Merge pull request 'document probe-rs' (#52) from document-probe-rs into main

Reviewed-on: #52
This commit is contained in:
Robin Müller 2025-02-13 18:48:47 +01:00
commit 1a83f932b5
2 changed files with 51 additions and 27 deletions

View File

@ -4,10 +4,9 @@
# runner = "arm-none-eabi-gdb -q -x openocd.gdb"
# runner = "gdb-multiarch -q -x openocd.gdb"
# runner = "gdb -q -x openocd.gdb"
runner = "gdb-multiarch -q -x jlink.gdb"
# runner = "gdb-multiarch -q -x jlink.gdb"
# Probe-rs is currently problematic: https://github.com/probe-rs/probe-rs/issues/2567
# runner = "probe-rs run --chip VA108xx --chip-description-path ./scripts/VA108xx_Series.yaml"
runner = "probe-rs run --chip VA108xx_RAM --protocol jtag"
# runner = ["probe-rs", "run", "--chip", "$CHIP", "--log-format", "{L} {s}"]
rustflags = [

View File

@ -60,14 +60,56 @@ You can then adapt the files in `.vscode` to your needs.
You can use CLI or VS Code for flashing, running and debugging. In any case, take
care of installing the pre-requisites first.
### Pre-Requisites
### Using CLI with probe-rs
Install [probe-rs](https://probe.rs/docs/getting-started/installation/) first.
You can use `probe-rs` to run the software and display RTT log output. However, debugging does not
work yet.
After installation, you can run the following command
```sh
probe-rs run --chip VA108xx_RAM --protocol jtag target/thumbv6m-none-eabi/debug/examples/blinky
```
to flash and run the blinky program on the RAM. There is also a `VA108xx` chip target
available for persistent flashing.
Runner configuration avilable in the `.cargo/def-config.toml` file to use `probe-rs` for
convenience.
### Using VS Code
Assuming a working debug connection to your VA108xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug).
Please make sure that [`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
are installed as well.
Some sample configuration files for VS code were provided and can be used by running
`cp -rT vscode .vscode` like specified above. After that, you can use `Run and Debug`
to automatically rebuild and flash your application.
If you would like to use a custom GDB application, you can specify the gdb binary in the following
configuration variables in your `settings.json`:
- `"cortex-debug.gdbPath"`
- `"cortex-debug.gdbPath.linux"`
- `"cortex-debug.gdbPath.windows"`
- `"cortex-debug.gdbPath.osx"`
The provided VS Code configurations also provide an integrated RTT logger, which you can access
via the terminal at `RTT Ch:0 console`. In order for the RTT block address detection to
work properly, `objdump-multiarch` and `nm-multiarch` need to be installed.
### Using CLI with GDB and Segger J-Link Tools
Install the following two tools first:
1. [SEGGER J-Link tools](https://www.segger.com/downloads/jlink/) installed
2. [gdb-multiarch](https://packages.debian.org/sid/gdb-multiarch) or similar
cross-architecture debugger installed. All commands here assume `gdb-multiarch`.
### Using CLI
You can build the blinky example application with the following command
```sh
@ -101,25 +143,8 @@ runner = "gdb-multiarch -q -x jlink/jlink.gdb"
After that, you can simply use `cargo run --example blinky` to flash the blinky
example.
### Using VS Code
### Using the RTT Viewer
Assuming a working debug connection to your VA108xx board, you can debug using VS Code with
the [`Cortex-Debug` plugin](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug).
Please make sure that [`objdump-multiarch` and `nm-multiarch`](https://forums.raspberrypi.com/viewtopic.php?t=333146)
are installed as well.
Some sample configuration files for VS code were provided and can be used by running
`cp -rT vscode .vscode` like specified above. After that, you can use `Run and Debug`
to automatically rebuild and flash your application.
If you would like to use a custom GDB application, you can specify the gdb binary in the following
configuration variables in your `settings.json`:
- `"cortex-debug.gdbPath"`
- `"cortex-debug.gdbPath.linux"`
- `"cortex-debug.gdbPath.windows"`
- `"cortex-debug.gdbPath.osx"`
The provided VS Code configurations also provide an integrated RTT logger, which you can access
via the terminal at `RTT Ch:0 console`. In order for the RTT block address detection to
work properly, `objdump-multiarch` and `nm-multiarch` need to be installed.
The Segger RTT viewer can be used to display log messages received from the target. The base
address for the RTT block placement is 0x10000000. It is recommended to use a search range of
0x1000 around that base address when using the RTT viewer.