93 lines
3.6 KiB
Markdown
93 lines
3.6 KiB
Markdown
[![Crates.io](https://img.shields.io/crates/v/va108xx-hal)](https://crates.io/crates/va108xx-hal)
|
|
[![ci](https://github.com/robamu-org/va108xx-hal-rs/actions/workflows/ci.yml/badge.svg)](https://github.com/robamu-org/va108xx-hal-rs/actions/workflows/ci.yml)
|
|
[![docs.rs](https://img.shields.io/docsrs/va108xx-hal)](https://docs.rs/va108xx-hal)
|
|
|
|
# HAL for the Vorago VA108xx MCU family
|
|
|
|
This repository contains the **H**ardware **A**bstraction **L**ayer (HAL), which is an additional
|
|
hardware abstraction on top of the [peripheral access API](https://github.com/robamu-org/va108xx-rs).
|
|
|
|
It is the result of reading the datasheet for the device and encoding a type-safe layer over the
|
|
raw PAC. This crate also implements traits specified by the
|
|
[embedded-hal](https://github.com/rust-embedded/embedded-hal) project, making it compatible with
|
|
various drivers in the embedded rust ecosystem.
|
|
|
|
In contrats to other HAL implementations, there is only one chip variant available here so there
|
|
is no need to pass the chip variant as a feature.
|
|
|
|
## Supported Boards
|
|
|
|
The first way to use this HAL will probably be with the
|
|
[REB1 development board](https://www.voragotech.com/products/reb1-va108x0-development-board-0).
|
|
The BSP provided for this board also contains instructions how to flash the board.
|
|
|
|
| Crate | Version | Board Support Packages |
|
|
|:------|:--------|:-----------------------|
|
|
[WIP: vorago-reb1](https://github.com/robamu/vorago-reb1-rs) | 0.0.0 | |
|
|
|
|
## Building
|
|
|
|
Building an application requires the `thumbv6m-none-eabi` cross-compiler toolchain.
|
|
If you have not installed it yet, you can do so with
|
|
|
|
```sh
|
|
rustup target add thumbv6m-none-eabi
|
|
```
|
|
|
|
After that, you can use `cargo build` to build the development version of the crate.
|
|
|
|
If you have not done this yet, it is recommended to read some of the excellent resources
|
|
available to learn Rust:
|
|
|
|
- [Rust Embedded Book](https://docs.rust-embedded.org/book/)
|
|
- [Rust Discovery Book](https://docs.rust-embedded.org/discovery/)
|
|
|
|
## Examples
|
|
|
|
Some examples, which are not specific to a particular board were provided as well.
|
|
You can build the timer example with
|
|
|
|
```sh
|
|
cargo build --example timer-ticks
|
|
```
|
|
|
|
## Setting up your own binary crate
|
|
|
|
If you have a custom board, you might be interested in setting up a new binary crate for your
|
|
project. These steps aim to provide a complete list to get a binary crate working to flash
|
|
your custom board.
|
|
|
|
The hello world of embedded development is usually to blinky a LED. This example
|
|
is contained within the
|
|
[examples folder](https://github.com/robamu-org/va108xx-hal-rs/tree/main/examples/blinky.rs).
|
|
|
|
1. Set up your Rust cross-compiler if you have not done so yet. See more in the [build chapter](#Building)
|
|
2. Create a new binary crate with `cargo init`
|
|
3. To ensure that `cargo build` cross-compiles, it is recommended to create a `cargo/config.toml`
|
|
file. A sample `.cargo/config.toml` file is provided in this repository as well
|
|
4. Copy the `memory.x` file into your project. This file contains information required by the linker.
|
|
5. Copy the `blinky.rs` file to the `src/main.rs` file in your binary crate
|
|
6. You need to add some dependencies to your `Cargo.toml` file
|
|
|
|
```toml
|
|
[dependencies]
|
|
cortex-m = "0.7.3"
|
|
cortex-m-rt = "0.7.0"
|
|
panic-halt = "0.2"
|
|
embedded-hal = "0.2.6"
|
|
|
|
[dependencies.va108xx-hal]
|
|
version = "0.1"
|
|
features = ["rt"]
|
|
```
|
|
|
|
6. Build the application with
|
|
|
|
```sh
|
|
cargo build
|
|
```
|
|
|
|
7. Flashing the board might work differently for different boards and there is usually
|
|
more than one way. You can find example instructions for the REB1 development board
|
|
[here](https://github.com/robamu/vorago-reb1-rs).
|