers.
pub fn add_sender(&mut self, send_provider: EventSenderMap) {
if !self
.sender_map
.contains_send_event_provider(&send_provider.target_id())
{
self.sender_map.add_send_event_provider(send_provider);
}
}
/// Generic function to update the event subscribers.
fn update_listeners(&mut self, key: ListenerKey, sender_id: ComponentId) {
self.listener_map.add_listener(key, sender_id);
}
}
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
SenderMap: SenderMapProvider<EventSenderMap, Event, ParamProvider>,
ListenerMap: ListenerMapProvider,
EventSenderMap: EventSendProvider<Event, ParamProvider, Error = GenericSendError>,
Event: GenericEvent + Copy,
ParamProvider: Clone + Debug,
> EventManager<EventReceiver, SenderMap, ListenerMap, EventSenderMap, Event, ParamProvider>
{
/// This function will use the cached event receiver and try to receive one event.
/// If an event was received, it will try to route that event to all subscribed event listeners.
/// If this works without any issues, the [EventRoutingResult] will contain context information
/// about the routed event.
///
/// If an error occurs during the routing, the error handler will be called. The error handler
/// should take a reference to the event message as the first argument, and the routing error
/// as the second argument.
pub fn try_event_handling<E: FnMut(&EventMessage<Event, ParamProvider>, EventRoutingError)>(
&self,
mut error_handler: E,
) -> EventRoutingResult<Event, ParamProvider> {
let mut num_recipients = 0;
let mut send_handler =
|key: &ListenerKey, event_msg: &EventMessage<Event, ParamProvider>| {
if self.listener_map.contains_listener(key) {
if let Some(ids) = self.listener_map.get_listener_ids(key) {
for id in ids {
if let Some(sender) = self.sender_map.get_send_event_provider(id) {
if let Err(e) = sender.send(EventMessage::new_generic(
*id,
event_msg.event,
event_msg.params.as_ref(),
)) {
error_handler(event_msg, EventRoutingError::Send(e));
} else {
num_recipients += 1;
}
} else {
error_handler(event_msg, EventRoutingError::NoSenderForId(*id));
}
}
} else {
error_handler(event_msg, EventRoutingError::NoSendersForKey(*key));
}
}
};
if let Ok(Some(event_msg)) = self.event_receiver.try_recv_event() {
let single_key = ListenerKey::Single(event_msg.event.raw_as_largest_type());
send_handler(&single_key, &event_msg);
let group_key = ListenerKey::Group(event_msg.event.group_id_as_largest_type());
send_handler(&group_key, &event_msg);
send_handler(&ListenerKey::All, &event_msg);
return EventRoutingResult::Handled {
num_recipients,
event_msg,
};
}
EventRoutingResult::Empty
}
}
#[cfg(feature = "alloc")]
pub mod alloc_mod {
use alloc::vec::Vec;
use hashbrown::HashMap;
use super::*;
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses regular mpsc channels as the message queue backend.
pub type EventManagerWithMpsc<EV = EventU32, AUX = Params> = EventManager<
MpscEventReceiver,
DefaultSenderMap<EventSenderMpsc<EV>, EV, AUX>,
DefaultListenerMap,
EventSenderMpsc<EV>,
>;
/// Helper type which constrains the sender map and listener map generics to the [DefaultSenderMap]
/// and the [DefaultListenerMap]. It uses
/// [bounded mpsc senders](https://doc.rust-lang.org/std/sync/mpsc/struct.SyncSender.html) as the
/// message queue backend.
pub type EventManagerWithBoundedMpsc<Event = EventU32, ParamProvider = Params> = EventManager<
MpscEventReceiver,
DefaultSenderMap<EventSenderMpscBounded<Event>, Event, ParamProvider>,
DefaultListenerMap,
EventSenderMpscBounded<Event>,
>;
impl<
EventReceiver: EventReceiveProvider<Event, ParamProvider>,
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent + Copy,
ParamProvider: 'static + Debug,
>
EventManager<
EventReceiver,
DefaultSenderMap<EventSender, Event, ParamProvider>,
DefaultListenerMap,
EventSender,
Event,
ParamProvider,
>
{
/// Create an event manager where the sender table will be the [DefaultSenderMap]
/// and the listener table will be the [DefaultListenerMap].
pub fn new(event_receiver: EventReceiver) -> Self {
Self {
listener_map: DefaultListenerMap::default(),
sender_map: DefaultSenderMap::default(),
event_receiver,
phantom: PhantomData,
}
}
}
/// Default listener map.
///
/// Simple implementation which uses a [HashMap] and a [Vec] internally.
#[derive(Default)]
pub struct DefaultListenerMap {
listeners: HashMap<ListenerKey, Vec<ComponentId>>,
}
impl ListenerMapProvider for DefaultListenerMap {
fn get_listeners(&self) -> Vec<ListenerKey> {
let mut key_list = Vec::new();
for key in self.listeners.keys() {
key_list.push(*key);
}
key_list
}
fn contains_listener(&self, key: &ListenerKey) -> bool {
self.listeners.contains_key(key)
}
fn get_listener_ids(&self, key: &ListenerKey) -> Option<Iter<ComponentId>> {
self.listeners.get(key).map(|vec| vec.iter())
}
fn add_listener(&mut self, key: ListenerKey, sender_id: ComponentId) -> bool {
if let Some(existing_list) = self.listeners.get_mut(&key) {
existing_list.push(sender_id);
} else {
let new_list = alloc::vec![sender_id];
self.listeners.insert(key, new_list);
}
true
}
fn remove_duplicates(&mut self, key: &ListenerKey) {
if let Some(list) = self.listeners.get_mut(key) {
list.sort_unstable();
list.dedup();
}
}
}
/// Default sender map.
///
/// Simple implementation which uses a [HashMap] internally.
pub struct DefaultSenderMap<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent = EventU32,
ParamProvider: Debug = Params,
> {
senders: HashMap<ComponentId, EventSender>,
phantom: PhantomData<(Event, ParamProvider)>,
}
impl<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent,
ParamProvider: Debug,
> Default for DefaultSenderMap<EventSender, Event, ParamProvider>
{
fn default() -> Self {
Self {
senders: Default::default(),
phantom: Default::default(),
}
}
}
impl<
EventSender: EventSendProvider<Event, ParamProvider>,
Event: GenericEvent,
ParamProvider: Debug,
> SenderMapProvider<EventSender, Event, ParamProvider>
for DefaultSenderMap<EventSender, Event, ParamProvider>
{
fn contains_send_event_provider(&self, id: &ComponentId) -> bool {
self.senders.contains_key(id)
}
fn get_send_event_provider(&self, id: &ComponentId) -> Option<&EventSender> {
self.senders
.get(id)
.filter(|sender| sender.target_id() == *id)
}
fn add_send_event_provider(&mut self, send_provider: EventSender) -> bool {
let id = send_provider.target_id();
if self.senders.contains_key(&id) {
return false;
}
self.senders.insert(id, send_provider).is_none()
}
}
}
#[cfg(feature = "std")]
pub mod std_mod {
use crate::queue::GenericReceiveError;
use super::*;
use std::sync::mpsc;
pub struct MpscEventReceiver<Event: GenericEvent + Send = EventU32> {
receiver: mpsc::Receiver<EventMessage<Event>>,
}
impl<Event: GenericEvent + Send> MpscEventReceiver<Event> {
pub fn new(receiver: mpsc::Receiver<EventMessage<Event>>) -> Self {
Self { receiver }
}
}
impl<Event: GenericEvent + Send> EventReceiveProvider<Event> for MpscEventReceiver<Event> {
type Error = GenericReceiveError;
fn try_recv_event(&self) -> Result<Option<EventMessage<Event>>, Self::Error> {
match self.receiver.try_recv() {
Ok(msg) => Ok(Some(msg)),
Err(e) => match e {
mpsc::TryRecvError::Empty => Ok(None),
mpsc::TryRecvError::Disconnected => {
Err(GenericReceiveError::TxDisconnected(None))
}
},
}
}
}
pub type MpscEventU32Receiver = MpscEventReceiver<EventU32>;
pub type MpscEventU16Receiver = MpscEventReceiver<EventU16>;
/// Generic event sender which uses a regular [mpsc::Sender] as the messaging backend to
/// send events.
#[derive(Clone)]
pub struct EventSenderMpsc<Event: GenericEvent + Send> {
target_id: ComponentId,
sender: mpsc::Sender<EventMessage<Event>>,
}
impl<Event: GenericEvent + Send> EventSenderMpsc<Event> {
pub fn new(target_id: ComponentId, sender: mpsc::Sender<EventMessage<Event>>) -> Self {
Self { target_id, sender }
}
}
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpsc<Event> {
type Error = GenericSendError;
fn target_id(&self) -> ComponentId {
self.target_id
}
fn send(&self, event_msg: EventMessage<Event>) -> Result<(), GenericSendError> {
self.sender
.send(event_msg)
.map_err(|_| GenericSendError::RxDisconnected)
}
}
/// Generic event sender which uses the [mpsc::SyncSender] as the messaging backend to send
/// events. This has the advantage that the channel is bounded and thus more deterministic.
#[derive(Clone)]
pub struct EventSenderMpscBounded<Event: GenericEvent + Send> {
target_id: ComponentId,
sender: mpsc::SyncSender<EventMessage<Event>>,
capacity: usize,
}
impl<Event: GenericEvent + Send> EventSenderMpscBounded<Event> {
pub fn new(
target_id: ComponentId,
sender: mpsc::SyncSender<EventMessage<Event>>,
capacity: usize,
) -> Self {
Self {
target_id,
sender,
capacity,
}
}
}
impl<Event: GenericEvent + Send> EventSendProvider<Event> for EventSenderMpscBounded<Event> {
type Error = GenericSendError;
fn target_id(&self) -> ComponentId {
self.target_id
}
fn send(&self, event_msg: EventMessage<Event>) -> Result<(), Self::Error> {
if let Err(e) = self.sender.try_send(event_msg) {
return match e {
mpsc::TrySendError::Full(_) => {
Err(GenericSendError::QueueFull(Some(self.capacity as u32)))
}
mpsc::TrySendError::Disconnected(_) => Err(GenericSendError::RxDisconnected),
};
}
Ok(())
}
}
pub type EventU32SenderMpsc = EventSenderMpsc<EventU32>;
pub type EventU16SenderMpsc = EventSenderMpsc<EventU16>;
pub type EventU32SenderMpscBounded = EventSenderMpscBounded<EventU32>;
pub type EventU16SenderMpscBounded = EventSenderMpscBounded<EventU16>;
}
#[cfg(test)]
mod tests {
use super::*;
use crate::event_man::EventManager;
use crate::events::{EventU32, GenericEvent, Severity};
use crate::params::{ParamsHeapless, ParamsRaw};
use crate::pus::test_util::{TEST_COMPONENT_ID_0, TEST_COMPONENT_ID_1};
use std::format;
use std::sync::mpsc::{self};
const TEST_EVENT: EventU32 = EventU32::const_new(Severity::INFO, 0, 5);
fn check_next_event(
expected: EventU32,
receiver: &mpsc::Receiver<EventMessageU32>,
) -> Option<Params> {
if let Ok(event_msg) = receiver.try_recv() {
assert_eq!(event_msg.event, expected);
return event_msg.params;
}
None
}
fn check_handled_event(
res: EventRoutingResult<EventU32, Params>,
expected: EventU32,
expected_num_sent: u32,
) {
assert!(matches!(res, EventRoutingResult::Handled { .. }));
if let EventRoutingResult::Handled {
num_recipients,
event_msg,
} = res
{
assert_eq!(event_msg.event, expected);
assert_eq!(num_recipients, expected_num_sent);
}
}
fn generic_event_man() -> (mpsc::Sender<EventMessageU32>, EventManagerWithMpsc) {
let (event_sender, manager_queue) = mpsc::channel();
let event_man_receiver = MpscEventReceiver::new(manager_queue);
(event_sender, EventManager::new(event_man_receiver))
}
#[test]
fn test_basic() {
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let event_grp_1_0 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (single_event_sender, single_event_receiver) = mpsc::channel();
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.target_id());
event_man.add_sender(single_event_listener);
let (group_event_sender_0, group_event_receiver_0) = mpsc::channel();
let group_event_listener = EventU32SenderMpsc::new(1, group_event_sender_0);
event_man.subscribe_group(event_grp_1_0.group_id(), group_event_listener.target_id());
event_man.add_sender(group_event_listener);
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
// Test event with one listener
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_grp_0))
.expect("Sending single error failed");
let res = event_man.try_event_handling(&error_handler);
// assert!(res.is_ok());
check_handled_event(res, event_grp_0, 1);
check_next_event(event_grp_0, &single_event_receiver);
// Test event which is sent to all group listeners
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_grp_1_0))
.expect("Sending group error failed");
let res = event_man.try_event_handling(&error_handler);
check_handled_event(res, event_grp_1_0, 1);
check_next_event(event_grp_1_0, &group_event_receiver_0);
}
#[test]
fn test_with_basic_params() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let (single_event_sender, single_event_receiver) = mpsc::channel();
let single_event_listener = EventSenderMpsc::new(0, single_event_sender);
event_man.subscribe_single(&event_grp_0, single_event_listener.target_id());
event_man.add_sender(single_event_listener);
event_sender
.send(EventMessage::new_with_params(
TEST_COMPONENT_ID_0.id(),
event_grp_0,
&Params::Heapless((2_u32, 3_u32).into()),
))
.expect("Sending group error failed");
let res = event_man.try_event_handling(&error_handler);
check_handled_event(res, event_grp_0, 1);
let aux = check_next_event(event_grp_0, &single_event_receiver);
assert!(aux.is_some());
let aux = aux.unwrap();
if let Params::Heapless(ParamsHeapless::Raw(ParamsRaw::U32Pair(pair))) = aux {
assert_eq!(pair.0, 2);
assert_eq!(pair.1, 3);
} else {
panic!("{}", format!("Unexpected auxiliary value type {:?}", aux));
}
}
/// Test listening for multiple groups
#[test]
fn test_multi_group() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let res = event_man.try_event_handling(error_handler);
assert!(matches!(res, EventRoutingResult::Empty));
let event_grp_0 = EventU32::new(Severity::INFO, 0, 0).unwrap();
let event_grp_1_0 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_grp_0_sender, event_grp_0_receiver) = mpsc::channel();
let event_grp_0_and_1_listener = EventU32SenderMpsc::new(0, event_grp_0_sender);
event_man.subscribe_group(
event_grp_0.group_id(),
event_grp_0_and_1_listener.target_id(),
);
event_man.subscribe_group(
event_grp_1_0.group_id(),
event_grp_0_and_1_listener.target_id(),
);
event_man.add_sender(event_grp_0_and_1_listener);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_grp_0))
.expect("Sending Event Group 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_grp_1_0))
.expect("Sendign Event Group 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_grp_0, 1);
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_grp_1_0, 1);
check_next_event(event_grp_0, &event_grp_0_receiver);
check_next_event(event_grp_1_0, &event_grp_0_receiver);
}
/// Test listening to the same event from multiple listeners. Also test listening
/// to both group and single events from one listener
#[test]
fn test_listening_to_same_event_and_multi_type() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, mut event_man) = generic_event_man();
let event_0 = EventU32::new(Severity::INFO, 0, 5).unwrap();
let event_1 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_0_tx_0, event_0_rx_0) = mpsc::channel();
let (event_0_tx_1, event_0_rx_1) = mpsc::channel();
let event_listener_0 = EventU32SenderMpsc::new(0, event_0_tx_0);
let event_listener_1 = EventU32SenderMpsc::new(1, event_0_tx_1);
let event_listener_0_sender_id = event_listener_0.target_id();
event_man.subscribe_single(&event_0, event_listener_0_sender_id);
event_man.add_sender(event_listener_0);
let event_listener_1_sender_id = event_listener_1.target_id();
event_man.subscribe_single(&event_0, event_listener_1_sender_id);
event_man.add_sender(event_listener_1);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering Event 0 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 2);
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_0, &event_0_rx_1);
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering Event 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_1))
.expect("Triggering Event 1 failed");
// 3 Events messages will be sent now
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 2);
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1);
// Both the single event and the group event should arrive now
check_next_event(event_0, &event_0_rx_0);
check_next_event(event_1, &event_0_rx_0);
// Do double insertion and then remove duplicates
event_man.subscribe_group(event_1.group_id(), event_listener_0_sender_id);
event_man.remove_duplicates(&ListenerKey::Group(event_1.group_id()));
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_1))
.expect("Triggering Event 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1);
}
#[test]
fn test_all_events_listener() {
let error_handler = |event_msg: &EventMessageU32, e: EventRoutingError| {
panic!("routing error occurred for event {:?}: {:?}", event_msg, e);
};
let (event_sender, manager_queue) = mpsc::channel();
let event_man_receiver = MpscEventReceiver::new(manager_queue);
let mut event_man = EventManagerWithMpsc::new(event_man_receiver);
let event_0 = EventU32::new(Severity::INFO, 0, 5).unwrap();
let event_1 = EventU32::new(Severity::HIGH, 1, 0).unwrap();
let (event_0_tx_0, all_events_rx) = mpsc::channel();
let all_events_listener = EventU32SenderMpsc::new(0, event_0_tx_0);
event_man.subscribe_all(all_events_listener.target_id());
event_man.add_sender(all_events_listener);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), event_0))
.expect("Triggering event 0 failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_1.id(), event_1))
.expect("Triggering event 1 failed");
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_0, 1);
let res = event_man.try_event_handling(error_handler);
check_handled_event(res, event_1, 1);
check_next_event(event_0, &all_events_rx);
check_next_event(event_1, &all_events_rx);
}
#[test]
fn test_bounded_event_sender_queue_full() {
let (event_sender, _event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
event_sender
.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT))
.expect("sending test event failed");
let error = event_sender.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT));
if let Err(e) = error {
assert!(matches!(e, GenericSendError::QueueFull(Some(3))));
} else {
panic!("unexpected error {error:?}");
}
}
#[test]
fn test_bounded_event_sender_rx_dropped() {
let (event_sender, event_receiver) = mpsc::sync_channel(3);
let event_sender = EventU32SenderMpscBounded::new(1, event_sender, 3);
drop(event_receiver);
if let Err(e) = event_sender.send(EventMessage::new(TEST_COMPONENT_ID_0.id(), TEST_EVENT)) {
assert!(matches!(e, GenericSendError::RxDisconnected));
} else {
panic!("Expected error");
}
}
}