spacepackets/src/tm.rs
Robin Mueller 481de83fdb
All checks were successful
Rust/spacepackets/pipeline/head This commit looks good
move lifetime docs further up
2023-01-10 16:20:50 +01:00

674 lines
23 KiB
Rust

//! This module contains all components required to create a ECSS PUS C telemetry packets according
//! to [ECSS-E-ST-70-41C](https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/).
use crate::ecss::{
ccsds_impl, crc_from_raw_data, crc_procedure, sp_header_impls, user_data_from_raw,
verify_crc16_from_raw, CrcType, PusError, PusPacket, PusVersion, CRC_CCITT_FALSE,
};
use crate::{
ByteConversionError, CcsdsPacket, PacketType, SequenceFlags, SizeMissmatch, SpHeader,
CCSDS_HEADER_LEN,
};
use core::mem::size_of;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zerocopy::AsBytes;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use delegate::delegate;
/// Length without timestamp
pub const PUC_TM_MIN_SEC_HEADER_LEN: usize = 7;
pub const PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA: usize =
CCSDS_HEADER_LEN + PUC_TM_MIN_SEC_HEADER_LEN + size_of::<CrcType>();
pub trait GenericPusTmSecondaryHeader {
fn pus_version(&self) -> PusVersion;
fn sc_time_ref_status(&self) -> u8;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn msg_counter(&self) -> u16;
fn dest_id(&self) -> u16;
}
pub mod zc {
use super::GenericPusTmSecondaryHeader;
use crate::ecss::{PusError, PusVersion};
use zerocopy::{AsBytes, FromBytes, NetworkEndian, Unaligned, U16};
#[derive(FromBytes, AsBytes, Unaligned)]
#[repr(C)]
pub struct PusTmSecHeaderWithoutTimestamp {
pus_version_and_sc_time_ref_status: u8,
service: u8,
subservice: u8,
msg_counter: U16<NetworkEndian>,
dest_id: U16<NetworkEndian>,
}
pub struct PusTmSecHeader<'slice> {
pub(crate) zc_header: PusTmSecHeaderWithoutTimestamp,
pub(crate) timestamp: &'slice [u8],
}
impl TryFrom<crate::tm::PusTmSecondaryHeader<'_>> for PusTmSecHeaderWithoutTimestamp {
type Error = PusError;
fn try_from(header: crate::tm::PusTmSecondaryHeader) -> Result<Self, Self::Error> {
if header.pus_version != PusVersion::PusC {
return Err(PusError::VersionNotSupported(header.pus_version));
}
Ok(PusTmSecHeaderWithoutTimestamp {
pus_version_and_sc_time_ref_status: ((header.pus_version as u8) << 4)
| header.sc_time_ref_status,
service: header.service,
subservice: header.subservice,
msg_counter: U16::from(header.msg_counter),
dest_id: U16::from(header.dest_id),
})
}
}
impl PusTmSecHeaderWithoutTimestamp {
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Option<()> {
self.write_to(slice)
}
pub fn from_bytes(slice: &[u8]) -> Option<Self> {
Self::read_from(slice)
}
}
impl GenericPusTmSecondaryHeader for PusTmSecHeaderWithoutTimestamp {
fn pus_version(&self) -> PusVersion {
PusVersion::try_from(self.pus_version_and_sc_time_ref_status >> 4 & 0b1111)
.unwrap_or(PusVersion::Invalid)
}
fn sc_time_ref_status(&self) -> u8 {
self.pus_version_and_sc_time_ref_status & 0b1111
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn msg_counter(&self) -> u16 {
self.msg_counter.get()
}
fn dest_id(&self) -> u16 {
self.dest_id.get()
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTmSecondaryHeader<'stamp> {
pus_version: PusVersion,
pub sc_time_ref_status: u8,
pub service: u8,
pub subservice: u8,
pub msg_counter: u16,
pub dest_id: u16,
pub time_stamp: &'stamp [u8],
}
impl<'stamp> PusTmSecondaryHeader<'stamp> {
pub fn new_simple(service: u8, subservice: u8, time_stamp: &'stamp [u8]) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
sc_time_ref_status: 0,
service,
subservice,
msg_counter: 0,
dest_id: 0,
time_stamp,
}
}
pub fn new(
service: u8,
subservice: u8,
msg_counter: u16,
dest_id: u16,
time_stamp: &'stamp [u8],
) -> Self {
PusTmSecondaryHeader {
pus_version: PusVersion::PusC,
sc_time_ref_status: 0,
service,
subservice,
msg_counter,
dest_id,
time_stamp,
}
}
}
impl GenericPusTmSecondaryHeader for PusTmSecondaryHeader<'_> {
fn pus_version(&self) -> PusVersion {
self.pus_version
}
fn sc_time_ref_status(&self) -> u8 {
self.sc_time_ref_status
}
fn service(&self) -> u8 {
self.service
}
fn subservice(&self) -> u8 {
self.subservice
}
fn msg_counter(&self) -> u16 {
self.msg_counter
}
fn dest_id(&self) -> u16 {
self.dest_id
}
}
impl<'slice> TryFrom<zc::PusTmSecHeader<'slice>> for PusTmSecondaryHeader<'slice> {
type Error = ();
fn try_from(sec_header: zc::PusTmSecHeader<'slice>) -> Result<Self, Self::Error> {
Ok(PusTmSecondaryHeader {
pus_version: sec_header.zc_header.pus_version(),
sc_time_ref_status: sec_header.zc_header.sc_time_ref_status(),
service: sec_header.zc_header.service(),
subservice: sec_header.zc_header.subservice(),
msg_counter: sec_header.zc_header.msg_counter(),
dest_id: sec_header.zc_header.dest_id(),
time_stamp: sec_header.timestamp,
})
}
}
/// This class models a PUS telemetry and which can also be used. It is the primary data
/// structure to generate the raw byte representation of PUS telemetry or to
/// deserialize from one from raw bytes.
///
/// This class also derives the [serde::Serialize] and [serde::Deserialize] trait if the [serde]
/// feature is used which allows to send around TM packets in a raw byte format using a serde
/// provider like [postcard](https://docs.rs/postcard/latest/postcard/).
///
/// There is no spare bytes support yet.
///
/// # Lifetimes
///
/// * `'src_data` - Life time of a buffer where the user provided time stamp and source data will
/// be serialized into.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PusTm<'src_data> {
pub sp_header: SpHeader,
pub sec_header: PusTmSecondaryHeader<'src_data>,
/// If this is set to false, a manual call to [PusTm::calc_own_crc16] or
/// [PusTm::update_packet_fields] is necessary for the serialized or cached CRC16 to be valid.
pub calc_crc_on_serialization: bool,
#[cfg_attr(feature = "serde", serde(skip))]
raw_data: Option<&'src_data [u8]>,
source_data: Option<&'src_data [u8]>,
crc16: Option<u16>,
}
impl<'src_data> PusTm<'src_data> {
/// Generates a new struct instance.
///
/// # Arguments
///
/// * `sp_header` - Space packet header information. The correct packet type will be set
/// automatically
/// * `sec_header` - Information contained in the secondary header, including the service
/// and subservice type
/// * `app_data` - Custom application data
/// * `set_ccsds_len` - Can be used to automatically update the CCSDS space packet data length
/// field. If this is not set to true, [PusTm::update_ccsds_data_len] can be called to set
/// the correct value to this field manually
pub fn new(
sp_header: &mut SpHeader,
sec_header: PusTmSecondaryHeader<'src_data>,
source_data: Option<&'src_data [u8]>,
set_ccsds_len: bool,
) -> Self {
sp_header.set_packet_type(PacketType::Tm);
sp_header.set_sec_header_flag();
let mut pus_tm = PusTm {
sp_header: *sp_header,
raw_data: None,
source_data,
sec_header,
calc_crc_on_serialization: true,
crc16: None,
};
if set_ccsds_len {
pus_tm.update_ccsds_data_len();
}
pus_tm
}
pub fn len_packed(&self) -> usize {
let mut length = PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA;
length += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
length += src_data.len();
}
length
}
pub fn time_stamp(&self) -> &'src_data [u8] {
self.sec_header.time_stamp
}
pub fn source_data(&self) -> Option<&'src_data [u8]> {
self.source_data
}
pub fn set_dest_id(&mut self, dest_id: u16) {
self.sec_header.dest_id = dest_id;
}
pub fn set_msg_counter(&mut self, msg_counter: u16) {
self.sec_header.msg_counter = msg_counter
}
pub fn set_sc_time_ref_status(&mut self, sc_time_ref_status: u8) {
self.sec_header.sc_time_ref_status = sc_time_ref_status & 0b1111;
}
sp_header_impls!();
/// This is called automatically if the `set_ccsds_len` argument in the [PusTm::new] call was
/// used.
/// If this was not done or the time stamp or source data is set or changed after construction,
/// this function needs to be called to ensure that the data length field of the CCSDS header
/// is set correctly
pub fn update_ccsds_data_len(&mut self) {
self.sp_header.data_len =
self.len_packed() as u16 - size_of::<crate::zc::SpHeader>() as u16 - 1;
}
/// This function should be called before the TM packet is serialized if
/// [PusTm.calc_crc_on_serialization] is set to False. It will calculate and cache the CRC16.
pub fn calc_own_crc16(&mut self) {
let mut digest = CRC_CCITT_FALSE.digest();
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
digest.update(sph_zc.as_bytes());
let pus_tc_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
digest.update(pus_tc_header.as_bytes());
digest.update(self.sec_header.time_stamp);
if let Some(src_data) = self.source_data {
digest.update(src_data);
}
self.crc16 = Some(digest.finalize())
}
/// This helper function calls both [PusTm.update_ccsds_data_len] and [PusTm.calc_own_crc16]
pub fn update_packet_fields(&mut self) {
self.update_ccsds_data_len();
self.calc_own_crc16();
}
/// Write the raw PUS byte representation to a provided buffer.
pub fn write_to_bytes(&self, slice: &mut [u8]) -> Result<usize, PusError> {
let mut curr_idx = 0;
let total_size = self.len_packed();
if total_size > slice.len() {
return Err(ByteConversionError::ToSliceTooSmall(SizeMissmatch {
found: slice.len(),
expected: total_size,
})
.into());
}
self.sp_header
.write_to_be_bytes(&mut slice[0..CCSDS_HEADER_LEN])?;
curr_idx += CCSDS_HEADER_LEN;
let sec_header_len = size_of::<zc::PusTmSecHeaderWithoutTimestamp>();
let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
sec_header
.write_to_bytes(&mut slice[curr_idx..curr_idx + sec_header_len])
.ok_or(ByteConversionError::ZeroCopyToError)?;
curr_idx += sec_header_len;
let timestamp_len = self.sec_header.time_stamp.len();
slice[curr_idx..curr_idx + timestamp_len].copy_from_slice(self.sec_header.time_stamp);
curr_idx += timestamp_len;
if let Some(src_data) = self.source_data {
slice[curr_idx..curr_idx + src_data.len()].copy_from_slice(src_data);
curr_idx += src_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
0,
curr_idx,
slice,
)?;
slice[curr_idx..curr_idx + 2].copy_from_slice(crc16.to_be_bytes().as_slice());
curr_idx += 2;
Ok(curr_idx)
}
/// Append the raw PUS byte representation to a provided [alloc::vec::Vec]
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub fn append_to_vec(&self, vec: &mut Vec<u8>) -> Result<usize, PusError> {
let sph_zc = crate::zc::SpHeader::from(self.sp_header);
let mut appended_len =
PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA + self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
appended_len += src_data.len();
};
let start_idx = vec.len();
let mut ser_len = 0;
vec.extend_from_slice(sph_zc.as_bytes());
ser_len += sph_zc.as_bytes().len();
// The PUS version is hardcoded to PUS C
let sec_header = zc::PusTmSecHeaderWithoutTimestamp::try_from(self.sec_header).unwrap();
vec.extend_from_slice(sec_header.as_bytes());
ser_len += sec_header.as_bytes().len();
vec.extend_from_slice(self.sec_header.time_stamp);
ser_len += self.sec_header.time_stamp.len();
if let Some(src_data) = self.source_data {
vec.extend_from_slice(src_data);
ser_len += src_data.len();
}
let crc16 = crc_procedure(
self.calc_crc_on_serialization,
&self.crc16,
start_idx,
ser_len,
&vec[start_idx..start_idx + ser_len],
)?;
vec.extend_from_slice(crc16.to_be_bytes().as_slice());
Ok(appended_len)
}
/// Create a [PusTm] instance from a raw slice. On success, it returns a tuple containing
/// the instance and the found byte length of the packet. The timestamp length needs to be
/// known beforehand.
pub fn from_bytes(
slice: &'src_data [u8],
timestamp_len: usize,
) -> Result<(Self, usize), PusError> {
let raw_data_len = slice.len();
if raw_data_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let mut current_idx = 0;
let (sp_header, _) = SpHeader::from_be_bytes(&slice[0..CCSDS_HEADER_LEN])?;
current_idx += 6;
let total_len = sp_header.total_len();
if raw_data_len < total_len || total_len < PUS_TM_MIN_LEN_WITHOUT_SOURCE_DATA {
return Err(PusError::RawDataTooShort(raw_data_len));
}
let sec_header_zc = zc::PusTmSecHeaderWithoutTimestamp::from_bytes(
&slice[current_idx..current_idx + PUC_TM_MIN_SEC_HEADER_LEN],
)
.ok_or(ByteConversionError::ZeroCopyFromError)?;
current_idx += PUC_TM_MIN_SEC_HEADER_LEN;
let zc_sec_header_wrapper = zc::PusTmSecHeader {
zc_header: sec_header_zc,
timestamp: &slice[current_idx..current_idx + timestamp_len],
};
current_idx += timestamp_len;
let raw_data = &slice[0..total_len];
let pus_tm = PusTm {
sp_header,
sec_header: PusTmSecondaryHeader::try_from(zc_sec_header_wrapper).unwrap(),
raw_data: Some(&slice[0..total_len]),
source_data: user_data_from_raw(current_idx, total_len, raw_data_len, slice)?,
calc_crc_on_serialization: false,
crc16: Some(crc_from_raw_data(raw_data)?),
};
verify_crc16_from_raw(raw_data, pus_tm.crc16.expect("CRC16 invalid"))?;
Ok((pus_tm, total_len))
}
}
//noinspection RsTraitImplementation
impl CcsdsPacket for PusTm<'_> {
ccsds_impl!();
}
//noinspection RsTraitImplementation
impl PusPacket for PusTm<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
});
fn user_data(&self) -> Option<&[u8]> {
self.source_data
}
fn crc16(&self) -> Option<u16> {
self.crc16
}
}
//noinspection RsTraitImplementation
impl GenericPusTmSecondaryHeader for PusTm<'_> {
delegate!(to self.sec_header {
fn pus_version(&self) -> PusVersion;
fn service(&self) -> u8;
fn subservice(&self) -> u8;
fn dest_id(&self) -> u16;
fn msg_counter(&self) -> u16;
fn sc_time_ref_status(&self) -> u8;
});
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ecss::PusVersion::PusC;
use crate::SpHeader;
fn base_ping_reply_full_ctor(time_stamp: &[u8]) -> PusTm {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, &time_stamp);
PusTm::new(&mut sph, tc_header, None, true)
}
fn base_hk_reply<'a>(time_stamp: &'a [u8], src_data: &'a [u8]) -> PusTm<'a> {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(3, 5, &time_stamp);
PusTm::new(&mut sph, tc_header, Some(src_data), true)
}
fn dummy_time_stamp() -> &'static [u8] {
return &[0, 1, 2, 3, 4, 5, 6];
}
#[test]
fn test_basic() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
verify_ping_reply(&pus_tm, false, 22, dummy_time_stamp());
}
#[test]
fn test_serialization_no_source_data() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 22);
verify_raw_ping_reply(&buf);
}
#[test]
fn test_serialization_with_source_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut buf: [u8; 32] = [0; 32];
let ser_len = hk_reply
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 25);
assert_eq!(buf[20], 1);
assert_eq!(buf[21], 2);
assert_eq!(buf[22], 3);
}
#[test]
fn test_setters() {
let time_stamp = dummy_time_stamp();
let mut pus_tm = base_ping_reply_full_ctor(&time_stamp);
pus_tm.set_sc_time_ref_status(0b1010);
pus_tm.set_dest_id(0x7fff);
pus_tm.set_msg_counter(0x1f1f);
assert_eq!(pus_tm.sc_time_ref_status(), 0b1010);
assert_eq!(pus_tm.dest_id(), 0x7fff);
assert_eq!(pus_tm.msg_counter(), 0x1f1f);
assert!(pus_tm.set_apid(0x7ff));
assert_eq!(pus_tm.apid(), 0x7ff);
}
#[test]
fn test_deserialization_no_source_data() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 32] = [0; 32];
let ser_len = pus_tm
.write_to_bytes(&mut buf)
.expect("Serialization failed");
assert_eq!(ser_len, 22);
let (tm_deserialized, size) = PusTm::from_bytes(&buf, 7).expect("Deserialization failed");
assert_eq!(ser_len, size);
verify_ping_reply(&tm_deserialized, false, 22, dummy_time_stamp());
}
#[test]
fn test_manual_field_update() {
let mut sph = SpHeader::tm_unseg(0x123, 0x234, 0).unwrap();
let tc_header = PusTmSecondaryHeader::new_simple(17, 2, dummy_time_stamp());
let mut tm = PusTm::new(&mut sph, tc_header, None, false);
tm.calc_crc_on_serialization = false;
assert_eq!(tm.data_len(), 0x00);
let mut buf: [u8; 32] = [0; 32];
let res = tm.write_to_bytes(&mut buf);
assert!(res.is_err());
assert!(matches!(res.unwrap_err(), PusError::CrcCalculationMissing));
tm.update_ccsds_data_len();
assert_eq!(tm.data_len(), 15);
tm.calc_own_crc16();
let res = tm.write_to_bytes(&mut buf);
assert!(res.is_ok());
tm.sp_header.data_len = 0;
tm.update_packet_fields();
assert_eq!(tm.data_len(), 15);
}
#[test]
fn test_target_buf_too_small() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut buf: [u8; 16] = [0; 16];
let res = pus_tm.write_to_bytes(&mut buf);
assert!(res.is_err());
let error = res.unwrap_err();
assert!(matches!(error, PusError::ByteConversionError { .. }));
match error {
PusError::ByteConversionError(err) => match err {
ByteConversionError::ToSliceTooSmall(size_missmatch) => {
assert_eq!(size_missmatch.expected, 22);
assert_eq!(size_missmatch.found, 16);
}
_ => panic!("Invalid PUS error {:?}", err),
},
_ => {
panic!("Invalid error {:?}", error);
}
}
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec() {
let time_stamp = dummy_time_stamp();
let pus_tm = base_ping_reply_full_ctor(&time_stamp);
let mut vec = Vec::new();
let res = pus_tm.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 22);
verify_raw_ping_reply(vec.as_slice());
}
#[test]
#[cfg(feature = "alloc")]
fn test_append_to_vec_with_src_data() {
let src_data = [1, 2, 3];
let hk_reply = base_hk_reply(dummy_time_stamp(), &src_data);
let mut vec = Vec::new();
vec.push(4);
let res = hk_reply.append_to_vec(&mut vec);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 25);
assert_eq!(vec.len(), 26);
}
fn verify_raw_ping_reply(buf: &[u8]) {
// Secondary header is set -> 0b0000_1001 , APID occupies last bit of first byte
assert_eq!(buf[0], 0x09);
// Rest of APID 0x123
assert_eq!(buf[1], 0x23);
// Unsegmented is the default, and first byte of 0x234 occupies this byte as well
assert_eq!(buf[2], 0xc2);
assert_eq!(buf[3], 0x34);
assert_eq!(((buf[4] as u16) << 8) | buf[5] as u16, 15);
// SC time ref status is 0
assert_eq!(buf[6], (PusC as u8) << 4);
assert_eq!(buf[7], 17);
assert_eq!(buf[8], 2);
// MSG counter 0
assert_eq!(buf[9], 0x00);
assert_eq!(buf[10], 0x00);
// Destination ID
assert_eq!(buf[11], 0x00);
assert_eq!(buf[12], 0x00);
// Timestamp
assert_eq!(&buf[13..20], dummy_time_stamp());
let mut digest = CRC_CCITT_FALSE.digest();
digest.update(&buf[0..20]);
let crc16 = digest.finalize();
assert_eq!(((crc16 >> 8) & 0xff) as u8, buf[20]);
assert_eq!((crc16 & 0xff) as u8, buf[21]);
}
fn verify_ping_reply(
tm: &PusTm,
has_user_data: bool,
exp_full_len: usize,
exp_time_stamp: &[u8],
) {
assert!(tm.is_tm());
assert_eq!(PusPacket::service(tm), 17);
assert_eq!(PusPacket::subservice(tm), 2);
assert!(tm.sec_header_flag());
assert_eq!(tm.len_packed(), exp_full_len);
assert_eq!(tm.time_stamp(), exp_time_stamp);
if has_user_data {
assert!(!tm.user_data().is_none());
}
assert_eq!(PusPacket::pus_version(tm), PusC);
assert_eq!(tm.apid(), 0x123);
assert_eq!(tm.seq_count(), 0x234);
assert_eq!(tm.data_len(), exp_full_len as u16 - 7);
assert_eq!(tm.dest_id(), 0x0000);
assert_eq!(tm.msg_counter(), 0x0000);
assert_eq!(tm.sc_time_ref_status(), 0b0000);
}
}