16 Commits

Author SHA1 Message Date
872944bebf Merge pull request 'prepare BSP release' (#45) from vorago-reb1-release into main
Reviewed-on: #45
2025-02-13 15:08:22 +01:00
d077bb6210 prepare BSP release 2025-02-13 15:06:02 +01:00
bd286bdb2a Merge pull request 'small README tweak' (#44) from readme-tweak into main
Reviewed-on: #44
2025-02-13 14:56:48 +01:00
d3cc00a4a5 small README tweak 2025-02-13 14:56:24 +01:00
1018a65447 Merge pull request 'add more defmt features' (#42) from add-more-defmt-features into main
Reviewed-on: #42
2025-02-13 14:52:03 +01:00
0a31b637e6 add more defmt features 2025-02-13 14:51:54 +01:00
6e1ae70054 Merge pull request 'add various debug impls' (#43) from add-various-debug-impls into main
Reviewed-on: #43
2025-02-13 14:51:27 +01:00
8ae2d6189a add various debug impls 2025-02-13 14:50:00 +01:00
549a98dbaf Merge pull request 'all doc fixes' (#41) from doc-fixes into main
Reviewed-on: #41
2025-02-13 12:23:56 +01:00
e24fc608a3 all doc fixes 2025-02-13 11:44:14 +01:00
7b74312013 Merge pull request 'completed async RX support as well' (#39) from async-uart-rx into main
Reviewed-on: #39
2025-02-13 11:33:36 +01:00
417f5b7f67 completed async RX support as well 2025-02-13 11:31:17 +01:00
3e796ef22b Merge pull request 'UART B hotfix' (#40) from uart-b-hotfix into main
Reviewed-on: #40
2025-02-13 11:30:37 +01:00
b145047b95 UART B hotfix 2025-02-13 11:14:39 +01:00
82b4c16f8e Merge pull request 'bump PAC version' (#38) from bump-va108xx-version into main
Reviewed-on: #38
2025-02-12 14:57:53 +01:00
189ac2d256 bump PAC version 2025-02-12 14:47:18 +01:00
30 changed files with 863 additions and 110 deletions

View File

@ -9,7 +9,10 @@ cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
cortex-m-rt = "0.7"
embedded-hal = "1"
embedded-hal-async = "1"
embedded-io = "0.6"
embedded-io-async = "0.6"
heapless = "0.8"
static_cell = "2"
rtt-target = "0.6"
panic-rtt-target = "0.2"
@ -24,7 +27,7 @@ embassy-executor = { version = "0.7", features = [
"executor-interrupt"
]}
va108xx-hal = { path = "../../va108xx-hal" }
va108xx-hal = "0.9"
va108xx-embassy = { path = "../../va108xx-embassy", default-features = false }
[features]

View File

@ -0,0 +1,171 @@
//! Asynchronous UART reception example application.
//!
//! This application receives data on two UARTs permanently using a ring buffer.
//! The ring buffer are read them asynchronously. UART A is received on ports PA8 and PA9.
//! UART B is received on ports PA2 and PA3.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PA9 and TX to PA8 for UART A.
//! Tie a USB to UART converter with RX to PA3 and TX to PA2 for UART B.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! type something in the terminal and check if the data is echoed back. You can also check the
//! RTT logs to see received data.
#![no_std]
#![no_main]
use core::cell::RefCell;
use critical_section::Mutex;
use embassy_executor::Spawner;
use embassy_time::Instant;
use embedded_hal::digital::StatefulOutputPin;
use embedded_io::Write;
use embedded_io_async::Read;
use heapless::spsc::{Consumer, Producer, Queue};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va108xx_embassy::embassy;
use va108xx_hal::{
gpio::PinsA,
pac::{self, interrupt},
prelude::*,
uart::{
self, on_interrupt_uart_b_overwriting,
rx_asynch::{on_interrupt_uart_a, RxAsync},
RxAsyncSharedConsumer, Tx,
},
InterruptConfig,
};
const SYSCLK_FREQ: Hertz = Hertz::from_raw(50_000_000);
static QUEUE_UART_A: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_A: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static QUEUE_UART_B: static_cell::ConstStaticCell<Queue<u8, 256>> =
static_cell::ConstStaticCell::new(Queue::new());
static PRODUCER_UART_B: Mutex<RefCell<Option<Producer<u8, 256>>>> = Mutex::new(RefCell::new(None));
static CONSUMER_UART_B: Mutex<RefCell<Option<Consumer<u8, 256>>>> = Mutex::new(RefCell::new(None));
// main is itself an async function.
#[embassy_executor::main]
async fn main(spawner: Spawner) {
rtt_init_print!();
rprintln!("-- VA108xx Async UART RX Demo --");
let mut dp = pac::Peripherals::take().unwrap();
// Safety: Only called once here.
unsafe {
embassy::init(
&mut dp.sysconfig,
&dp.irqsel,
SYSCLK_FREQ,
dp.tim23,
dp.tim22,
);
}
let porta = PinsA::new(&mut dp.sysconfig, dp.porta);
let mut led0 = porta.pa10.into_readable_push_pull_output();
let mut led1 = porta.pa7.into_readable_push_pull_output();
let mut led2 = porta.pa6.into_readable_push_pull_output();
let tx_uart_a = porta.pa9.into_funsel_2();
let rx_uart_a = porta.pa8.into_funsel_2();
let uarta = uart::Uart::new_with_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uarta,
(tx_uart_a, rx_uart_a),
115200.Hz(),
InterruptConfig::new(pac::Interrupt::OC2, true, true),
);
let tx_uart_b = porta.pa3.into_funsel_2();
let rx_uart_b = porta.pa2.into_funsel_2();
let uartb = uart::Uart::new_with_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uartb,
(tx_uart_b, rx_uart_b),
115200.Hz(),
InterruptConfig::new(pac::Interrupt::OC3, true, true),
);
let (mut tx_uart_a, rx_uart_a) = uarta.split();
let (tx_uart_b, rx_uart_b) = uartb.split();
let (prod_uart_a, cons_uart_a) = QUEUE_UART_A.take().split();
// Pass the producer to the interrupt handler.
let (prod_uart_b, cons_uart_b) = QUEUE_UART_B.take().split();
critical_section::with(|cs| {
*PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod_uart_a);
*PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod_uart_b);
*CONSUMER_UART_B.borrow(cs).borrow_mut() = Some(cons_uart_b);
});
let mut async_rx_uart_a = RxAsync::new(rx_uart_a, cons_uart_a);
let async_rx_uart_b = RxAsyncSharedConsumer::new(rx_uart_b, &CONSUMER_UART_B);
spawner
.spawn(uart_b_task(async_rx_uart_b, tx_uart_b))
.unwrap();
let mut buf = [0u8; 256];
loop {
rprintln!("Current time UART A: {}", Instant::now().as_secs());
led0.toggle().ok();
led1.toggle().ok();
led2.toggle().ok();
let read_bytes = async_rx_uart_a.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
rprintln!(
"Read {} bytes asynchronously on UART A: {:?}",
read_bytes,
read_str
);
tx_uart_a.write_all(read_str.as_bytes()).unwrap();
}
}
#[embassy_executor::task]
async fn uart_b_task(mut async_rx: RxAsyncSharedConsumer<pac::Uartb, 256>, mut tx: Tx<pac::Uartb>) {
let mut buf = [0u8; 256];
loop {
rprintln!("Current time UART B: {}", Instant::now().as_secs());
// Infallible asynchronous operation.
let read_bytes = async_rx.read(&mut buf).await.unwrap();
let read_str = core::str::from_utf8(&buf[..read_bytes]).unwrap();
rprintln!(
"Read {} bytes asynchronously on UART B: {:?}",
read_bytes,
read_str
);
tx.write_all(read_str.as_bytes()).unwrap();
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC2() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_A.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_uart_a(&mut prod);
critical_section::with(|cs| *PRODUCER_UART_A.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
rprintln!("UART A errors: {:?}", errors);
}
}
#[interrupt]
#[allow(non_snake_case)]
fn OC3() {
let mut prod =
critical_section::with(|cs| PRODUCER_UART_B.borrow(cs).borrow_mut().take().unwrap());
let errors = on_interrupt_uart_b_overwriting(&mut prod, &CONSUMER_UART_B);
critical_section::with(|cs| *PRODUCER_UART_B.borrow(cs).borrow_mut() = Some(prod));
// In a production app, we could use a channel to send the errors to the main task.
if let Err(errors) = errors {
rprintln!("UART B errors: {:?}", errors);
}
}

View File

@ -1,3 +1,13 @@
//! Asynchronous UART transmission example application.
//!
//! This application receives sends 4 strings with different sizes permanently using UART A.
//! Ports PA8 and PA9 are used for this.
//!
//! Instructions:
//!
//! 1. Tie a USB to UART converter with RX to PA9 and TX to PA8 for UART A.
//! 2. Connect to the serial interface by using an application like Putty or picocom. You can
//! can verify the correctness of the sent strings.
#![no_std]
#![no_main]
use embassy_executor::Spawner;
@ -28,7 +38,7 @@ const STR_LIST: &[&str] = &[
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
rtt_init_print!();
rprintln!("-- VA108xx Embassy Demo --");
rprintln!("-- VA108xx Async UART TX Demo --");
let mut dp = pac::Peripherals::take().unwrap();

View File

@ -22,5 +22,5 @@ rtic-sync = { version = "1.3", features = ["defmt-03"] }
once_cell = {version = "1", default-features = false, features = ["critical-section"]}
ringbuf = { version = "0.4.7", default-features = false, features = ["portable-atomic"] }
va108xx-hal = { version = "0.8", path = "../../va108xx-hal" }
va108xx-hal = "0.9"
vorago-reb1 = { path = "../../vorago-reb1" }

View File

@ -16,8 +16,7 @@ embedded-io = "0.6"
cortex-m-semihosting = "0.5.0"
[dependencies.va108xx-hal]
path = "../../va108xx-hal"
version = "0.8"
version = "0.9"
features = ["rt", "defmt"]
[dependencies.vorago-reb1]

View File

@ -27,15 +27,15 @@ fn main() -> ! {
let gpioa = PinsA::new(&mut dp.sysconfig, dp.porta);
let tx = gpioa.pa9.into_funsel_2();
let rx = gpioa.pa8.into_funsel_2();
let uarta = uart::Uart::new_without_interrupt(
let uart = uart::Uart::new_without_interrupt(
&mut dp.sysconfig,
50.MHz(),
dp.uarta,
(tx, rx),
115200.Hz(),
);
let (mut tx, mut rx) = uarta.split();
let (mut tx, mut rx) = uart.split();
writeln!(tx, "Hello World\r").unwrap();
loop {
// Echo what is received on the serial link.

View File

@ -299,7 +299,7 @@ impl TimerDriver {
.cnt_value()
.write(|w| unsafe { w.bits(remaining_ticks.unwrap() as u32) });
alarm_tim.ctrl().modify(|_, w| w.irq_enb().set_bit());
alarm_tim.enable().write(|w| unsafe { w.bits(1) })
alarm_tim.enable().write(|w| unsafe { w.bits(1) });
}
}
})

View File

@ -10,6 +10,10 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
## [v0.9.0]
## Fixed
- Important bugfix for UART driver which causes UART B drivers not to work.
## Removed
- Deleted some HAL re-exports in the PWM module
@ -38,6 +42,7 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
- `enable_interrupt` and `disable_interrupt` renamed to `enable_nvic_interrupt` and
`disable_nvic_interrupt` to distinguish them from peripheral interrupts more clearly.
- `port_mux` renamed to `port_function_select`
- Renamed `IrqUartErrors` to `UartErrors`.
## Added
@ -45,6 +50,7 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
methods.
- Asynchronous GPIO support.
- Asynchronous UART TX support.
- Asynchronous UART RX support.
- Add new `get_tim_raw` unsafe method to retrieve TIM peripheral blocks.
- `Uart::with_with_interrupt` and `Uart::new_without_interrupt`

View File

@ -1,6 +1,6 @@
[package]
name = "va108xx-hal"
version = "0.8.0"
version = "0.9.0"
authors = ["Robin Mueller <muellerr@irs.uni-stuttgart.de>"]
edition = "2021"
description = "HAL for the Vorago VA108xx family of microcontrollers"
@ -24,10 +24,12 @@ fugit = "0.3"
typenum = "1"
critical-section = "1"
delegate = ">=0.12, <=0.13"
heapless = "0.8"
static_cell = "2"
thiserror = { version = "2", default-features = false }
void = { version = "1", default-features = false }
once_cell = {version = "1", default-features = false }
va108xx = { version = "0.3", default-features = false, features = ["critical-section"] }
va108xx = { version = "0.4", default-features = false, features = ["critical-section"] }
embassy-sync = "0.6"
defmt = { version = "0.3", optional = true }

View File

@ -25,12 +25,6 @@ rustup target add thumbv6m-none-eabi
After that, you can use `cargo build` to build the development version of the crate.
If you have not done this yet, it is recommended to read some of the excellent resources
available to learn Rust:
- [Rust Embedded Book](https://docs.rust-embedded.org/book/)
- [Rust Discovery Book](https://docs.rust-embedded.org/discovery/)
## Setting up your own binary crate
If you have a custom board, you might be interested in setting up a new binary crate for your
@ -65,3 +59,11 @@ is contained within the
7. Flashing the board might work differently for different boards and there is usually
more than one way. You can find example instructions in primary README.
## Embedded Rust
If you have not done this yet, it is recommended to read some of the excellent resources available
to learn Rust:
- [Rust Embedded Book](https://docs.rust-embedded.org/book/)
- [Rust Discovery Book](https://docs.rust-embedded.org/discovery/)

View File

@ -11,6 +11,7 @@ static SYS_CLOCK: Mutex<OnceCell<Hertz>> = Mutex::new(OnceCell::new());
pub type PeripheralClocks = PeripheralSelect;
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum FilterClkSel {
SysClk = 0,
Clk1 = 1,
@ -39,13 +40,27 @@ pub fn get_sys_clock() -> Option<Hertz> {
pub fn set_clk_div_register(syscfg: &mut va108xx::Sysconfig, clk_sel: FilterClkSel, div: u32) {
match clk_sel {
FilterClkSel::SysClk => (),
FilterClkSel::Clk1 => syscfg.ioconfig_clkdiv1().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk2 => syscfg.ioconfig_clkdiv2().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk3 => syscfg.ioconfig_clkdiv3().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk4 => syscfg.ioconfig_clkdiv4().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk5 => syscfg.ioconfig_clkdiv5().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk6 => syscfg.ioconfig_clkdiv6().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk7 => syscfg.ioconfig_clkdiv7().write(|w| unsafe { w.bits(div) }),
FilterClkSel::Clk1 => {
syscfg.ioconfig_clkdiv1().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk2 => {
syscfg.ioconfig_clkdiv2().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk3 => {
syscfg.ioconfig_clkdiv3().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk4 => {
syscfg.ioconfig_clkdiv4().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk5 => {
syscfg.ioconfig_clkdiv5().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk6 => {
syscfg.ioconfig_clkdiv6().write(|w| unsafe { w.bits(div) });
}
FilterClkSel::Clk7 => {
syscfg.ioconfig_clkdiv7().write(|w| unsafe { w.bits(div) });
}
}
}

View File

@ -4,7 +4,7 @@
//! the [embedded_hal_async::digital::Wait] trait. These types allow for asynchronous waiting
//! on GPIO pins. Please note that this module does not specify/declare the interrupt handlers
//! which must be provided for async support to work. However, it provides one generic
//! [handler][handle_interrupt_for_async_gpio] which should be called in ALL user interrupt handlers
//! [handler][on_interrupt_for_asynch_gpio] which should be called in ALL user interrupt handlers
//! which handle GPIO interrupts.
//!
//! # Example
@ -90,7 +90,7 @@ pub struct InputPinFuture {
impl InputPinFuture {
/// # Safety
///
/// This calls [Self::new] but uses [pac::Peripherals::steal] to get the system configuration
/// This calls [Self::new_with_dyn_pin] but uses [pac::Peripherals::steal] to get the system configuration
/// and IRQ selection peripherals. Users must ensure that the registers and configuration
/// related to this input pin are not being used elsewhere concurrently.
pub unsafe fn new_unchecked_with_dyn_pin(
@ -127,7 +127,7 @@ impl InputPinFuture {
/// # Safety
///
/// This calls [Self::new] but uses [pac::Peripherals::steal] to get the system configuration
/// This calls [Self::new_with_pin] but uses [pac::Peripherals::steal] to get the system configuration
/// and IRQ selection peripherals. Users must ensure that the registers and configuration
/// related to this input pin are not being used elsewhere concurrently.
pub unsafe fn new_unchecked_with_pin<I: PinId, C: InputConfig>(
@ -200,7 +200,7 @@ impl InputDynPinAsync {
/// passed as well and is used to route and enable the interrupt.
///
/// Please note that the interrupt handler itself must be provided by the user and the
/// generic [handle_interrupt_for_async_gpio] function must be called inside that function for
/// generic [on_interrupt_for_asynch_gpio] function must be called inside that function for
/// the asynchronous functionality to work.
pub fn new(pin: DynPin, irq: pac::Interrupt) -> Result<Self, InvalidPinTypeError> {
if !pin.is_input_pin() {
@ -335,7 +335,7 @@ impl<I: PinId, C: InputConfig> InputPinAsync<I, C> {
/// passed as well and is used to route and enable the interrupt.
///
/// Please note that the interrupt handler itself must be provided by the user and the
/// generic [handle_interrupt_for_async_gpio] function must be called inside that function for
/// generic [on_interrupt_for_asynch_gpio] function must be called inside that function for
/// the asynchronous functionality to work.
pub fn new(pin: Pin<I, pin::Input<C>>, irq: pac::Interrupt) -> Self {
Self { pin, irq }

View File

@ -69,6 +69,7 @@ use crate::{clock::FilterClkSel, enable_nvic_interrupt, pac, FunSel, InterruptCo
/// Value-level `enum` for disabled configurations
#[derive(PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum DynDisabled {
Floating,
PullDown,
@ -156,14 +157,16 @@ pub const DYN_ALT_FUNC_3: DynPinMode = DynPinMode::Alternate(DynAlternate::Sel3)
//==================================================================================================
/// Value-level `enum` for pin groups
#[derive(PartialEq, Eq, Clone, Copy)]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum DynGroup {
A,
B,
}
/// Value-level `struct` representing pin IDs
#[derive(PartialEq, Eq, Clone, Copy)]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct DynPinId {
pub group: DynGroup,
pub num: u8,
@ -177,6 +180,7 @@ pub struct DynPinId {
///
/// This `struct` takes ownership of a [`DynPinId`] and provides an API to
/// access the corresponding regsiters.
#[derive(Debug)]
pub(crate) struct DynRegisters(DynPinId);
// [`DynRegisters`] takes ownership of the [`DynPinId`], and [`DynPin`]
@ -209,6 +213,7 @@ impl DynRegisters {
///
/// This type acts as a type-erased version of [`Pin`]. Every pin is represented
/// by the same type, and pins are tracked and distinguished at run-time.
#[derive(Debug)]
pub struct DynPin {
pub(crate) regs: DynRegisters,
mode: DynPinMode,

View File

@ -119,8 +119,11 @@ pub trait InputConfig: Sealed {
const DYN: DynInput;
}
#[derive(Debug)]
pub enum Floating {}
#[derive(Debug)]
pub enum PullDown {}
#[derive(Debug)]
pub enum PullUp {}
impl InputConfig for Floating {
@ -148,6 +151,7 @@ pub type InputPullUp = Input<PullUp>;
///
/// Type `C` is one of three input configurations: [`Floating`], [`PullDown`] or
/// [`PullUp`]
#[derive(Debug)]
pub struct Input<C: InputConfig> {
cfg: PhantomData<C>,
}
@ -177,13 +181,17 @@ pub trait OutputConfig: Sealed {
pub trait ReadableOutput: Sealed {}
/// Type-level variant of [`OutputConfig`] for a push-pull configuration
#[derive(Debug)]
pub enum PushPull {}
/// Type-level variant of [`OutputConfig`] for an open drain configuration
#[derive(Debug)]
pub enum OpenDrain {}
/// Type-level variant of [`OutputConfig`] for a readable push-pull configuration
#[derive(Debug)]
pub enum ReadablePushPull {}
/// Type-level variant of [`OutputConfig`] for a readable open-drain configuration
#[derive(Debug)]
pub enum ReadableOpenDrain {}
impl Sealed for PushPull {}
@ -210,6 +218,7 @@ impl OutputConfig for ReadableOpenDrain {
///
/// Type `C` is one of four output configurations: [`PushPull`], [`OpenDrain`] or
/// their respective readable versions
#[derive(Debug)]
pub struct Output<C: OutputConfig> {
cfg: PhantomData<C>,
}
@ -304,6 +313,7 @@ macro_rules! pin_id {
// Need paste macro to use ident in doc attribute
paste! {
#[doc = "Pin ID representing pin " $Id]
#[derive(Debug)]
pub enum $Id {}
impl Sealed for $Id {}
impl PinId for $Id {
@ -321,6 +331,7 @@ macro_rules! pin_id {
//==================================================================================================
/// A type-level GPIO pin, parameterized by [PinId] and [PinMode] types
#[derive(Debug)]
pub struct Pin<I: PinId, M: PinMode> {
inner: DynPin,
phantom: PhantomData<(I, M)>,
@ -741,6 +752,7 @@ macro_rules! pins {
) => {
paste!(
/// Collection of all the individual [`Pin`]s for a given port (PORTA or PORTB)
#[derive(Debug)]
pub struct $PinsName {
port: $Port,
$(

View File

@ -304,7 +304,7 @@ pub(super) unsafe trait RegisterInterface {
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() | self.mask_32()))
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
@ -316,7 +316,7 @@ pub(super) unsafe trait RegisterInterface {
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()))
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}

View File

@ -18,6 +18,7 @@ const CLK_400K: Hertz = Hertz::from_raw(400_000);
const MIN_CLK_400K: Hertz = Hertz::from_raw(8_000_000);
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum FifoEmptyMode {
Stall = 0,
EndTransaction = 1,
@ -89,18 +90,21 @@ enum I2cCmd {
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum I2cSpeed {
Regular100khz = 0,
Fast400khz = 1,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum I2cDirection {
Send = 0,
Read = 1,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum I2cAddress {
Regular(u8),
TenBit(u16),
@ -141,9 +145,12 @@ impl Instance for pac::I2cb {
// Config
//==================================================================================================
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TrTfThighTlow(u8, u8, u8, u8);
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TsuStoTsuStaThdStaTBuf(u8, u8, u8, u8);
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TimingCfg {
// 4 bit max width
tr: u8,
@ -218,6 +225,7 @@ impl Default for TimingCfg {
}
}
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct MasterConfig {
pub tx_fe_mode: FifoEmptyMode,
pub rx_fe_mode: FifoEmptyMode,
@ -384,12 +392,12 @@ impl<I2c: Instance> I2cBase<I2c> {
let (addr, addr_mode_mask) = Self::unwrap_addr(addr_b);
self.i2c
.s0_addressb()
.write(|w| unsafe { w.bits((addr << 1) as u32 | addr_mode_mask) })
.write(|w| unsafe { w.bits((addr << 1) as u32 | addr_mode_mask) });
}
if let Some(addr_b_mask) = sl_cfg.addr_b_mask {
self.i2c
.s0_addressmaskb()
.write(|w| unsafe { w.bits((addr_b_mask << 1) as u32) })
.write(|w| unsafe { w.bits((addr_b_mask << 1) as u32) });
}
}

View File

@ -51,8 +51,8 @@ pub enum PeripheralSelect {
/// Generic interrupt config which can be used to specify whether the HAL driver will
/// use the IRQSEL register to route an interrupt, and whether the IRQ will be unmasked in the
/// Cortex-M0 NVIC. Both are generally necessary for IRQs to work, but the user might perform
/// this steps themselves
/// Cortex-M0 NVIC. Both are generally necessary for IRQs to work, but the user might want to
/// perform those steps themselves.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct InterruptConfig {
/// Interrupt target vector. Should always be set, might be required for disabling IRQs
@ -77,6 +77,7 @@ impl InterruptConfig {
pub type IrqCfg = InterruptConfig;
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct InvalidPin(pub(crate) ());
/// Can be used to manually manipulate the function select of port pins

View File

@ -15,7 +15,9 @@ use crate::{clock::enable_peripheral_clock, gpio::DynPinId};
const DUTY_MAX: u16 = u16::MAX;
pub struct PwmCommon {
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct PwmCommon {
sys_clk: Hertz,
/// For PWMB, this is the upper limit
current_duty: u16,

View File

@ -37,6 +37,7 @@ pub const BMSTART_BMSTOP_MASK: u32 = 1 << 31;
pub const DEFAULT_CLK_DIV: u16 = 2;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum HwChipSelectId {
Id0 = 0,
Id1 = 1,
@ -50,6 +51,7 @@ pub enum HwChipSelectId {
}
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SpiPort {
Porta = 0,
Portb = 1,
@ -58,6 +60,7 @@ pub enum SpiPort {
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum WordSize {
OneBit = 0x00,
FourBits = 0x03,
@ -789,7 +792,7 @@ where
// initialization. Returns the amount of written bytes.
fn initial_send_fifo_pumping_with_words(&self, words: &[Word]) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit());
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
@ -803,7 +806,7 @@ where
current_write_idx += 1;
}
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().clear_bit())
self.spi.ctrl1().modify(|_, w| w.mtxpause().clear_bit());
}
current_write_idx
}
@ -812,7 +815,7 @@ where
// initialization.
fn initial_send_fifo_pumping_with_fill_words(&self, send_len: usize) -> usize {
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit())
self.spi.ctrl1().modify(|_, w| w.mtxpause().set_bit());
}
// Fill the first half of the write FIFO
let mut current_write_idx = 0;
@ -826,7 +829,7 @@ where
current_write_idx += 1;
}
if self.blockmode {
self.spi.ctrl1().modify(|_, w| w.mtxpause().clear_bit())
self.spi.ctrl1().modify(|_, w| w.mtxpause().clear_bit());
}
current_write_idx
}

View File

@ -20,7 +20,7 @@ pub fn enable_rom_scrubbing(
}
pub fn disable_rom_scrubbing(syscfg: &mut pac::Sysconfig) {
syscfg.rom_scrub().write(|w| unsafe { w.bits(0) })
syscfg.rom_scrub().write(|w| unsafe { w.bits(0) });
}
/// Enable scrubbing for the RAM
@ -39,7 +39,7 @@ pub fn enable_ram_scrubbing(
}
pub fn disable_ram_scrubbing(syscfg: &mut pac::Sysconfig) {
syscfg.ram_scrub().write(|w| unsafe { w.bits(0) })
syscfg.ram_scrub().write(|w| unsafe { w.bits(0) });
}
/// Clear the reset bit. This register is active low, so doing this will hold the peripheral

View File

@ -79,6 +79,7 @@ pub enum Event {
}
#[derive(Default, Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct CascadeCtrl {
/// Enable Cascade 0 signal active as a requirement for counting
pub enb_start_src_csd0: bool,
@ -108,6 +109,7 @@ pub struct CascadeCtrl {
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum CascadeSel {
Csd0 = 0,
Csd1 = 1,
@ -319,7 +321,7 @@ pub unsafe trait TimRegInterface {
va108xx::Peripherals::steal()
.sysconfig
.tim_reset()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()))
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
@ -330,7 +332,7 @@ pub unsafe trait TimRegInterface {
va108xx::Peripherals::steal()
.sysconfig
.tim_reset()
.modify(|r, w| w.bits(r.bits() | self.mask_32()))
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}

View File

@ -7,7 +7,6 @@
//! - [Flashloader exposing a CCSDS interface via UART](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/flashloader)
use core::{convert::Infallible, ops::Deref};
use fugit::RateExtU32;
use va108xx::Uarta;
pub use crate::InterruptConfig;
use crate::{
@ -23,6 +22,13 @@ use crate::{
};
use embedded_hal_nb::serial::Read;
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Bank {
A = 0,
B = 1,
}
//==================================================================================================
// Type-Level support
//==================================================================================================
@ -232,6 +238,7 @@ impl From<Hertz> for Config {
//==================================================================================================
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct IrqContextTimeoutOrMaxSize {
rx_idx: usize,
mode: IrqReceptionMode,
@ -257,17 +264,19 @@ impl IrqContextTimeoutOrMaxSize {
/// This struct is used to return the default IRQ handler result to the user
#[derive(Debug, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct IrqResult {
pub bytes_read: usize,
pub errors: Option<IrqUartError>,
pub errors: Option<UartErrors>,
}
/// This struct is used to return the default IRQ handler result to the user
#[derive(Debug, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct IrqResultMaxSizeOrTimeout {
complete: bool,
timeout: bool,
pub errors: Option<IrqUartError>,
pub errors: Option<UartErrors>,
pub bytes_read: usize,
}
@ -314,20 +323,22 @@ impl IrqResultMaxSizeOrTimeout {
}
#[derive(Debug, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
enum IrqReceptionMode {
Idle,
Pending,
}
#[derive(Default, Debug, Copy, Clone)]
pub struct IrqUartError {
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct UartErrors {
overflow: bool,
framing: bool,
parity: bool,
other: bool,
}
impl IrqUartError {
impl UartErrors {
#[inline(always)]
pub fn overflow(&self) -> bool {
self.overflow
@ -349,7 +360,7 @@ impl IrqUartError {
}
}
impl IrqUartError {
impl UartErrors {
#[inline(always)]
pub fn error(&self) -> bool {
self.overflow || self.framing || self.parity
@ -401,7 +412,7 @@ impl Instance for pac::Uarta {
}
#[inline(always)]
fn ptr() -> *const uart_base::RegisterBlock {
Uarta::ptr() as *const _
Self::ptr() as *const _
}
}
@ -416,7 +427,7 @@ impl Instance for pac::Uartb {
}
#[inline(always)]
fn ptr() -> *const uart_base::RegisterBlock {
Uarta::ptr() as *const _
Self::ptr() as *const _
}
}
@ -752,6 +763,34 @@ where
}
}
#[inline(always)]
pub fn enable_rx(uart: &uart_base::RegisterBlock) {
uart.enable().modify(|_, w| w.rxenable().set_bit());
}
#[inline(always)]
pub fn disable_rx(uart: &uart_base::RegisterBlock) {
uart.enable().modify(|_, w| w.rxenable().clear_bit());
}
#[inline(always)]
pub fn enable_rx_interrupts(uart: &uart_base::RegisterBlock) {
uart.irq_enb().modify(|_, w| {
w.irq_rx().set_bit();
w.irq_rx_to().set_bit();
w.irq_rx_status().set_bit()
});
}
#[inline(always)]
pub fn disable_rx_interrupts(uart: &uart_base::RegisterBlock) {
uart.irq_enb().modify(|_, w| {
w.irq_rx().clear_bit();
w.irq_rx_to().clear_bit();
w.irq_rx_status().clear_bit()
});
}
/// Serial receiver.
///
/// Can be created by using the [Uart::split] or [UartBase::split] API.
@ -760,6 +799,7 @@ pub struct Rx<Uart> {
}
impl<Uart: Instance> Rx<Uart> {
#[inline(always)]
fn new(uart: Uart) -> Self {
Self { uart }
}
@ -769,6 +809,7 @@ impl<Uart: Instance> Rx<Uart> {
/// # Safety
///
/// You must ensure that only registers related to the operation of the RX side are used.
#[inline(always)]
pub unsafe fn uart(&self) -> &Uart {
&self.uart
}
@ -778,14 +819,23 @@ impl<Uart: Instance> Rx<Uart> {
self.uart.fifo_clr().write(|w| w.rxfifo().set_bit());
}
#[inline]
pub fn disable_interrupts(&mut self) {
disable_rx_interrupts(unsafe { Uart::reg_block() });
}
#[inline]
pub fn enable_interrupts(&mut self) {
enable_rx_interrupts(unsafe { Uart::reg_block() });
}
#[inline]
pub fn enable(&mut self) {
self.uart.enable().modify(|_, w| w.rxenable().set_bit());
enable_rx(unsafe { Uart::reg_block() });
}
#[inline]
pub fn disable(&mut self) {
self.uart.enable().modify(|_, w| w.rxenable().clear_bit());
disable_rx(unsafe { Uart::reg_block() });
}
/// Low level function to read a word from the UART FIFO.
@ -819,6 +869,7 @@ impl<Uart: Instance> Rx<Uart> {
RxWithInterrupt::new(self)
}
#[inline(always)]
pub fn release(self) -> Uart {
self.uart
}
@ -877,14 +928,17 @@ impl<Uart: Instance> embedded_io::Read for Rx<Uart> {
}
}
#[inline(always)]
pub fn enable_tx(uart: &uart_base::RegisterBlock) {
uart.enable().modify(|_, w| w.txenable().set_bit());
}
#[inline(always)]
pub fn disable_tx(uart: &uart_base::RegisterBlock) {
uart.enable().modify(|_, w| w.txenable().clear_bit());
}
#[inline(always)]
pub fn enable_tx_interrupts(uart: &uart_base::RegisterBlock) {
uart.irq_enb().modify(|_, w| {
w.irq_tx().set_bit();
@ -893,6 +947,7 @@ pub fn enable_tx_interrupts(uart: &uart_base::RegisterBlock) {
});
}
#[inline(always)]
pub fn disable_tx_interrupts(uart: &uart_base::RegisterBlock) {
uart.irq_enb().modify(|_, w| {
w.irq_tx().clear_bit();
@ -914,12 +969,14 @@ impl<Uart: Instance> Tx<Uart> {
/// # Safety
///
/// Circumvents the HAL safety guarantees.
#[inline(always)]
pub unsafe fn steal() -> Self {
Self {
uart: Uart::steal(),
}
}
#[inline(always)]
fn new(uart: Uart) -> Self {
Self { uart }
}
@ -929,6 +986,7 @@ impl<Uart: Instance> Tx<Uart> {
/// # Safety
///
/// You must ensure that only registers related to the operation of the TX side are used.
#[inline(always)]
pub unsafe fn uart(&self) -> &Uart {
&self.uart
}
@ -1055,10 +1113,10 @@ impl<Uart: Instance> embedded_io::Write for Tx<Uart> {
///
/// 1. The first way simply empties the FIFO on an interrupt into a user provided buffer. You
/// can simply use [Self::start] to prepare the peripheral and then call the
/// [Self::irq_handler] in the interrupt service routine.
/// [Self::on_interrupt] in the interrupt service routine.
/// 2. The second way reads packets bounded by a maximum size or a baudtick based timeout. You
/// can use [Self::read_fixed_len_or_timeout_based_using_irq] to prepare the peripheral and
/// then call the [Self::irq_handler_max_size_or_timeout_based] in the interrupt service
/// then call the [Self::on_interrupt_max_size_or_timeout_based] in the interrupt service
/// routine. You have to call [Self::read_fixed_len_or_timeout_based_using_irq] in the ISR to
/// start reading the next packet.
pub struct RxWithInterrupt<Uart>(Rx<Uart>);
@ -1069,7 +1127,7 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
}
/// This function should be called once at initialization time if the regular
/// [Self::irq_handler] is used to read the UART receiver to enable and start the receiver.
/// [Self::on_interrupt] is used to read the UART receiver to enable and start the receiver.
pub fn start(&mut self) {
self.0.enable();
self.enable_rx_irq_sources(true);
@ -1080,13 +1138,13 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
&self.0.uart
}
/// This function is used together with the [Self::irq_handler_max_size_or_timeout_based]
/// This function is used together with the [Self::on_interrupt_max_size_or_timeout_based]
/// function to read packets with a maximum size or variable sized packets by using the
/// receive timeout of the hardware.
///
/// This function should be called once at initialization to initiate the context state
/// and to [Self::start] the receiver. After that, it should be called after each
/// completed [Self::irq_handler_max_size_or_timeout_based] call to restart the reception
/// completed [Self::on_interrupt_max_size_or_timeout_based] call to restart the reception
/// of a packet.
pub fn read_fixed_len_or_timeout_based_using_irq(
&mut self,
@ -1266,7 +1324,7 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
fn read_handler(
&self,
errors: &mut Option<IrqUartError>,
errors: &mut Option<UartErrors>,
read_res: &nb::Result<u8, RxError>,
) -> Option<u8> {
match read_res {
@ -1274,7 +1332,7 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
Err(nb::Error::WouldBlock) => None,
Err(nb::Error::Other(e)) => {
// Ensure `errors` is Some(IrqUartError), initializing if it's None
let err = errors.get_or_insert(IrqUartError::default());
let err = errors.get_or_insert(UartErrors::default());
// Now we can safely modify fields inside `err`
match e {
@ -1287,14 +1345,14 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
}
}
fn check_for_errors(&self, errors: &mut Option<IrqUartError>) {
fn check_for_errors(&self, errors: &mut Option<UartErrors>) {
let rx_status = self.uart().rxstatus().read();
if rx_status.rxovr().bit_is_set()
|| rx_status.rxfrm().bit_is_set()
|| rx_status.rxpar().bit_is_set()
{
let err = errors.get_or_insert(IrqUartError::default());
let err = errors.get_or_insert(UartErrors::default());
if rx_status.rxovr().bit_is_set() {
err.overflow = true;
@ -1331,5 +1389,8 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
}
}
pub mod asynch;
pub use asynch::*;
pub mod tx_asynch;
pub use tx_asynch::*;
pub mod rx_asynch;
pub use rx_asynch::*;

View File

@ -0,0 +1,419 @@
//! # Async UART reception functionality for the VA108xx family.
//!
//! This module provides the [RxAsync] and [RxAsyncSharedConsumer] struct which both implement the
//! [embedded_io_async::Read] trait.
//! This trait allows for asynchronous reception of data streams. Please note that this module does
//! not specify/declare the interrupt handlers which must be provided for async support to work.
//! However, it provides four interrupt handlers:
//!
//! - [on_interrupt_uart_a]
//! - [on_interrupt_uart_b]
//! - [on_interrupt_uart_a_overwriting]
//! - [on_interrupt_uart_b_overwriting]
//!
//! The first two are used for the [RxAsync] struct, while the latter two are used with the
//! [RxAsyncSharedConsumer] struct. The later two will overwrite old values in the used ring buffer.
//!
//! Error handling is performed in the user interrupt handler by checking the [AsyncUartErrors]
//! structure returned by the interrupt handlers.
//!
//! # Example
//!
//! - [Async UART RX example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/examples/embassy/src/bin/async-uart-rx.rs)
use core::{cell::RefCell, convert::Infallible, future::Future, sync::atomic::Ordering};
use critical_section::Mutex;
use embassy_sync::waitqueue::AtomicWaker;
use embedded_io::ErrorType;
use heapless::spsc::Consumer;
use portable_atomic::AtomicBool;
use va108xx as pac;
use super::{Instance, Rx, RxError, UartErrors};
static UART_RX_WAKERS: [AtomicWaker; 2] = [const { AtomicWaker::new() }; 2];
static RX_READ_ACTIVE: [AtomicBool; 2] = [const { AtomicBool::new(false) }; 2];
static RX_HAS_DATA: [AtomicBool; 2] = [const { AtomicBool::new(false) }; 2];
struct RxFuture {
uart_idx: usize,
}
impl RxFuture {
pub fn new<Uart: Instance>(_rx: &mut Rx<Uart>) -> Self {
RX_READ_ACTIVE[Uart::IDX as usize].store(true, Ordering::Relaxed);
Self {
uart_idx: Uart::IDX as usize,
}
}
}
impl Future for RxFuture {
type Output = Result<(), RxError>;
fn poll(
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
UART_RX_WAKERS[self.uart_idx].register(cx.waker());
if RX_HAS_DATA[self.uart_idx].load(Ordering::Relaxed) {
return core::task::Poll::Ready(Ok(()));
}
core::task::Poll::Pending
}
}
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct AsyncUartErrors {
/// Queue has overflowed, data might have been lost.
pub queue_overflow: bool,
/// UART errors.
pub uart_errors: UartErrors,
}
fn on_interrupt_handle_rx_errors<Uart: Instance>(uart: &Uart) -> Option<UartErrors> {
let rx_status = uart.rxstatus().read();
if rx_status.rxovr().bit_is_set()
|| rx_status.rxfrm().bit_is_set()
|| rx_status.rxpar().bit_is_set()
{
let mut errors_val = UartErrors::default();
if rx_status.rxovr().bit_is_set() {
errors_val.overflow = true;
}
if rx_status.rxfrm().bit_is_set() {
errors_val.framing = true;
}
if rx_status.rxpar().bit_is_set() {
errors_val.parity = true;
}
return Some(errors_val);
}
None
}
fn on_interrupt_rx_common_post_processing<Uart: Instance>(
uart: &Uart,
rx_enabled: bool,
read_some_data: bool,
irq_end: u32,
) -> Option<UartErrors> {
if read_some_data {
RX_HAS_DATA[Uart::IDX as usize].store(true, Ordering::Relaxed);
if RX_READ_ACTIVE[Uart::IDX as usize].load(Ordering::Relaxed) {
UART_RX_WAKERS[Uart::IDX as usize].wake();
}
}
let mut errors = None;
// Check for RX errors
if rx_enabled {
errors = on_interrupt_handle_rx_errors(uart);
}
// Clear the interrupt status bits
uart.irq_clr().write(|w| unsafe { w.bits(irq_end) });
errors
}
/// Interrupt handler for UART A.
///
/// Should be called in the user interrupt handler to enable
/// asynchronous reception. This variant will overwrite old data in the ring buffer in case
/// the ring buffer is full.
pub fn on_interrupt_uart_a_overwriting<const N: usize>(
prod: &mut heapless::spsc::Producer<u8, N>,
shared_consumer: &Mutex<RefCell<Option<heapless::spsc::Consumer<'static, u8, N>>>>,
) -> Result<(), AsyncUartErrors> {
on_interrupt_rx_async_heapless_queue_overwriting(
unsafe { pac::Uarta::steal() },
prod,
shared_consumer,
)
}
/// Interrupt handler for UART B.
///
/// Should be called in the user interrupt handler to enable
/// asynchronous reception. This variant will overwrite old data in the ring buffer in case
/// the ring buffer is full.
pub fn on_interrupt_uart_b_overwriting<const N: usize>(
prod: &mut heapless::spsc::Producer<u8, N>,
shared_consumer: &Mutex<RefCell<Option<heapless::spsc::Consumer<'static, u8, N>>>>,
) -> Result<(), AsyncUartErrors> {
on_interrupt_rx_async_heapless_queue_overwriting(
unsafe { pac::Uartb::steal() },
prod,
shared_consumer,
)
}
pub fn on_interrupt_rx_async_heapless_queue_overwriting<Uart: Instance, const N: usize>(
uart: Uart,
prod: &mut heapless::spsc::Producer<u8, N>,
shared_consumer: &Mutex<RefCell<Option<heapless::spsc::Consumer<'static, u8, N>>>>,
) -> Result<(), AsyncUartErrors> {
let irq_end = uart.irq_end().read();
let enb_status = uart.enable().read();
let rx_enabled = enb_status.rxenable().bit_is_set();
let mut read_some_data = false;
let mut queue_overflow = false;
// Half-Full interrupt. We have a guaranteed amount of data we can read.
if irq_end.irq_rx().bit_is_set() {
let available_bytes = uart.rxfifoirqtrg().read().bits() as usize;
// If this interrupt bit is set, the trigger level is available at the very least.
// Read everything as fast as possible
for _ in 0..available_bytes {
let byte = uart.data().read().bits();
if !prod.ready() {
queue_overflow = true;
critical_section::with(|cs| {
let mut cons_ref = shared_consumer.borrow(cs).borrow_mut();
cons_ref.as_mut().unwrap().dequeue();
});
}
prod.enqueue(byte as u8).ok();
}
read_some_data = true;
}
// Timeout, empty the FIFO completely.
if irq_end.irq_rx_to().bit_is_set() {
while uart.rxstatus().read().rdavl().bit_is_set() {
// While there is data in the FIFO, write it into the reception buffer
let byte = uart.data().read().bits();
if !prod.ready() {
queue_overflow = true;
critical_section::with(|cs| {
let mut cons_ref = shared_consumer.borrow(cs).borrow_mut();
cons_ref.as_mut().unwrap().dequeue();
});
}
prod.enqueue(byte as u8).ok();
}
read_some_data = true;
}
let uart_errors =
on_interrupt_rx_common_post_processing(&uart, rx_enabled, read_some_data, irq_end.bits());
if uart_errors.is_some() || queue_overflow {
return Err(AsyncUartErrors {
queue_overflow,
uart_errors: uart_errors.unwrap_or_default(),
});
}
Ok(())
}
/// Interrupt handler for UART A.
///
/// Should be called in the user interrupt handler to enable asynchronous reception.
pub fn on_interrupt_uart_a<const N: usize>(
prod: &mut heapless::spsc::Producer<'_, u8, N>,
) -> Result<(), AsyncUartErrors> {
on_interrupt_rx_async_heapless_queue(unsafe { pac::Uarta::steal() }, prod)
}
/// Interrupt handler for UART B.
///
/// Should be called in the user interrupt handler to enable asynchronous reception.
pub fn on_interrupt_uart_b<const N: usize>(
prod: &mut heapless::spsc::Producer<'_, u8, N>,
) -> Result<(), AsyncUartErrors> {
on_interrupt_rx_async_heapless_queue(unsafe { pac::Uartb::steal() }, prod)
}
pub fn on_interrupt_rx_async_heapless_queue<Uart: Instance, const N: usize>(
uart: Uart,
prod: &mut heapless::spsc::Producer<'_, u8, N>,
) -> Result<(), AsyncUartErrors> {
//let uart = unsafe { Uart::steal() };
let irq_end = uart.irq_end().read();
let enb_status = uart.enable().read();
let rx_enabled = enb_status.rxenable().bit_is_set();
let mut read_some_data = false;
let mut queue_overflow = false;
// Half-Full interrupt. We have a guaranteed amount of data we can read.
if irq_end.irq_rx().bit_is_set() {
let available_bytes = uart.rxfifoirqtrg().read().bits() as usize;
// If this interrupt bit is set, the trigger level is available at the very least.
// Read everything as fast as possible
for _ in 0..available_bytes {
let byte = uart.data().read().bits();
if !prod.ready() {
queue_overflow = true;
}
prod.enqueue(byte as u8).ok();
}
read_some_data = true;
}
// Timeout, empty the FIFO completely.
if irq_end.irq_rx_to().bit_is_set() {
while uart.rxstatus().read().rdavl().bit_is_set() {
// While there is data in the FIFO, write it into the reception buffer
let byte = uart.data().read().bits();
if !prod.ready() {
queue_overflow = true;
}
prod.enqueue(byte as u8).ok();
}
read_some_data = true;
}
let uart_errors =
on_interrupt_rx_common_post_processing(&uart, rx_enabled, read_some_data, irq_end.bits());
if uart_errors.is_some() || queue_overflow {
return Err(AsyncUartErrors {
queue_overflow,
uart_errors: uart_errors.unwrap_or_default(),
});
}
Ok(())
}
struct ActiveReadGuard(usize);
impl Drop for ActiveReadGuard {
fn drop(&mut self) {
RX_READ_ACTIVE[self.0].store(false, Ordering::Relaxed);
}
}
/// Core data structure to allow asynchronous UART reception.
///
/// If the ring buffer becomes full, data will be lost.
pub struct RxAsync<Uart: Instance, const N: usize> {
rx: Rx<Uart>,
pub queue: heapless::spsc::Consumer<'static, u8, N>,
}
impl<Uart: Instance, const N: usize> ErrorType for RxAsync<Uart, N> {
/// Error reporting is done using the result of the interrupt functions.
type Error = Infallible;
}
impl<Uart: Instance, const N: usize> RxAsync<Uart, N> {
/// Create a new asynchronous receiver.
///
/// The passed [heapless::spsc::Consumer] will be used to asynchronously receive data which
/// is filled by the interrupt handler.
pub fn new(mut rx: Rx<Uart>, queue: heapless::spsc::Consumer<'static, u8, N>) -> Self {
rx.disable_interrupts();
rx.disable();
rx.clear_fifo();
// Enable those together.
critical_section::with(|_| {
rx.enable_interrupts();
rx.enable();
});
Self { rx, queue }
}
}
impl<Uart: Instance, const N: usize> embedded_io_async::Read for RxAsync<Uart, N> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
// Need to wait for the IRQ to read data and set this flag. If the queue is not
// empty, we can read data immediately.
if self.queue.len() == 0 {
RX_HAS_DATA[Uart::IDX as usize].store(false, Ordering::Relaxed);
}
let _guard = ActiveReadGuard(Uart::IDX as usize);
let mut handle_data_in_queue = |consumer: &mut heapless::spsc::Consumer<'static, u8, N>| {
let data_to_read = consumer.len().min(buf.len());
for byte in buf.iter_mut().take(data_to_read) {
// We own the consumer and we checked that the amount of data is guaranteed to be available.
*byte = unsafe { consumer.dequeue_unchecked() };
}
data_to_read
};
let fut = RxFuture::new(&mut self.rx);
// Data is available, so read that data immediately.
let read_data = handle_data_in_queue(&mut self.queue);
if read_data > 0 {
return Ok(read_data);
}
// Await data.
let _ = fut.await;
Ok(handle_data_in_queue(&mut self.queue))
}
}
/// Core data structure to allow asynchronous UART reception.
///
/// If the ring buffer becomes full, the oldest data will be overwritten when using the
/// [on_interrupt_uart_a_overwriting] and [on_interrupt_uart_b_overwriting] interrupt handlers.
pub struct RxAsyncSharedConsumer<Uart: Instance, const N: usize> {
rx: Rx<Uart>,
queue: &'static Mutex<RefCell<Option<Consumer<'static, u8, N>>>>,
}
impl<Uart: Instance, const N: usize> ErrorType for RxAsyncSharedConsumer<Uart, N> {
/// Error reporting is done using the result of the interrupt functions.
type Error = Infallible;
}
impl<Uart: Instance, const N: usize> RxAsyncSharedConsumer<Uart, N> {
/// Create a new asynchronous receiver.
///
/// The passed shared [heapless::spsc::Consumer] will be used to asynchronously receive data
/// which is filled by the interrupt handler. The shared property allows using it in the
/// interrupt handler to overwrite old data.
pub fn new(
mut rx: Rx<Uart>,
queue: &'static Mutex<RefCell<Option<heapless::spsc::Consumer<'static, u8, N>>>>,
) -> Self {
rx.disable_interrupts();
rx.disable();
rx.clear_fifo();
// Enable those together.
critical_section::with(|_| {
rx.enable_interrupts();
rx.enable();
});
Self { rx, queue }
}
}
impl<Uart: Instance, const N: usize> embedded_io_async::Read for RxAsyncSharedConsumer<Uart, N> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
// Need to wait for the IRQ to read data and set this flag. If the queue is not
// empty, we can read data immediately.
critical_section::with(|cs| {
let queue = self.queue.borrow(cs);
if queue.borrow().as_ref().unwrap().len() == 0 {
RX_HAS_DATA[Uart::IDX as usize].store(false, Ordering::Relaxed);
}
});
let _guard = ActiveReadGuard(Uart::IDX as usize);
let mut handle_data_in_queue = || {
critical_section::with(|cs| {
let mut consumer_ref = self.queue.borrow(cs).borrow_mut();
let consumer = consumer_ref.as_mut().unwrap();
let data_to_read = consumer.len().min(buf.len());
for byte in buf.iter_mut().take(data_to_read) {
// We own the consumer and we checked that the amount of data is guaranteed to be available.
*byte = unsafe { consumer.dequeue_unchecked() };
}
data_to_read
})
};
let fut = RxFuture::new(&mut self.rx);
// Data is available, so read that data immediately.
let read_data = handle_data_in_queue();
if read_data > 0 {
return Ok(read_data);
}
// Await data.
let _ = fut.await;
let read_data = handle_data_in_queue();
Ok(read_data)
}
}

View File

@ -1,4 +1,4 @@
//! # Async GPIO functionality for the VA108xx family.
//! # Async UART transmission functionality for the VA108xx family.
//!
//! This module provides the [TxAsync] struct which implements the [embedded_io_async::Write] trait.
//! This trait allows for asynchronous sending of data streams. Please note that this module does
@ -13,7 +13,7 @@
//!
//! # Example
//!
//! - [Async UART example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/async-gpio/examples/embassy/src/bin/async-uart.rs)
//! - [Async UART TX example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/examples/embassy/src/bin/async-uart-tx.rs)
use core::{cell::RefCell, future::Future};
use critical_section::Mutex;
@ -23,7 +23,7 @@ use portable_atomic::AtomicBool;
use super::*;
static UART_WAKERS: [AtomicWaker; 2] = [const { AtomicWaker::new() }; 2];
static UART_TX_WAKERS: [AtomicWaker; 2] = [const { AtomicWaker::new() }; 2];
static TX_CONTEXTS: [Mutex<RefCell<TxContext>>; 2] =
[const { Mutex::new(RefCell::new(TxContext::new())) }; 2];
// Completion flag. Kept outside of the context structure as an atomic to avoid
@ -72,7 +72,7 @@ fn on_interrupt_uart_tx<Uart: Instance>(uart: Uart) {
});
// Transfer is done.
TX_DONE[Uart::IDX as usize].store(true, core::sync::atomic::Ordering::Relaxed);
UART_WAKERS[Uart::IDX as usize].wake();
UART_TX_WAKERS[Uart::IDX as usize].wake();
return;
}
// Safety: We documented that the user provided slice must outlive the future, so we convert
@ -199,7 +199,7 @@ impl Future for TxFuture {
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
UART_WAKERS[self.uart_idx].register(cx.waker());
UART_TX_WAKERS[self.uart_idx].register(cx.waker());
if TX_DONE[self.uart_idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
let progress = critical_section::with(|cs| {
TX_CONTEXTS[self.uart_idx].borrow(cs).borrow().progress

View File

@ -8,6 +8,12 @@ and this project adheres to [Semantic Versioning](http://semver.org/).
## [unreleased]
## [v0.7.0] 2025-02-13
- Bumped `va108xx-hal` dependency to 0.9
- Minor adjustments to `Button` API.
- `Button`, `Led` and `Leds` now simply wrap a type using a tuple struct.
## [v0.6.0] 2024-09-30
- Added M95M01 EEPROM module/API

View File

@ -1,6 +1,6 @@
[package]
name = "vorago-reb1"
version = "0.6.0"
version = "0.7.0"
authors = ["Robin Mueller <muellerr@irs.uni-stuttgart.de>"]
edition = "2021"
description = "Board Support Crate for the Vorago REB1 development board"
@ -19,8 +19,7 @@ bitfield = ">=0.17, <=0.18"
max116xx-10bit = "0.3"
[dependencies.va108xx-hal]
path = "../va108xx-hal"
version = ">=0.8, <0.9"
version = "0.9"
features = ["rt"]
[features]

View File

@ -10,23 +10,22 @@ use va108xx_hal::{
pac, InterruptConfig,
};
pub struct Button {
button: Pin<PA11, InputFloating>,
}
#[derive(Debug)]
pub struct Button(pub Pin<PA11, InputFloating>);
impl Button {
pub fn new(pin: Pin<PA11, InputFloating>) -> Button {
Button { button: pin }
Button(pin)
}
#[inline]
pub fn pressed(&mut self) -> bool {
self.button.is_low().ok().unwrap()
self.0.is_low().ok().unwrap()
}
#[inline]
pub fn released(&mut self) -> bool {
self.button.is_high().ok().unwrap()
self.0.is_high().ok().unwrap()
}
/// Configures an IRQ on edge.
@ -37,7 +36,7 @@ impl Button {
syscfg: Option<&mut pac::Sysconfig>,
irqsel: Option<&mut pac::Irqsel>,
) {
self.button
self.0
.configure_edge_interrupt(edge_type, irq_cfg, syscfg, irqsel);
}
@ -49,7 +48,7 @@ impl Button {
syscfg: Option<&mut pac::Sysconfig>,
irqsel: Option<&mut pac::Irqsel>,
) {
self.button
self.0
.configure_level_interrupt(level, irq_cfg, syscfg, irqsel);
}
@ -58,6 +57,6 @@ impl Button {
/// Please note that you still have to set a clock divisor yourself using the
/// [`va108xx_hal::clock::set_clk_div_register`] function in order for this to work.
pub fn configure_filter_type(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.button.configure_filter_type(filter, clksel);
self.0.configure_filter_type(filter, clksel);
}
}

View File

@ -15,15 +15,12 @@ pub type LD2 = Pin<PA10, PushPullOutput>;
pub type LD3 = Pin<PA7, PushPullOutput>;
pub type LD4 = Pin<PA6, PushPullOutput>;
pub struct Leds {
leds: [Led; 3],
}
#[derive(Debug)]
pub struct Leds(pub [Led; 3]);
impl Leds {
pub fn new(led_pin1: LD2, led_pin2: LD3, led_pin3: LD4) -> Leds {
Leds {
leds: [led_pin1.into(), led_pin2.into(), led_pin3.into()],
}
Leds([led_pin1.into(), led_pin2.into(), led_pin3.into()])
}
}
@ -31,13 +28,13 @@ impl core::ops::Deref for Leds {
type Target = [Led];
fn deref(&self) -> &[Led] {
&self.leds
&self.0
}
}
impl core::ops::DerefMut for Leds {
fn deref_mut(&mut self) -> &mut [Led] {
&mut self.leds
&mut self.0
}
}
@ -45,28 +42,25 @@ impl core::ops::Index<usize> for Leds {
type Output = Led;
fn index(&self, i: usize) -> &Led {
&self.leds[i]
&self.0[i]
}
}
impl core::ops::IndexMut<usize> for Leds {
fn index_mut(&mut self, i: usize) -> &mut Led {
&mut self.leds[i]
&mut self.0[i]
}
}
pub struct Led {
pin: DynPin,
}
#[derive(Debug)]
pub struct Led(pub DynPin);
macro_rules! ctor {
($($ldx:ident),+) => {
$(
impl From<$ldx> for Led {
fn from(led: $ldx) -> Self {
Led {
pin: led.into()
}
Led(led.into())
}
}
)+
@ -79,18 +73,18 @@ impl Led {
/// Turns the LED off. Setting the pin high actually turns the LED off
#[inline]
pub fn off(&mut self) {
self.pin.set_high().ok();
self.0.set_high().ok();
}
/// Turns the LED on. Setting the pin low actually turns the LED on
#[inline]
pub fn on(&mut self) {
self.pin.set_low().ok();
self.0.set_low().ok();
}
/// Toggles the LED
#[inline]
pub fn toggle(&mut self) {
self.pin.toggle_with_toggle_reg().ok();
self.0.toggle_with_toggle_reg().ok();
}
}

View File

@ -526,13 +526,37 @@
{
"type": "cortex-debug",
"request": "launch",
"name": "Async UART",
"name": "Async UART TX",
"servertype": "jlink",
"cwd": "${workspaceRoot}",
"device": "Cortex-M0",
"svdFile": "./va108xx/svd/va108xx.svd.patched",
"preLaunchTask": "async-uart",
"executable": "${workspaceFolder}/target/thumbv6m-none-eabi/debug/async-uart",
"preLaunchTask": "async-uart-tx",
"executable": "${workspaceFolder}/target/thumbv6m-none-eabi/debug/async-uart-tx",
"interface": "jtag",
"runToEntryPoint": "main",
"rttConfig": {
"enabled": true,
"address": "auto",
"decoders": [
{
"port": 0,
"timestamp": true,
"type": "console"
}
]
}
},
{
"type": "cortex-debug",
"request": "launch",
"name": "Async UART RX",
"servertype": "jlink",
"cwd": "${workspaceRoot}",
"device": "Cortex-M0",
"svdFile": "./va108xx/svd/va108xx.svd.patched",
"preLaunchTask": "async-uart-rx",
"executable": "${workspaceFolder}/target/thumbv6m-none-eabi/debug/async-uart-rx",
"interface": "jtag",
"runToEntryPoint": "main",
"rttConfig": {
@ -548,4 +572,4 @@
}
},
]
}
}

View File

@ -277,13 +277,23 @@
]
},
{
"label": "async-uart",
"label": "async-uart-tx",
"type": "shell",
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"--bin",
"async-uart"
"async-uart-tx"
]
},
{
"label": "async-uart-rx",
"type": "shell",
"command": "~/.cargo/bin/cargo", // note: full path to the cargo
"args": [
"build",
"--bin",
"async-uart-rx"
]
},
{
@ -309,4 +319,4 @@
]
}
]
}
}