re-worked SPI code
Some checks are pending
Rust/va108xx-rs/pipeline/pr-main Build queued...

This commit is contained in:
Robin Müller 2024-09-20 10:32:25 +02:00
parent 8ca46b26c4
commit dc77f3a129
Signed by: muellerr
GPG Key ID: A649FB78196E3849
10 changed files with 575 additions and 437 deletions

10
bootloader/src/lib.rs Normal file
View File

@ -0,0 +1,10 @@
#![no_std]
use core::convert::Infallible;
/// Simple trait which makes swapping the NVM easier. NVMs only need to implement this interface.
pub trait NvmInterface {
fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Infallible>;
fn read(&mut self, address: u32, buf: &mut [u8]) -> Result<(), Infallible>;
fn verify(&mut self, address: u32, data: &[u8]) -> Result<bool, Infallible>;
}

View File

@ -1,34 +1,15 @@
//! Vorago bootloader which can boot from two images.
//!
//! Bootloader memory map
//!
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
//! * <0x3FFE> Bootloader CRC <halfword>
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
//! * <0x21FFC> App image A CRC check length <halfword>
//! * <0x21FFE> App image A CRC check value <halfword>
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
//! * <0x3FFFC> App image B CRC check length <halfword>
//! * <0x3FFFE> App image B CRC check value <halfword>
//! * <0x40000> <end>
//!
//! As opposed to the Vorago example code, this bootloader assumes a 40 MHz external clock
//! but does not scale that clock up.
#![no_main]
#![no_std]
use bootloader::NvmInterface;
use cortex_m_rt::entry;
use crc::{Crc, CRC_16_IBM_3740};
use embedded_hal_bus::spi::{ExclusiveDevice, NoDelay};
#[cfg(not(feature = "rtt-panic"))]
use panic_halt as _;
#[cfg(feature = "rtt-panic")]
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{
pac,
spi::{RomMiso, RomMosi, RomSck, Spi, SpiClkConfig, SpiConfig},
time::Hertz,
};
use va108xx_hal::{pac, time::Hertz};
use vorago_reb1::m95m01::M95M01;
// Useful for debugging and see what the bootloader is doing. Enabled currently, because
@ -84,10 +65,22 @@ enum AppSel {
B,
}
/// Complex type, but this is the price we pay for nice abstraction. It is also very explicit.
pub type Nvm = M95M01<
ExclusiveDevice<Spi<pac::Spic, (RomSck, RomMiso, RomMosi), u8>, dummy_pin::DummyPin, NoDelay>,
>;
pub struct NvmWrapper(pub M95M01);
// Newtype pattern. We could now more easily swap the used NVM type.
impl NvmInterface for NvmWrapper {
fn write(&mut self, address: u32, data: &[u8]) -> Result<(), core::convert::Infallible> {
self.0.write(address, data)
}
fn read(&mut self, address: u32, buf: &mut [u8]) -> Result<(), core::convert::Infallible> {
self.0.read(address, buf)
}
fn verify(&mut self, address: u32, data: &[u8]) -> Result<bool, core::convert::Infallible> {
self.0.verify(address, data)
}
}
#[entry]
fn main() -> ! {
@ -98,17 +91,7 @@ fn main() -> ! {
let mut dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
let spi = Spi::new(
&mut dp.sysconfig,
CLOCK_FREQ,
dp.spic,
(RomSck, RomMiso, RomMosi),
// These values are taken from the vorago bootloader app, don't want to experiment here..
SpiConfig::default().clk_cfg(SpiClkConfig::new(2, 4)),
);
let mut nvm =
M95M01::new(ExclusiveDevice::new_no_delay(spi, dummy_pin::DummyPin::new_low()).unwrap())
.expect("creating NVM structure failed");
let mut nvm = M95M01::new(&mut dp.sysconfig, CLOCK_FREQ, dp.spic);
if FLASH_SELF {
let mut first_four_bytes: [u8; 4] = [0; 4];
@ -153,6 +136,8 @@ fn main() -> ! {
}
}
let mut nvm = NvmWrapper(nvm);
// Check bootloader's CRC (and write it if blank)
check_own_crc(&dp.sysconfig, &cp, &mut nvm);
@ -170,7 +155,7 @@ fn main() -> ! {
}
}
fn check_own_crc(sysconfig: &pac::Sysconfig, cp: &cortex_m::Peripherals, nvm: &mut Nvm) {
fn check_own_crc(sysconfig: &pac::Sysconfig, cp: &cortex_m::Peripherals, nvm: &mut NvmWrapper) {
let crc_exp = unsafe { (BOOTLOADER_CRC_ADDR as *const u16).read_unaligned().to_be() };
// I'd prefer to use [core::slice::from_raw_parts], but that is problematic
// because the address of the bootloader is 0x0, so the NULL check fails and the functions

View File

@ -81,7 +81,6 @@ fn main() -> ! {
dp.spia,
(sck, miso, mosi),
spi_cfg,
None,
);
spia.set_fill_word(FILL_WORD);
spia_ref.borrow_mut().replace(spia.downgrade());
@ -98,7 +97,6 @@ fn main() -> ! {
dp.spia,
(sck, miso, mosi),
spi_cfg,
None,
);
spia.set_fill_word(FILL_WORD);
spia_ref.borrow_mut().replace(spia.downgrade());
@ -115,7 +113,6 @@ fn main() -> ! {
dp.spib,
(sck, miso, mosi),
spi_cfg,
None,
);
spib.set_fill_word(FILL_WORD);
spib_ref.borrow_mut().replace(spib.downgrade());

View File

@ -1,8 +1,14 @@
//! API for the SPI peripheral
//! API for the SPI peripheral.
//!
//! The main abstraction provided by this module are the [Spi] and the [SpiBase] structure.
//! These provide the [embedded_hal::spi] traits, but also offer a low level interface
//! via the [SpiLowLevel] trait.
//!
//! ## Examples
//!
//! - [Blocking SPI example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/examples/simple/examples/spi.rs)
//! - [REB1 ADC example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/vorago-reb1/examples/max11519-adc.rs)
//! - [REB1 EEPROM library](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/vorago-reb1/src/m95m01.rs)
use crate::{
clock::enable_peripheral_clock,
gpio::pin::{
@ -225,9 +231,13 @@ hw_cs_pins!(
// SPIC
// Dummy pin defintion for the ROM SCK.
pub struct RomSck;
// Dummy pin defintion for the ROM MOSI.
pub struct RomMosi;
// Dummy pin defintion for the ROM MISO.
pub struct RomMiso;
// Dummy pin defintion for the ROM chip select.
pub struct RomCs;
impl Sealed for RomSck {}
@ -372,6 +382,7 @@ pub struct SpiConfig {
/// duration of multiple data words. Defaults to true.
pub blockmode: bool,
/// This enables the stalling of the SPI SCK if in blockmode and the FIFO is empty.
/// Currently enabled by default.
pub bmstall: bool,
/// By default, configure SPI for master mode (ms == false)
ms: bool,
@ -460,6 +471,36 @@ impl WordProvider for u16 {
// Spi
//==================================================================================================
/// Low level access trait for the SPI peripheral.
pub trait SpiLowLevel {
/// Low level function to write a word to the SPI FIFO but also checks whether
/// there is actually data in the FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible>;
/// Low level function to write a word to the SPI FIFO without checking whether
/// there FIFO is full.
///
/// This does not necesarily mean there is a space in the FIFO available.
/// Use [Self::write_fifo] function to write a word into the FIFO reliably.
fn write_fifo_unchecked(&self, data: u32);
/// Low level function to read a word from the SPI FIFO. Must be preceeded by a
/// [Self::write_fifo] call.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
fn read_fifo(&self) -> nb::Result<u32, Infallible>;
/// Low level function to read a word from from the SPI FIFO.
///
/// This does not necesarily mean there is a word in the FIFO available.
/// Use the [Self::read_fifo] function to read a word from the FIFO reliably using the [nb]
/// API.
/// You might also need to mask the value to ignore the BMSTART/BMSTOP bit.
fn read_fifo_unchecked(&self) -> u32;
}
pub struct SpiBase<SpiInstance, Word = u8> {
spi: SpiInstance,
cfg: SpiConfig,
@ -467,6 +508,7 @@ pub struct SpiBase<SpiInstance, Word = u8> {
/// Fill word for read-only SPI transactions.
pub fill_word: Word,
blockmode: bool,
bmstall: bool,
word: PhantomData<Word>,
}
@ -591,150 +633,6 @@ pub fn clk_div_for_target_clock(
// Re-export this so it can be used for the constructor
pub use crate::typelevel::NoneT;
impl<
SpiI: Instance,
Sck: PinSck<SpiI>,
Miso: PinMiso<SpiI>,
Mosi: PinMosi<SpiI>,
Word: WordProvider,
> Spi<SpiI, (Sck, Miso, Mosi), Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
/// Create a new SPI struct
///
/// You can delete the pin type information by calling the
/// [`downgrade`](Self::downgrade) function
///
/// ## Arguments
/// * `spi` - SPI bus to use
/// * `pins` - Pins to be used for SPI transactions. These pins are consumed
/// to ensure the pins can not be used for other purposes anymore
/// * `spi_cfg` - Configuration specific to the SPI bus
/// * `transfer_cfg` - Optional initial transfer configuration which includes
/// configuration which can change across individual SPI transfers like SPI mode
/// or SPI clock. If only one device is connected, this configuration only needs
/// to be done once.
/// * `syscfg` - Can be passed optionally to enable the peripheral clock
pub fn new(
syscfg: &mut pac::Sysconfig,
sys_clk: impl Into<Hertz> + Copy,
spi: SpiI,
pins: (Sck, Miso, Mosi),
spi_cfg: SpiConfig,
) -> Self {
enable_peripheral_clock(syscfg, SpiI::PERIPH_SEL);
let SpiConfig {
clk,
init_mode,
blockmode,
bmstall,
ms,
slave_output_disable,
loopback_mode,
master_delayer_capture,
} = spi_cfg;
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(init_mode);
spi.ctrl0().write(|w| {
unsafe {
w.size().bits(Word::word_reg());
w.scrdv().bits(clk.scrdv);
// Clear clock phase and polarity. Will be set to correct value for each
// transfer
w.spo().bit(cpo_bit);
w.sph().bit(cph_bit)
}
});
spi.ctrl1().write(|w| {
w.lbm().bit(loopback_mode);
w.sod().bit(slave_output_disable);
w.ms().bit(ms);
w.mdlycap().bit(master_delayer_capture);
w.blockmode().bit(blockmode);
w.bmstall().bit(bmstall);
unsafe { w.ss().bits(0) }
});
spi.clkprescale()
.write(|w| unsafe { w.bits(clk.prescale_val as u32) });
spi.fifo_clr().write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
// Enable the peripheral as the last step as recommended in the
// programmers guide
spi.ctrl1().modify(|_, w| w.enable().set_bit());
Spi {
inner: SpiBase {
spi,
cfg: spi_cfg,
sys_clk: sys_clk.into(),
fill_word: Default::default(),
blockmode,
word: PhantomData,
},
pins,
}
}
delegate::delegate! {
to self.inner {
#[inline]
pub fn cfg_clock(&mut self, cfg: SpiClkConfig);
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError>;
#[inline]
pub fn cfg_mode(&mut self, mode: Mode);
#[inline]
pub fn perid(&self) -> u32;
#[inline]
pub fn fill_word(&self) -> Word;
#[inline]
pub fn spi(&self) -> &SpiI;
/// Configure the hardware chip select given a hardware chip select ID.
#[inline]
pub fn cfg_hw_cs(&mut self, hw_cs: HwChipSelectId);
/// Configure the hardware chip select given a physical hardware CS pin.
#[inline]
pub fn cfg_hw_cs_with_pin<HwCs: OptionalHwCs<SpiI>>(&mut self, _hwcs: &HwCs);
/// Disables the hardware chip select functionality. This can be used when performing
/// external chip select handling, for example with GPIO pins.
#[inline]
pub fn cfg_hw_cs_disable(&mut self);
/// Utility function to configure all relevant transfer parameters in one go.
/// This is useful if multiple devices with different clock and mode configurations
/// are connected to one bus.
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiI>>(
&mut self, transfer_cfg: &TransferConfigWithHwcs<HwCs>
);
}
}
pub fn set_fill_word(&mut self, fill_word: Word) {
self.inner.fill_word = fill_word;
}
/// Releases the SPI peripheral and associated pins
pub fn release(self) -> (SpiI, (Sck, Miso, Mosi), SpiConfig) {
(self.inner.spi, self.pins, self.inner.cfg)
}
pub fn downgrade(self) -> SpiBase<SpiI, Word> {
self.inner
}
}
impl<SpiInstance: Instance, Word: WordProvider> SpiBase<SpiInstance, Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
@ -855,34 +753,6 @@ where
});
}
/// Sends a word to the slave
#[inline(always)]
fn send_blocking(&self, data: u32) {
// TODO: Upper limit for wait cycles to avoid complete hangups?
while self.spi.status().read().tnf().bit_is_clear() {}
self.send(data)
}
#[inline(always)]
fn send(&self, data: u32) {
self.spi.data().write(|w| unsafe { w.bits(data) });
}
/// Read a word from the slave. Must be preceeded by a [`send`](Self::send) call
#[inline(always)]
fn read_blocking(&self) -> Word {
// TODO: Upper limit for wait cycles to avoid complete hangups?
while self.spi.status().read().rne().bit_is_clear() {}
self.read_single_word()
}
#[inline(always)]
fn read_single_word(&self) -> Word {
(self.spi.data().read().bits() & Word::MASK)
.try_into()
.unwrap()
}
fn flush_internal(&self) {
let mut status_reg = self.spi.status().read();
while status_reg.tfe().bit_is_clear()
@ -890,7 +760,7 @@ where
|| status_reg.busy().bit_is_set()
{
if status_reg.rne().bit_is_set() {
self.read_single_word();
self.read_fifo_unchecked();
}
status_reg = self.spi.status().read();
}
@ -904,18 +774,20 @@ where
Ok(())
}
// Returns the actual bytes sent.
// The FIFO can hold a guaranteed amount of data, so we can pump it on transfer
// initialization. Returns the amount of written bytes.
fn initial_send_fifo_pumping_with_words(&self, words: &[Word]) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
for _ in 0..core::cmp::min(FILL_DEPTH, words.len()) {
if current_write_idx == words.len() - 1 {
self.send_blocking(words[current_write_idx].into() | BMSTART_BMSTOP_MASK);
let smaller_idx = core::cmp::min(FILL_DEPTH, words.len());
for _ in 0..smaller_idx {
if current_write_idx == smaller_idx.saturating_sub(1) && self.bmstall {
self.write_fifo_unchecked(words[current_write_idx].into() | BMSTART_BMSTOP_MASK);
} else {
self.send_blocking(words[current_write_idx].into());
self.write_fifo_unchecked(words[current_write_idx].into());
}
current_write_idx += 1;
}
@ -925,17 +797,20 @@ where
current_write_idx
}
// The FIFO can hold a guaranteed amount of data, so we can pump it on transfer
// initialization.
fn initial_send_fifo_pumping_with_fill_words(&self, send_len: usize) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
for _ in 0..core::cmp::min(FILL_DEPTH, send_len) {
if current_write_idx == send_len - 1 {
self.send_blocking(self.fill_word.into() | BMSTART_BMSTOP_MASK);
let smaller_idx = core::cmp::min(FILL_DEPTH, send_len);
for _ in 0..smaller_idx {
if current_write_idx == smaller_idx.saturating_sub(1) && self.bmstall {
self.write_fifo_unchecked(self.fill_word.into() | BMSTART_BMSTOP_MASK);
} else {
self.send_blocking(self.fill_word.into());
self.write_fifo_unchecked(self.fill_word.into());
}
current_write_idx += 1;
}
@ -946,51 +821,35 @@ where
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u8>> for Spi<SpiI, (Sck, Miso, Mosi), u16>
impl<SpiInstance: Instance, Word: WordProvider> SpiLowLevel for SpiBase<SpiInstance, Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u8>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::SixteenBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
fill_word: Default::default(),
sys_clk: old_spi.inner.sys_clk,
word: PhantomData,
},
pins: old_spi.pins,
#[inline(always)]
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible> {
if self.spi.status().read().tnf().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
self.write_fifo_unchecked(data);
Ok(())
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u16>> for Spi<SpiI, (Sck, Miso, Mosi), u8>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u16>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::EightBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
sys_clk: old_spi.inner.sys_clk,
fill_word: Default::default(),
word: PhantomData,
},
pins: old_spi.pins,
#[inline(always)]
fn write_fifo_unchecked(&self, data: u32) {
self.spi.data().write(|w| unsafe { w.bits(data) });
}
#[inline(always)]
fn read_fifo(&self) -> nb::Result<u32, Infallible> {
if self.spi.status().read().rne().bit_is_clear() {
return Err(nb::Error::WouldBlock);
}
Ok(self.read_fifo_unchecked())
}
#[inline(always)]
fn read_fifo_unchecked(&self) -> u32 {
self.spi.data().read().bits()
}
}
@ -1003,19 +862,21 @@ where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
fn read(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
//self.transfer_preparation(words)?;
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_fill_words(words.len());
loop {
if current_read_idx < words.len() {
words[current_read_idx] = self.read_blocking();
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 {
self.send_blocking(self.fill_word.into() | BMSTART_BMSTOP_MASK);
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(self.fill_word.into() | BMSTART_BMSTOP_MASK))?;
} else {
self.send_blocking(self.fill_word.into());
nb::block!(self.write_fifo(self.fill_word.into()))?;
}
current_write_idx += 1;
}
@ -1027,13 +888,13 @@ where
}
fn write(&mut self, words: &[Word]) -> Result<(), Self::Error> {
// self.transfer_preparation(words)?;
self.transfer_preparation(words)?;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_write_idx < words.len() {
if current_write_idx == words.len() - 1 {
self.send_blocking(words[current_write_idx].into() | BMSTART_BMSTOP_MASK);
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK))?;
} else {
self.send_blocking(words[current_write_idx].into());
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
// Ignore received words.
@ -1045,20 +906,24 @@ where
}
fn transfer(&mut self, read: &mut [Word], write: &[Word]) -> Result<(), Self::Error> {
//self.transfer_preparation(write)?;
self.transfer_preparation(write)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(write);
while current_read_idx < read.len() || current_write_idx < write.len() {
if current_write_idx < write.len() {
if current_write_idx == write.len() - 1 {
self.send_blocking(write[current_write_idx].into() | BMSTART_BMSTOP_MASK);
if current_write_idx == write.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(write[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else {
self.send_blocking(write[current_write_idx].into());
nb::block!(self.write_fifo(write[current_write_idx].into()))?;
}
current_write_idx += 1;
}
if current_read_idx < read.len() {
read[current_read_idx] = self.read_blocking();
read[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
@ -1067,21 +932,25 @@ where
}
fn transfer_in_place(&mut self, words: &mut [Word]) -> Result<(), Self::Error> {
//self.transfer_preparation(words)?;
self.transfer_preparation(words)?;
let mut current_read_idx = 0;
let mut current_write_idx = self.initial_send_fifo_pumping_with_words(words);
while current_read_idx < words.len() || current_write_idx < words.len() {
if current_write_idx < words.len() {
if current_write_idx == words.len() - 1 {
self.send_blocking(words[current_write_idx].into() | BMSTART_BMSTOP_MASK);
if current_write_idx == words.len() - 1 && self.bmstall {
nb::block!(
self.write_fifo(words[current_write_idx].into() | BMSTART_BMSTOP_MASK)
)?;
} else {
self.send_blocking(words[current_write_idx].into());
nb::block!(self.write_fifo(words[current_write_idx].into()))?;
}
current_write_idx += 1;
}
if current_read_idx < words.len() && current_read_idx < current_write_idx {
words[current_read_idx] = self.read_blocking();
words[current_read_idx] = (nb::block!(self.read_fifo())? & Word::MASK)
.try_into()
.unwrap();
current_read_idx += 1;
}
}
@ -1094,6 +963,199 @@ where
}
}
impl<
SpiI: Instance,
Sck: PinSck<SpiI>,
Miso: PinMiso<SpiI>,
Mosi: PinMosi<SpiI>,
Word: WordProvider,
> Spi<SpiI, (Sck, Miso, Mosi), Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
/// Create a new SPI struct
///
/// You can delete the pin type information by calling the
/// [`downgrade`](Self::downgrade) function
///
/// ## Arguments
/// * `syscfg` - Can be passed optionally to enable the peripheral clock
/// * `sys_clk` - System clock
/// * `spi` - SPI bus to use
/// * `pins` - Pins to be used for SPI transactions. These pins are consumed
/// to ensure the pins can not be used for other purposes anymore
/// * `spi_cfg` - Configuration specific to the SPI bus
pub fn new(
syscfg: &mut pac::Sysconfig,
sys_clk: impl Into<Hertz>,
spi: SpiI,
pins: (Sck, Miso, Mosi),
spi_cfg: SpiConfig,
) -> Self {
enable_peripheral_clock(syscfg, SpiI::PERIPH_SEL);
let SpiConfig {
clk,
init_mode,
blockmode,
bmstall,
ms,
slave_output_disable,
loopback_mode,
master_delayer_capture,
} = spi_cfg;
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(init_mode);
spi.ctrl0().write(|w| {
unsafe {
w.size().bits(Word::word_reg());
w.scrdv().bits(clk.scrdv);
// Clear clock phase and polarity. Will be set to correct value for each
// transfer
w.spo().bit(cpo_bit);
w.sph().bit(cph_bit)
}
});
spi.ctrl1().write(|w| {
w.lbm().bit(loopback_mode);
w.sod().bit(slave_output_disable);
w.ms().bit(ms);
w.mdlycap().bit(master_delayer_capture);
w.blockmode().bit(blockmode);
w.bmstall().bit(bmstall);
unsafe { w.ss().bits(0) }
});
spi.clkprescale()
.write(|w| unsafe { w.bits(clk.prescale_val as u32) });
spi.fifo_clr().write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
// Enable the peripheral as the last step as recommended in the
// programmers guide
spi.ctrl1().modify(|_, w| w.enable().set_bit());
Spi {
inner: SpiBase {
spi,
cfg: spi_cfg,
sys_clk: sys_clk.into(),
fill_word: Default::default(),
bmstall,
blockmode,
word: PhantomData,
},
pins,
}
}
delegate::delegate! {
to self.inner {
#[inline]
pub fn cfg_clock(&mut self, cfg: SpiClkConfig);
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError>;
#[inline]
pub fn cfg_mode(&mut self, mode: Mode);
#[inline]
pub fn perid(&self) -> u32;
#[inline]
pub fn fill_word(&self) -> Word;
#[inline]
pub fn spi(&self) -> &SpiI;
/// Configure the hardware chip select given a hardware chip select ID.
#[inline]
pub fn cfg_hw_cs(&mut self, hw_cs: HwChipSelectId);
/// Configure the hardware chip select given a physical hardware CS pin.
#[inline]
pub fn cfg_hw_cs_with_pin<HwCs: OptionalHwCs<SpiI>>(&mut self, _hwcs: &HwCs);
/// Disables the hardware chip select functionality. This can be used when performing
/// external chip select handling, for example with GPIO pins.
#[inline]
pub fn cfg_hw_cs_disable(&mut self);
/// Utility function to configure all relevant transfer parameters in one go.
/// This is useful if multiple devices with different clock and mode configurations
/// are connected to one bus.
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiI>>(
&mut self, transfer_cfg: &TransferConfigWithHwcs<HwCs>
);
/// Low level function to write a word to the SPI FIFO but also checks whether
/// there is actually data in the FIFO.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
#[inline(always)]
pub fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible>;
/// Low level function to write a word to the SPI FIFO.
///
/// This does not necesarily mean there is a space in the FIFO available.
/// Use [Self::write_fifo] function to write a word into the FIFO reliably using the
/// [nb] API.
#[inline(always)]
pub fn write_fifo_unchecked(&self, data: u32);
/// Low level function to read a word from the SPI FIFO. Must be preceeded by a
/// [Self::write_fifo] call.
///
/// Uses the [nb] API to allow usage in blocking and non-blocking contexts.
#[inline(always)]
pub fn read_fifo(&self) -> nb::Result<u32, Infallible>;
/// Low level function to read a word from from the SPI FIFO.
///
/// This does not necesarily mean there is a word in the FIFO available.
/// Use the [Self::read_fifo] function to read a word from the FIFO reliably using the [nb]
/// API.
/// You might also need to mask the value to ignore the BMSTART/BMSTOP bit.
#[inline(always)]
pub fn read_fifo_unchecked(&self) -> u32;
}
}
pub fn set_fill_word(&mut self, fill_word: Word) {
self.inner.fill_word = fill_word;
}
/// Releases the SPI peripheral and associated pins
pub fn release(self) -> (SpiI, (Sck, Miso, Mosi), SpiConfig) {
(self.inner.spi, self.pins, self.inner.cfg)
}
pub fn downgrade(self) -> SpiBase<SpiI, Word> {
self.inner
}
}
impl<
SpiI: Instance,
Sck: PinSck<SpiI>,
Miso: PinMiso<SpiI>,
Mosi: PinMosi<SpiI>,
Word: WordProvider,
> SpiLowLevel for Spi<SpiI, (Sck, Miso, Mosi), Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
delegate::delegate! {
to self.inner {
fn write_fifo(&self, data: u32) -> nb::Result<(), Infallible>;
fn write_fifo_unchecked(&self, data: u32);
fn read_fifo(&self) -> nb::Result<u32, Infallible>;
fn read_fifo_unchecked(&self) -> u32;
}
}
}
impl<
SpiI: Instance,
Word: WordProvider,
@ -1125,3 +1187,53 @@ where
}
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u8>> for Spi<SpiI, (Sck, Miso, Mosi), u16>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u8>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::SixteenBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
fill_word: Default::default(),
bmstall: old_spi.inner.bmstall,
sys_clk: old_spi.inner.sys_clk,
word: PhantomData,
},
pins: old_spi.pins,
}
}
}
/// Changing the word size also requires a type conversion
impl<SpiI: Instance, Sck: PinSck<SpiI>, Miso: PinMiso<SpiI>, Mosi: PinMosi<SpiI>>
From<Spi<SpiI, (Sck, Miso, Mosi), u16>> for Spi<SpiI, (Sck, Miso, Mosi), u8>
{
fn from(old_spi: Spi<SpiI, (Sck, Miso, Mosi), u16>) -> Self {
old_spi
.inner
.spi
.ctrl0()
.modify(|_, w| unsafe { w.size().bits(WordSize::EightBits as u8) });
Spi {
inner: SpiBase {
spi: old_spi.inner.spi,
cfg: old_spi.inner.cfg,
blockmode: old_spi.inner.blockmode,
bmstall: old_spi.inner.bmstall,
sys_clk: old_spi.inner.sys_clk,
fill_word: Default::default(),
word: PhantomData,
},
pins: old_spi.pins,
}
}
}

View File

@ -5,7 +5,7 @@
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::spi::SpiBus;
use embedded_hal::spi::{SpiBus, MODE_3};
use embedded_hal::{delay::DelayNs, digital::OutputPin};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
@ -14,7 +14,7 @@ use va108xx_hal::{
gpio::PinsA,
pac,
prelude::*,
spi::{Spi, SpiConfig, TransferConfigWithHwcs},
spi::{Spi, SpiConfig},
timer::set_up_ms_delay_provider,
};
@ -32,7 +32,6 @@ fn main() -> ! {
let mut dp = pac::Peripherals::take().unwrap();
let mut delay = set_up_ms_delay_provider(&mut dp.sysconfig, 50.MHz(), dp.tim0);
let pinsa = PinsA::new(&mut dp.sysconfig, None, dp.porta);
let spi_cfg = SpiConfig::default();
let (sck, mosi, miso) = (
pinsa.pa20.into_funsel_2(),
pinsa.pa19.into_funsel_2(),
@ -46,21 +45,20 @@ fn main() -> ! {
.set_high()
.expect("Setting ADC chip select high failed");
let transfer_cfg = TransferConfigWithHwcs::new(
Some(SpiClkConfig::from_clk(50.MHz(), 1.MHz()).expect("creating SPI clock config failed")),
Some(embedded_hal::spi::MODE_3),
Some(cs_pin),
false,
true,
);
let spi_cfg = SpiConfig::default()
.clk_cfg(
SpiClkConfig::from_clk(50.MHz(), 1.MHz()).expect("creating SPI clock config failed"),
)
.mode(MODE_3)
.slave_output_disable(true);
let mut spi = Spi::new(
&mut dp.sysconfig,
50.MHz(),
dp.spib,
(sck, miso, mosi),
spi_cfg,
Some(&transfer_cfg.downgrade()),
);
spi.cfg_hw_cs_with_pin(&cs_pin);
let mut tx_rx_buf: [u8; 3] = [0; 3];
tx_rx_buf[0] = READ_MASK | DEVID_REG;

View File

@ -9,7 +9,7 @@ use core::convert::Infallible;
use cortex_m_rt::entry;
use embedded_hal::digital::OutputPin;
use embedded_hal::spi::{SpiBus, SpiDevice};
use embedded_hal::spi::{SpiBus, SpiDevice, MODE_0};
use embedded_hal::{delay::DelayNs, spi};
use max116xx_10bit::VoltageRefMode;
use max116xx_10bit::{AveragingConversions, AveragingResults};
@ -21,7 +21,7 @@ use va108xx_hal::{
gpio::PinsA,
pac::{self, interrupt},
prelude::*,
spi::{Spi, SpiBase, SpiConfig, TransferConfigWithHwcs},
spi::{Spi, SpiBase, SpiConfig},
timer::{default_ms_irq_handler, set_up_ms_tick, DelayMs, IrqCfg},
};
use va108xx_hal::{port_mux, FunSel, PortSel};
@ -124,7 +124,10 @@ fn main() -> ! {
}
let pinsa = PinsA::new(&mut dp.sysconfig, None, dp.porta);
let spi_cfg = SpiConfig::default().clk_cfg(SpiClkConfig::from_clk(SYS_CLK, 3.MHz()).unwrap());
let spi_cfg = SpiConfig::default()
.clk_cfg(SpiClkConfig::from_clk(SYS_CLK, 3.MHz()).unwrap())
.mode(MODE_0)
.blockmode(true);
let (sck, mosi, miso) = (
pinsa.pa20.into_funsel_2(),
pinsa.pa19.into_funsel_2(),
@ -143,7 +146,6 @@ fn main() -> ! {
.set_high()
.expect("Setting accelerometer chip select high failed");
let transfer_cfg = TransferConfigWithHwcs::new_no_hw_cs(None, Some(spi::MODE_0), true, false);
let spi = Spi::new(
&mut dp.sysconfig,
50.MHz(),

View File

@ -1,23 +1,13 @@
//! Example application which interfaces with the boot EEPROM.
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::spi::{SpiBus, MODE_0};
use embedded_hal_bus::spi::ExclusiveDevice;
use embedded_hal::delay::DelayNs;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_hal::{
pac,
spi::{
RomCs, RomMiso, RomMosi, RomSck, Spi, SpiClkConfig, SpiConfig, TransferConfigWithHwcs,
BMSTART_BMSTOP_MASK,
},
time::Hertz,
};
use vorago_reb1::m95m01::{
regs::{RDSR, WREN},
StatusReg, M95M01,
};
use va108xx_hal::{pac, pwm::CountDownTimer, time::Hertz};
use vorago_reb1::m95m01::M95M01;
const CLOCK_FREQ: Hertz = Hertz::from_raw(50_000_000);
@ -27,49 +17,48 @@ fn main() -> ! {
rprintln!("-- VA108XX REB1 NVM example --");
let mut dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
let mut spi = Spi::<pac::Spic, (RomSck, RomMiso, RomMosi)>::new(
&mut dp.sysconfig,
CLOCK_FREQ,
dp.spic,
(RomSck, RomMiso, RomMosi),
// These values are taken from the vorago bootloader app, don't want to experiment here..
SpiConfig::default().clk_cfg(SpiClkConfig::new(2, 4)),
);
let mut read_buf: [u8; 2] = [0; 2];
let spi = spi.spi();
unsafe {
spi.data().write(|w| w.bits(RDSR.into()));
spi.data().write(|w| w.bits(0 | BMSTART_BMSTOP_MASK));
}
while spi.status().read().tfe().bit_is_clear() {}
while spi.status().read().rne().bit_is_clear() {}
let dummy = spi.data().read().bits();
while spi.status().read().rne().bit_is_clear() {}
let reg = StatusReg(spi.data().read().bits() as u8);
rprintln!("status reg {:?}", reg);
//spi.transfer(&mut read_buf, &[RDSR, 0]);
rprintln!("read buf {:?}", read_buf);
//spi.write(&[WREN]);
/*
let mut nvm =
M95M01::new(ExclusiveDevice::new_no_delay(spi, dummy_pin::DummyPin::new_low()).unwrap())
.expect("creating NVM structure failed");
let mut timer = CountDownTimer::new(&mut dp.sysconfig, CLOCK_FREQ, dp.tim0);
let mut nvm = M95M01::new(&mut dp.sysconfig, CLOCK_FREQ, dp.spic);
let status_reg = nvm.read_status_reg().expect("reading status reg failed");
rprintln!("status reg: {:?}", status_reg);
if status_reg.zero_segment() == 0b111 {
panic!("status register unexpected values");
}
let mut orig_content: [u8; 16] = [0; 16];
let mut read_buf: [u8; 16] = [0; 16];
nvm.read(0x4000, &mut read_buf[0..4])
.expect("reading NVM failed");
rprintln!("NVM address 0x4000: {:x?}", &read_buf[0..4]);
let write_buf: [u8; 4] = [1, 2, 3, 4];
nvm.write(0x4000, &write_buf).unwrap();
let write_buf: [u8; 16] = [0; 16];
for (idx, val) in read_buf.iter_mut().enumerate() {
*val = idx as u8;
}
nvm.read(0x4000, &mut orig_content).unwrap();
// One byte write and read.
nvm.write(0x4000, &write_buf[0..1]).unwrap();
nvm.read(0x4000, &mut read_buf[0..1]).unwrap();
assert_eq!(write_buf[0], read_buf[0]);
read_buf.fill(0);
// Four bytes write and read.
nvm.write(0x4000, &write_buf[0..4]).unwrap();
nvm.read(0x4000, &mut read_buf[0..4]).unwrap();
assert_eq!(&read_buf[0..4], write_buf);
*/
loop {}
assert_eq!(&read_buf[0..4], &write_buf[0..4]);
read_buf.fill(0);
// Full sixteen bytes
nvm.write(0x4000, &write_buf).unwrap();
nvm.read(0x4000, &mut read_buf).unwrap();
assert_eq!(&read_buf, &write_buf);
read_buf.fill(0);
// 3 bytes
nvm.write(0x4000, &write_buf[0..3]).unwrap();
nvm.read(0x4000, &mut read_buf[0..3]).unwrap();
assert_eq!(&read_buf[0..3], &write_buf[0..3]);
// Write back original content.
nvm.write(0x4000, &orig_content).unwrap();
loop {
timer.delay_ms(500);
}
}

View File

@ -1,5 +1,14 @@
use core::fmt::Debug;
use embedded_hal::spi::{Operation, SpiDevice};
//! Basic driver for the ST M95M01 EEPROM memory.
//!
//! This driver is used by the provided bootloader application for the REB1
//! board. It provides a convenient wrapper around the HAL SPI to interface
//! with the EEPROM memory of the REB1 board.
//!
//! # Example
//!
//! - [REB1 EEPROM example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/vorago-reb1/examples/nvm.rs)
use core::convert::Infallible;
use embedded_hal::spi::SpiBus;
bitfield::bitfield! {
pub struct StatusReg(u8);
@ -29,42 +38,43 @@ pub mod regs {
}
use regs::*;
use va108xx_hal::{
pac,
prelude::*,
spi::{RomMiso, RomMosi, RomSck, Spi, SpiConfig, BMSTART_BMSTOP_MASK},
};
pub type RomSpi = Spi<pac::Spic, (RomSck, RomMiso, RomMosi), u8>;
/// Driver for the ST device M95M01 EEPROM memory.
pub struct M95M01<Spi: SpiDevice> {
spi: Spi,
///
/// Specialized for the requirements of the VA108XX MCUs.
pub struct M95M01 {
pub spi: RomSpi,
}
#[derive(Debug)]
pub enum Error<SpiError: Debug> {
Spi(SpiError),
BufTooShort,
}
impl<SpiError: Debug> From<SpiError> for Error<SpiError> {
fn from(value: SpiError) -> Self {
Self::Spi(value)
}
}
impl<Spi: SpiDevice> M95M01<Spi>
where
Spi::Error: Debug,
{
pub fn new(spi: Spi) -> Result<Self, Spi::Error> {
impl M95M01 {
pub fn new(syscfg: &mut pac::Sysconfig, sys_clk: impl Into<Hertz>, spi: pac::Spic) -> Self {
let spi = RomSpi::new(
syscfg,
sys_clk,
spi,
(RomSck, RomMiso, RomMosi),
SpiConfig::default(),
);
let mut spi_dev = Self { spi };
spi_dev.clear_block_protection()?;
Ok(spi_dev)
spi_dev.clear_block_protection().unwrap();
spi_dev
}
pub fn release(mut self) -> Result<Spi, Spi::Error> {
self.set_block_protection()?;
Ok(self.spi)
pub fn release(mut self) -> pac::Spic {
self.set_block_protection().unwrap();
self.spi.release().0
}
// Wait until the write-in-progress state is cleared. This exposes a [nb] API, so this function
// will return [nb::Error::WouldBlock] if the EEPROM is still busy.
pub fn writes_are_done(&mut self) -> nb::Result<(), Spi::Error> {
pub fn writes_are_done(&mut self) -> nb::Result<(), Infallible> {
let rdsr = self.read_status_reg()?;
if rdsr.write_in_progress() {
return Err(nb::Error::WouldBlock);
@ -72,82 +82,91 @@ where
Ok(())
}
pub fn read_status_reg(&mut self) -> Result<StatusReg, Spi::Error> {
pub fn read_status_reg(&mut self) -> Result<StatusReg, Infallible> {
let mut write_read: [u8; 2] = [regs::RDSR, 0x00];
self.spi.transfer_in_place(&mut write_read)?;
Ok(StatusReg(write_read[1]))
}
pub fn write_enable(&mut self) -> Result<(), Spi::Error> {
pub fn write_enable(&mut self) -> Result<(), Infallible> {
self.spi.write(&[regs::WREN])
}
pub fn clear_block_protection(&mut self) -> Result<(), Spi::Error> {
pub fn clear_block_protection(&mut self) -> Result<(), Infallible> {
// Has to be written separately.
self.spi.write(&[WREN])?;
self.write_enable()?;
self.spi.write(&[WRSR, 0x00])
}
pub fn set_block_protection(&mut self) -> Result<(), Spi::Error> {
pub fn set_block_protection(&mut self) -> Result<(), Infallible> {
let mut reg = StatusReg(0);
reg.set_block_protection_bits(0b11);
self.spi.write(&[WREN, WRSR, reg.0])
}
pub fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Spi::Error> {
nb::block!(self.writes_are_done())?;
self.write_enable()?;
self.spi.transaction(&mut [
Operation::Write(&[
WRITE,
((address >> 16) & 0xff) as u8,
((address >> 8) & 0xff) as u8,
(address & 0xff) as u8,
]),
Operation::Write(data),
])?;
self.spi.write(&[WRSR, reg.0])
}
fn common_init_write_and_read(&mut self, address: u32, reg: u8) -> Result<(), Infallible> {
nb::block!(self.writes_are_done())?;
self.spi.flush()?;
if reg == WRITE {
self.write_enable()?;
self.spi.write_fifo_unchecked(WRITE as u32);
} else {
self.spi.write_fifo_unchecked(READ as u32);
}
self.spi.write_fifo_unchecked((address >> 16) & 0xff);
self.spi.write_fifo_unchecked((address >> 8) & 0xff);
self.spi.write_fifo_unchecked(address & 0xff);
Ok(())
}
pub fn read(&mut self, address: u32, buf: &mut [u8]) -> Result<(), Error<Spi::Error>> {
if buf.len() < buf.len() {
return Err(Error::BufTooShort);
fn common_read(&mut self, address: u32) -> Result<(), Infallible> {
self.common_init_write_and_read(address, READ)?;
for _ in 0..4 {
// Pump the FIFO.
self.spi.write_fifo_unchecked(0);
// Ignore the first 4 bytes.
self.spi.read_fifo_unchecked();
}
nb::block!(self.writes_are_done())?;
self.spi.transaction(&mut [
Operation::Write(&[
READ,
((address >> 16) & 0xff) as u8,
((address >> 8) & 0xff) as u8,
(address & 0xff) as u8,
]),
Operation::Read(buf),
])?;
Ok(())
}
pub fn verify(&mut self, address: u32, data: &[u8]) -> Result<bool, Spi::Error> {
pub fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Infallible> {
self.common_init_write_and_read(address, WRITE)?;
for val in data.iter().take(data.len() - 1) {
nb::block!(self.spi.write_fifo(*val as u32))?;
self.spi.read_fifo_unchecked();
}
nb::block!(self
.spi
.write_fifo(*data.last().unwrap() as u32 | BMSTART_BMSTOP_MASK))?;
self.spi.flush()?;
nb::block!(self.writes_are_done())?;
// Write the read command and address
self.spi.write(&[
READ,
((address >> 16) & 0xff) as u8,
((address >> 8) & 0xff) as u8,
(address & 0xff) as u8,
])?;
Ok(())
}
// Read and compare each byte in place
for original_byte in data.iter() {
let mut read_byte = [0u8];
self.spi.read(&mut read_byte)?;
pub fn read(&mut self, address: u32, buf: &mut [u8]) -> Result<(), Infallible> {
self.common_read(address)?;
for val in buf.iter_mut() {
nb::block!(self.spi.write_fifo(0))?;
*val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8;
}
nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK))?;
self.spi.flush()?;
Ok(())
}
// Compare read byte with original
if read_byte[0] != *original_byte {
pub fn verify(&mut self, address: u32, data: &[u8]) -> Result<bool, Infallible> {
self.common_read(address)?;
for val in data.iter() {
nb::block!(self.spi.write_fifo(0))?;
let read_val = (nb::block!(self.spi.read_fifo()).unwrap() & 0xff) as u8;
if read_val != *val {
return Ok(false);
}
}
nb::block!(self.spi.write_fifo(BMSTART_BMSTOP_MASK))?;
self.spi.flush()?;
Ok(true)
}
}

View File

@ -355,6 +355,30 @@
]
}
},
{
"type": "cortex-debug",
"request": "launch",
"name": "REB1 NVM Example",
"servertype": "jlink",
"cwd": "${workspaceRoot}",
"device": "Cortex-M0",
"svdFile": "./va108xx/svd/va108xx.svd.patched",
"preLaunchTask": "reb1-nvm",
"executable": "${workspaceFolder}/target/thumbv6m-none-eabi/debug/examples/nvm",
"interface": "jtag",
"runToEntryPoint": "main",
"rttConfig": {
"enabled": true,
"address": "auto",
"decoders": [
{
"port": 0,
"timestamp": true,
"type": "console"
}
]
}
},
{
"type": "cortex-debug",
"request": "launch",

View File

@ -154,8 +154,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"blinky-leds",
],
@ -170,8 +168,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"blinky-button-irq",
],
@ -186,8 +182,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"adt75-temp-sensor",
],
@ -202,8 +196,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"blinky-button-rtic",
],
@ -218,8 +210,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"adxl343-accelerometer"
],
@ -234,8 +224,6 @@
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"-p",
"vorago-reb1",
"--example",
"max11619-adc",
],
@ -244,6 +232,20 @@
"isDefault": true
}
},
{
"label": "reb1-nvm",
"type": "shell",
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"--example",
"nvm",
],
"group": {
"kind": "build",
"isDefault": true
}
},
{
"label": "rtic-example",
"type": "shell",