Bootloader and Flashloader App
Some checks failed
Rust/va416xx-rs/pipeline/pr-main There was a failure building this commit

This commit is contained in:
Robin Müller 2024-09-11 20:44:10 +02:00
parent deebc88042
commit 896fdb839f
Signed by: muellerr
GPG Key ID: A649FB78196E3849
32 changed files with 2042 additions and 79 deletions

View File

@ -35,6 +35,8 @@ target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
[alias]
rb = "run --bin"
rrb = "run --release --bin"
ut = "test --target=x86_64-unknown-linux-gnu"
genbin = "objcopy --release -- -O binary app.bin"
[env]
DEFMT_LOG = "info"

1
.gitignore vendored
View File

@ -14,3 +14,4 @@ Cargo.lock
**/*.rs.bk
/app.map
/app.bin

View File

@ -1,11 +1,17 @@
[workspace]
resolver = "2"
members = [
"bootloader",
"flashloader",
"examples/simple",
"va416xx",
"va416xx-hal",
"vorago-peb1"
]
exclude = [
"flashloader/slot-a-blinky",
"flashloader/slot-b-blinky",
]
[profile.dev]
codegen-units = 1
@ -25,3 +31,12 @@ incremental = false
lto = 'fat'
opt-level = 3 # <-
overflow-checks = false # <-
[profile.small]
inherits = "release"
codegen-units = 1
debug-assertions = false # <-
lto = true
opt-level = 'z' # <-
overflow-checks = false # <-
# strip = true # Automatically strip symbols from the binary.

16
bootloader/Cargo.toml Normal file
View File

@ -0,0 +1,16 @@
[package]
name = "bootloader"
version = "0.1.0"
edition = "2021"
[dependencies]
cortex-m = "0.7"
cortex-m-rt = "0.7"
embedded-hal = "1"
panic-rtt-target = { version = "0.1.3" }
rtt-target = { version = "0.5" }
crc = "3"
[dependencies.va416xx-hal]
path = "../va416xx-hal"
version = "0.1.0"

339
bootloader/src/main.rs Normal file
View File

@ -0,0 +1,339 @@
//! Vorago bootloader which can boot from two images.
//!
//! Bootloader memory map
//!
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
//! * <0x3FFE> Bootloader CRC <halfword>
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
//! * <0x21FFC> App image A CRC check length <halfword>
//! * <0x21FFE> App image A CRC check value <halfword>
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
//! * <0x3FFFC> App image B CRC check length <halfword>
//! * <0x3FFFE> App image B CRC check value <halfword>
//! * <0x40000> <end>
//!
//! As opposed to the Vorago example code, this bootloader assumes a 40 MHz external clock
//! but does not scale that clock up.
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use crc::{Crc, CRC_32_ISO_HDLC};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{
clock::{pll_setup_delay, ClkDivSel, ClkselSys},
edac,
nvm::Nvm,
pac::{self, interrupt},
prelude::*,
time::Hertz,
wdt::Wdt,
};
const EXTCLK_FREQ: u32 = 40_000_000;
const WITH_WDT: bool = false;
const WDT_FREQ_MS: u32 = 50;
const DEBUG_PRINTOUTS: bool = true;
// Dangerous option! An image with this option set to true will flash itself from RAM directly
// into the NVM. This can be used as a recovery option from a direct RAM flash to fix the NVM
// boot process. Please note that this will flash an image which will also always perform the
// self-flash itself. It is recommended that you use a tool like probe-rs, Keil IDE, or a flash
// loader to boot a bootloader without this feature.
const FLASH_SELF: bool = false;
// Important bootloader addresses and offsets, vector table information.
const BOOTLOADER_START_ADDR: u32 = 0x0;
const BOOTLOADER_END_ADDR: u32 = 0x4000;
const BOOTLOADER_CRC_ADDR: u32 = 0x3FFC;
const APP_A_START_ADDR: u32 = 0x4000;
pub const APP_A_END_ADDR: u32 = 0x22000;
// The actual size of the image which is relevant for CRC calculation.
const APP_A_SIZE_ADDR: u32 = 0x21FF8;
const APP_A_CRC_ADDR: u32 = 0x21FFC;
const APP_B_START_ADDR: u32 = 0x22000;
pub const APP_B_END_ADDR: u32 = 0x40000;
// The actual size of the image which is relevant for CRC calculation.
const APP_B_SIZE_ADDR: u32 = 0x3FFF8;
const APP_B_CRC_ADDR: u32 = 0x3FFFC;
pub const APP_IMG_SZ: u32 = 0x1E000;
pub const VECTOR_TABLE_OFFSET: u32 = 0x0;
pub const VECTOR_TABLE_LEN: u32 = 0x350;
pub const RESET_VECTOR_OFFSET: u32 = 0x4;
const CRC_ALGO: Crc<u32> = Crc::<u32>::new(&CRC_32_ISO_HDLC);
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum AppSel {
A,
B,
}
pub trait WdtInterface {
fn feed(&self);
}
pub struct OptWdt(Option<Wdt>);
impl WdtInterface for OptWdt {
fn feed(&self) {
if self.0.is_some() {
self.0.as_ref().unwrap().feed();
}
}
}
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("-- VA416xx bootloader --");
let mut dp = pac::Peripherals::take().unwrap();
let cp = cortex_m::Peripherals::take().unwrap();
// Disable ROM protection.
dp.sysconfig.rom_prot().write(|w| unsafe { w.bits(1) });
setup_edac(&mut dp.sysconfig);
// Use the external clock connected to XTAL_N.
let clocks = dp
.clkgen
.constrain()
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
.freeze(&mut dp.sysconfig)
.unwrap();
let mut opt_wdt = OptWdt(None);
if WITH_WDT {
opt_wdt.0 = Some(Wdt::start(
&mut dp.sysconfig,
dp.watch_dog,
&clocks,
WDT_FREQ_MS,
));
}
let nvm = Nvm::new(&mut dp.sysconfig, dp.spi3, &clocks);
if FLASH_SELF {
let mut first_four_bytes: [u8; 4] = [0; 4];
read_four_bytes_at_addr_zero(&mut first_four_bytes);
let bootloader_data = {
unsafe {
&*core::ptr::slice_from_raw_parts(
(BOOTLOADER_START_ADDR + 4) as *const u8,
(BOOTLOADER_END_ADDR - BOOTLOADER_START_ADDR - 8) as usize,
)
}
};
let mut digest = CRC_ALGO.digest();
digest.update(&first_four_bytes);
digest.update(bootloader_data);
let bootloader_crc = digest.finalize();
nvm.write_data(0x0, &first_four_bytes);
nvm.write_data(0x4, bootloader_data);
if let Err(e) = nvm.verify_data(0x0, &first_four_bytes) {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
if let Err(e) = nvm.verify_data(0x4, bootloader_data) {
rprintln!("verification of self-flash to NVM failed: {:?}", e);
}
nvm.write_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes());
if let Err(e) = nvm.verify_data(BOOTLOADER_CRC_ADDR, &bootloader_crc.to_be_bytes()) {
rprintln!(
"error: CRC verification for bootloader self-flash failed: {:?}",
e
);
}
}
// Check bootloader's CRC (and write it if blank)
check_own_crc(&opt_wdt, &nvm, &cp);
if check_app_crc(AppSel::A, &opt_wdt) {
boot_app(AppSel::A, &cp)
} else if check_app_crc(AppSel::B, &opt_wdt) {
boot_app(AppSel::B, &cp)
} else {
if DEBUG_PRINTOUTS {
rprintln!("both images corrupt! booting image A");
}
// TODO: Shift a CCSDS packet out to inform host/OBC about image corruption.
// Both images seem to be corrupt. Boot default image A.
boot_app(AppSel::A, &cp)
}
}
fn check_own_crc(wdt: &OptWdt, nvm: &Nvm, cp: &cortex_m::Peripherals) {
let crc_exp = unsafe { (BOOTLOADER_CRC_ADDR as *const u32).read_unaligned().to_be() };
wdt.feed();
// I'd prefer to use [core::slice::from_raw_parts], but that is problematic
// because the address of the bootloader is 0x0, so the NULL check fails and the functions
// panics.
let mut first_four_bytes: [u8; 4] = [0; 4];
read_four_bytes_at_addr_zero(&mut first_four_bytes);
let mut digest = CRC_ALGO.digest();
digest.update(&first_four_bytes);
digest.update(unsafe {
&*core::ptr::slice_from_raw_parts(
(BOOTLOADER_START_ADDR + 4) as *const u8,
(BOOTLOADER_END_ADDR - BOOTLOADER_START_ADDR - 8) as usize,
)
});
let crc_calc = digest.finalize();
wdt.feed();
if crc_exp == 0x0000 || crc_exp == 0xffff {
if DEBUG_PRINTOUTS {
rprintln!("BL CRC blank - prog new CRC");
}
// Blank CRC, write it to NVM.
nvm.write_data(BOOTLOADER_CRC_ADDR, &crc_calc.to_be_bytes());
// The Vorago bootloader resets here. I am not sure why this is done but I think it is
// necessary because somehow the boot will not work if we just continue as usual.
// cortex_m::peripheral::SCB::sys_reset();
} else if crc_exp != crc_calc {
// Bootloader is corrupted. Try to run App A.
if DEBUG_PRINTOUTS {
rprintln!(
"bootloader CRC corrupt, read {} and expected {}. booting image A immediately",
crc_calc,
crc_exp
);
}
// TODO: Shift out minimal CCSDS frame to notify about bootloader corruption.
boot_app(AppSel::A, cp);
}
}
fn read_four_bytes_at_addr_zero(buf: &mut [u8; 4]) {
unsafe {
core::arch::asm!(
"ldr r0, [{0}]", // Load 4 bytes from src into r0 register
"str r0, [{1}]", // Store r0 register into first_four_bytes
in(reg) BOOTLOADER_START_ADDR as *const u8, // Input: src pointer (0x0)
in(reg) buf as *mut [u8; 4], // Input: destination pointer
);
}
}
fn check_app_crc(app_sel: AppSel, wdt: &OptWdt) -> bool {
if DEBUG_PRINTOUTS {
rprintln!("Checking image {:?}", app_sel);
}
if app_sel == AppSel::A {
check_app_given_addr(APP_A_CRC_ADDR, APP_A_START_ADDR, APP_A_SIZE_ADDR, wdt)
} else {
check_app_given_addr(APP_B_CRC_ADDR, APP_B_START_ADDR, APP_B_SIZE_ADDR, wdt)
}
}
fn check_app_given_addr(
crc_addr: u32,
start_addr: u32,
image_size_addr: u32,
wdt: &OptWdt,
) -> bool {
let crc_exp = unsafe { (crc_addr as *const u32).read_unaligned().to_be() };
let image_size = unsafe { (image_size_addr as *const u32).read_unaligned().to_be() };
// Sanity check.
if image_size > APP_A_END_ADDR - APP_A_START_ADDR - 8 {
rprintln!("detected invalid app size {}", image_size);
return false;
}
wdt.feed();
let crc_calc = CRC_ALGO.checksum(unsafe {
core::slice::from_raw_parts(start_addr as *const u8, image_size as usize)
});
wdt.feed();
if crc_calc == crc_exp {
return true;
}
false
}
fn boot_app(app_sel: AppSel, cp: &cortex_m::Peripherals) -> ! {
if DEBUG_PRINTOUTS {
rprintln!("booting app {:?}", app_sel);
}
let clkgen = unsafe { pac::Clkgen::steal() };
clkgen
.ctrl0()
.modify(|_, w| unsafe { w.clksel_sys().bits(ClkselSys::Hbo as u8) });
pll_setup_delay();
clkgen
.ctrl0()
.modify(|_, w| unsafe { w.clk_div_sel().bits(ClkDivSel::Div1 as u8) });
// Clear all interrupts set.
unsafe {
cp.NVIC.icer[0].write(0xFFFFFFFF);
cp.NVIC.icpr[0].write(0xFFFFFFFF);
}
cortex_m::asm::dsb();
cortex_m::asm::isb();
unsafe {
if app_sel == AppSel::A {
cp.SCB.vtor.write(APP_A_START_ADDR);
} else {
cp.SCB.vtor.write(APP_B_START_ADDR);
}
}
cortex_m::asm::dsb();
cortex_m::asm::isb();
vector_reset();
}
pub fn vector_reset() -> ! {
unsafe {
// Set R0 to VTOR address (0xE000ED08)
let vtor_address: u32 = 0xE000ED08;
// Load VTOR
let vtor: u32 = *(vtor_address as *const u32);
// Load initial MSP value
let initial_msp: u32 = *(vtor as *const u32);
// Set SP value (assume MSP is selected)
core::arch::asm!("mov sp, {0}", in(reg) initial_msp);
// Load reset vector
let reset_vector: u32 = *((vtor + 4) as *const u32);
// Branch to reset handler
core::arch::asm!("bx {0}", in(reg) reset_vector);
}
unreachable!();
}
fn setup_edac(syscfg: &mut pac::Sysconfig) {
// The scrub values are based on the Vorago provided bootloader.
edac::enable_rom_scrub(syscfg, 125);
edac::enable_ram0_scrub(syscfg, 1000);
edac::enable_ram1_scrub(syscfg, 1000);
edac::enable_sbe_irq();
edac::enable_mbe_irq();
}
#[interrupt]
#[allow(non_snake_case)]
fn WATCHDOG() {
let wdt = unsafe { pac::WatchDog::steal() };
// Clear interrupt.
wdt.wdogintclr().write(|w| unsafe { w.bits(1) });
}
#[interrupt]
#[allow(non_snake_case)]
fn EDAC_SBE() {
// TODO: Send some command via UART for notification purposes. Also identify the problematic
// memory.
edac::clear_sbe_irq();
}
#[interrupt]
#[allow(non_snake_case)]
fn EDAC_MBE() {
// TODO: Send some command via UART for notification purposes.
edac::clear_mbe_irq();
// TODO: Reset like the vorago example?
}

View File

@ -8,6 +8,7 @@ cortex-m-rt = "0.7"
panic-rtt-target = { version = "0.1.3" }
rtt-target = { version = "0.5" }
cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
rtic-sync = { version = "1.3", features = ["defmt-03"] }
embedded-hal = "1"
embedded-hal-nb = "1"
nb = "1"

View File

@ -0,0 +1,30 @@
//! Empty RTIC project template
#![no_main]
#![no_std]
#[rtic::app(device = pac)]
mod app {
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_default};
use va416xx_hal::pac;
#[local]
struct Local {}
#[shared]
struct Shared {}
#[init]
fn init(_ctx: init::Context) -> (Shared, Local) {
rtt_init_default!();
rprintln!("-- Vorago RTIC template --");
(Shared {}, Local {})
}
// `shared` cannot be accessed from this context
#[idle]
fn idle(_cx: idle::Context) -> ! {
#[allow(clippy::empty_loop)]
loop {}
}
}

View File

@ -9,12 +9,13 @@ use embedded_hal::spi::{Mode, SpiBus, MODE_0};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use simple_examples::peb1;
use va416xx_hal::spi::{Spi, TransferConfig};
use va416xx_hal::spi::{clk_div_for_target_clock, Spi, TransferConfig};
use va416xx_hal::{
gpio::{PinsB, PinsC},
pac,
prelude::*,
spi::SpiConfig,
time::Hertz,
};
#[derive(PartialEq, Debug)]
@ -56,21 +57,24 @@ fn main() -> ! {
pins_c.pc1.into_funsel_1(),
);
let mut spi_cfg = SpiConfig::default();
let mut spi_cfg = SpiConfig::default().clk_div(
clk_div_for_target_clock(Hertz::from_raw(SPI_SPEED_KHZ), &clocks)
.expect("invalid target clock"),
);
if EXAMPLE_SEL == ExampleSelect::Loopback {
spi_cfg = spi_cfg.loopback(true)
}
let transfer_cfg =
TransferConfig::new_no_hw_cs(SPI_SPEED_KHZ.kHz(), SPI_MODE, BLOCKMODE, false);
let transfer_cfg = TransferConfig::new_no_hw_cs(None, Some(SPI_MODE), BLOCKMODE, false);
// Create SPI peripheral.
let mut spi0 = Spi::new(
&mut dp.sysconfig,
&clocks,
dp.spi0,
(sck, miso, mosi),
&clocks,
spi_cfg,
&mut dp.sysconfig,
Some(&transfer_cfg.downgrade()),
);
)
.expect("creating SPI peripheral failed");
spi0.set_fill_word(FILL_WORD);
loop {
let mut tx_buf: [u8; 3] = [1, 2, 3];

1
flashloader/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/venv

42
flashloader/Cargo.toml Normal file
View File

@ -0,0 +1,42 @@
[package]
name = "flashloader"
version = "0.1.0"
edition = "2021"
[dependencies]
cortex-m = "0.7"
cortex-m-rt = "0.7"
embedded-hal = "1"
embedded-hal-nb = "1"
panic-rtt-target = { version = "0.1.3" }
rtt-target = { version = "0.5" }
rtt-log = "0.3"
log = "0.4"
crc = "3"
rtic-sync = "1"
[dependencies.once_cell]
version = "1"
default-features = false
features = ["critical-section"]
[dependencies.spacepackets]
version = "0.11"
default-features = false
[dependencies.cobs]
git = "https://github.com/robamu/cobs.rs.git"
branch = "all_features"
default-features = false
[dependencies.va416xx-hal]
path = "../va416xx-hal"
version = "0.1.0"
[dependencies.rtic]
version = "2"
features = ["thumbv7-backend"]
[dependencies.rtic-monotonics]
version = "2"
features = ["cortex-m-systick"]

279
flashloader/image-loader.py Executable file
View File

@ -0,0 +1,279 @@
#!/usr/bin/env python3
from spacepackets.ecss.defs import PusService
import toml
import struct
import logging
import argparse
import time
import enum
from tmtccmd.com.serial_base import SerialCfg
from tmtccmd.com.serial_cobs import SerialCobsComIF
from tmtccmd.com.ser_utils import prompt_com_port
from crcmod.predefined import PredefinedCrc
from spacepackets.ecss.tc import PusTc
from pathlib import Path
import dataclasses
from elftools.elf.elffile import ELFFile
BAUD_RATE = 115200
BOOTLOADER_START_ADDR = 0x0
BOOTLOADER_END_ADDR = 0x4000
BOOTLOADER_CRC_ADDR = 0x3FFC
APP_A_START_ADDR = 0x4000
APP_A_END_ADDR = 0x22000
# The actual size of the image which is relevant for CRC calculation.
APP_A_SIZE_ADDR = 0x21FF8
APP_A_CRC_ADDR = 0x21FFC
APP_B_START_ADDR = 0x22000
APP_B_END_ADDR = 0x40000
# The actual size of the image which is relevant for CRC calculation.
APP_B_SIZE_ADDR = 0x3FFF8
APP_B_CRC_ADDR = 0x3FFFC
APP_IMG_SZ = 0x1E000
CHUNK_SIZE = 896
MEMORY_SERVICE = 6
ACTION_SERVICE = 8
RAW_MEMORY_WRITE_SUBSERVICE = 2
BOOT_NVM_MEMORY_ID = 1
class ActionId(enum.IntEnum):
CORRUPT_APP_A = 128
CORRUPT_APP_B = 129
_LOGGER = logging.getLogger(__name__)
@dataclasses.dataclass
class LoadableSegment:
name: str
offset: int
size: int
data: bytes
def main() -> int:
print("Python VA416XX Image Loader Application")
logging.basicConfig(
format="[%(asctime)s] [%(levelname)s] %(message)s", level=logging.DEBUG
)
parser = argparse.ArgumentParser(
prog="image-loader", description="Python VA416XX Image Loader Application"
)
parser.add_argument("-p", "--ping", action="store_true", help="Send ping command")
parser.add_argument("-c", "--corrupt", action="store_true", help="Corrupt a target")
parser.add_argument(
"-t",
"--target",
choices=["bl", "a", "b"],
help="Target (Bootloader or slot A or B)",
)
parser.add_argument(
"path", nargs="?", default=None, help="Path to the App to flash"
)
args = parser.parse_args()
serial_port = None
if Path("loader.toml").exists():
with open("loader.toml", "r") as toml_file:
parsed_toml = toml.loads(toml_file.read())
if "serial_port" in parsed_toml:
serial_port = parsed_toml["serial_port"]
if serial_port is None:
serial_port = prompt_com_port()
serial_cfg = SerialCfg(
com_if_id="ser_cobs",
serial_port=serial_port,
baud_rate=BAUD_RATE,
serial_timeout=0.1,
)
com_if = SerialCobsComIF(serial_cfg)
com_if.open()
file_path = None
if args.target:
if not args.corrupt:
if not args.path:
_LOGGER.error("App Path needs to be specified for the flash process")
return -1
file_path = Path(args.path)
if not file_path.exists():
_LOGGER.error("File does not exist")
return -1
if args.ping:
_LOGGER.info("Sending ping command")
ping_tc = PusTc(apid=0x00, service=PusService.S17_TEST, subservice=1)
com_if.send(ping_tc.pack())
if args.corrupt:
if not args.target:
_LOGGER.error("target for corruption command required")
return -1
if args.target == "bl":
_LOGGER.error("can not corrupt bootloader")
if args.target == "a":
packet = PusTc(
apid=0,
service=ACTION_SERVICE,
subservice=ActionId.CORRUPT_APP_A,
)
com_if.send(packet.pack())
if args.target == "b":
packet = PusTc(
apid=0,
service=ACTION_SERVICE,
subservice=ActionId.CORRUPT_APP_B,
)
com_if.send(packet.pack())
else:
assert file_path is not None
loadable_segments = []
_LOGGER.info("Parsing ELF file for loadable sections")
total_size = 0
with open(file_path, "rb") as app_file:
elf_file = ELFFile(app_file)
for (idx, segment) in enumerate(elf_file.iter_segments("PT_LOAD")):
if segment.header.p_filesz == 0:
continue
# Basic validity checks of the base addresses.
if idx == 0:
if (
args.target == "bl"
and segment.header.p_paddr != BOOTLOADER_START_ADDR
):
raise ValueError(
f"detected possibly invalid start address {segment.header.p_paddr:#08x} for "
f"bootloader, expected {BOOTLOADER_START_ADDR}"
)
if args.target == "a" and segment.header.p_paddr != APP_A_START_ADDR:
raise ValueError(
f"detected possibly invalid start address {segment.header.p_paddr:#08x} for "
f"App A, expected {APP_A_START_ADDR}"
)
if args.target == "b" and segment.header.p_paddr != APP_B_START_ADDR:
raise ValueError(
f"detected possibly invalid start address {segment.header.p_paddr:#08x} for "
f"App B, expected {APP_B_START_ADDR}"
)
name = None
for section in elf_file.iter_sections():
if (
section.header.sh_offset == segment.header.p_offset
and section.header.sh_size > 0
):
name = section.name
if name is None:
_LOGGER.warning("no fitting section found for segment")
continue
# print(f"Segment Addr: {segment.header.p_paddr}")
# print(f"Segment Offset: {segment.header.p_offset}")
# print(f"Segment Filesize: {segment.header.p_filesz}")
loadable_segments.append(
LoadableSegment(
name=name,
offset=segment.header.p_paddr,
size=segment.header.p_filesz,
data=segment.data(),
)
)
total_size += segment.header.p_filesz
context_str = None
if args.target == "bl":
context_str = "Bootloader"
elif args.target == "a":
context_str = "App Slot A"
elif args.target == "b":
context_str = "App Slot B"
_LOGGER.info(
f"Flashing {context_str} with image {file_path} (size {total_size})"
)
for idx, segment in enumerate(loadable_segments):
_LOGGER.info(
f"Loadable section {idx} {segment.name} with offset {segment.offset:#08x} and size {segment.size}"
)
for segment in loadable_segments:
segment_end = segment.offset + segment.size
current_addr = segment.offset
pos_in_segment = 0
while pos_in_segment < segment.size:
next_chunk_size = min(segment_end - current_addr, CHUNK_SIZE)
data = segment.data[
pos_in_segment : pos_in_segment + next_chunk_size
]
_LOGGER.info(
f"Sending memory write command for address {current_addr:#08x} and data with "
f"length {len(data)}"
)
next_packet = pack_memory_write_command(current_addr, data)
com_if.send(next_packet.pack())
current_addr += next_chunk_size
pos_in_segment += next_chunk_size
time.sleep(0.2)
if args.target == "bl":
_LOGGER.info("Blanking the bootloader checksum")
# Blank the checksum. For the bootloader, the bootloader will calculate the
# checksum itself on the initial run.
checksum_write_packet = pack_memory_write_command(
BOOTLOADER_CRC_ADDR, bytes([0x00, 0x00, 0x00, 0x00])
)
com_if.send(checksum_write_packet.pack())
else:
crc_addr = None
size_addr = None
if args.target == "a":
crc_addr = APP_A_CRC_ADDR
size_addr = APP_A_SIZE_ADDR
elif args.target == "b":
crc_addr = APP_B_CRC_ADDR
size_addr = APP_B_SIZE_ADDR
assert crc_addr is not None
assert size_addr is not None
_LOGGER.info(
f"Writing app size {total_size } at address {size_addr:#08x}"
)
size_write_packet = pack_memory_write_command(
size_addr, struct.pack("!I", total_size)
)
com_if.send(size_write_packet.pack())
time.sleep(0.2)
crc_calc = PredefinedCrc("crc-32")
for segment in loadable_segments:
crc_calc.update(segment.data)
checksum = crc_calc.digest()
_LOGGER.info(
f"Writing checksum 0x[{checksum.hex(sep=',')}] at address {crc_addr:#08x}"
)
checksum_write_packet = pack_memory_write_command(crc_addr, checksum)
com_if.send(checksum_write_packet.pack())
while True:
data_available = com_if.data_available(0.4)
if data_available:
reply = com_if.receive()
# TODO: Parse replies
print("Received replies: {}", reply)
break
com_if.close()
return 0
def pack_memory_write_command(addr: int, data: bytes) -> PusTc:
app_data = bytearray()
app_data.append(BOOT_NVM_MEMORY_ID)
# N parameter is always 1 here.
app_data.append(1)
app_data.extend(struct.pack("!I", addr))
app_data.extend(struct.pack("!I", len(data)))
app_data.extend(data)
return PusTc(
apid=0,
service=MEMORY_SERVICE,
subservice=RAW_MEMORY_WRITE_SUBSERVICE,
app_data=app_data,
)
if __name__ == "__main__":
main()

1
flashloader/loader.toml Normal file
View File

@ -0,0 +1 @@
serial_port = "/dev/ttyUSB0"

View File

@ -0,0 +1,5 @@
spacepackets == 0.24
tmtccmd == 8.0.2
toml == 0.10
pyelftools == 0.31
crcmod == 1.7

2
flashloader/slot-a-blinky/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
/target
/app.map

View File

@ -0,0 +1,42 @@
[package]
name = "slot-a-blinky"
version = "0.1.0"
edition = "2021"
[workspace]
[dependencies]
cortex-m-rt = "0.7"
va416xx-hal = { path = "../../va416xx-hal" }
panic-rtt-target = { version = "0.1.3" }
rtt-target = { version = "0.5" }
cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
embedded-hal = "1"
[profile.dev]
codegen-units = 1
debug = 2
debug-assertions = true # <-
incremental = false
# This is problematic for stepping..
# opt-level = 'z' # <-
overflow-checks = true # <-
# cargo build/run --release
[profile.release]
codegen-units = 1
debug = 2
debug-assertions = false # <-
incremental = false
lto = 'fat'
opt-level = 3 # <-
overflow-checks = false # <-
[profile.small]
inherits = "release"
codegen-units = 1
debug-assertions = false # <-
lto = true
opt-level = 'z' # <-
overflow-checks = false # <-
# strip = true # Automatically strip symbols from the binary.

View File

@ -0,0 +1,24 @@
/* Special linker script for application slot A with an offset at address 0x4000 */
MEMORY
{
FLASH : ORIGIN = 0x00004000, LENGTH = 256K
/* RAM is a mandatory region. This RAM refers to the SRAM_0 */
RAM : ORIGIN = 0x1FFF8000, LENGTH = 32K
SRAM_1 : ORIGIN = 0x20000000, LENGTH = 32K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* NOTE Do NOT modify `_stack_start` unless you know what you are doing */
/* SRAM_0 can be used for all busses: Instruction, Data and System */
/* SRAM_1 only supports the system bus */
_stack_start = ORIGIN(RAM) + LENGTH(RAM);
/* Define sections for placing symbols into the extra memory regions above. */
/* This makes them accessible from code. */
SECTIONS {
.sram1 (NOLOAD) : ALIGN(8) {
*(.sram1 .sram1.*);
. = ALIGN(4);
} > SRAM_1
};

View File

@ -0,0 +1,23 @@
//! Simple blinky example using the HAL
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{gpio::PinsG, pac};
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("VA416xx HAL blinky example for App Slot A");
let mut dp = pac::Peripherals::take().unwrap();
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
let mut led = portg.pg5.into_readable_push_pull_output();
loop {
cortex_m::asm::delay(1_000_000);
led.toggle().ok();
}
}

2
flashloader/slot-b-blinky/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
/target
/app.map

View File

@ -0,0 +1,42 @@
[package]
name = "slot-b-blinky"
version = "0.1.0"
edition = "2021"
[workspace]
[dependencies]
cortex-m-rt = "0.7"
va416xx-hal = { path = "../../va416xx-hal" }
panic-rtt-target = { version = "0.1.3" }
rtt-target = { version = "0.5" }
cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
embedded-hal = "1"
[profile.dev]
codegen-units = 1
debug = 2
debug-assertions = true # <-
incremental = false
# This is problematic for stepping..
# opt-level = 'z' # <-
overflow-checks = true # <-
# cargo build/run --release
[profile.release]
codegen-units = 1
debug = 2
debug-assertions = false # <-
incremental = false
lto = 'fat'
opt-level = 3 # <-
overflow-checks = false # <-
[profile.small]
inherits = "release"
codegen-units = 1
debug-assertions = false # <-
lto = true
opt-level = 'z' # <-
overflow-checks = false # <-
# strip = true # Automatically strip symbols from the binary.

View File

@ -0,0 +1,24 @@
/* Special linker script for application slot B with an offset at address 0x22000 */
MEMORY
{
FLASH : ORIGIN = 0x00022000, LENGTH = 256K
/* RAM is a mandatory region. This RAM refers to the SRAM_0 */
RAM : ORIGIN = 0x1FFF8000, LENGTH = 32K
SRAM_1 : ORIGIN = 0x20000000, LENGTH = 32K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* NOTE Do NOT modify `_stack_start` unless you know what you are doing */
/* SRAM_0 can be used for all busses: Instruction, Data and System */
/* SRAM_1 only supports the system bus */
_stack_start = ORIGIN(RAM) + LENGTH(RAM);
/* Define sections for placing symbols into the extra memory regions above. */
/* This makes them accessible from code. */
SECTIONS {
.sram1 (NOLOAD) : ALIGN(8) {
*(.sram1 .sram1.*);
. = ALIGN(4);
} > SRAM_1
};

View File

@ -0,0 +1,23 @@
//! Simple blinky example using the HAL
#![no_main]
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{gpio::PinsG, pac};
#[entry]
fn main() -> ! {
rtt_init_print!();
rprintln!("VA416xx HAL blinky example for App Slot B");
let mut dp = pac::Peripherals::take().unwrap();
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
let mut led = portg.pg5.into_readable_push_pull_output();
loop {
cortex_m::asm::delay(8_000_000);
led.toggle().ok();
}
}

9
flashloader/src/lib.rs Normal file
View File

@ -0,0 +1,9 @@
#![no_std]
#[cfg(test)]
mod tests {
#[test]
fn simple() {
assert_eq!(1 + 1, 2);
}
}

435
flashloader/src/main.rs Normal file
View File

@ -0,0 +1,435 @@
//! Vorago flashloader which can be used to flash image A and image B via a simple
//! low-level CCSDS memory interface via a UART wire.
//!
//! This flash loader can be used after the bootloader was flashed to flash the images.
//! You can also use this as an starting application for a software update mechanism.
//!
//! Bootloader memory map
//!
//! * <0x0> Bootloader start <code up to 0x3FFE bytes>
//! * <0x3FFE> Bootloader CRC <halfword>
//! * <0x4000> App image A start <code up to 0x1DFFC (~120K) bytes>
//! * <0x21FFC> App image A CRC check length <halfword>
//! * <0x21FFE> App image A CRC check value <halfword>
//! * <0x22000> App image B start <code up to 0x1DFFC (~120K) bytes>
//! * <0x3FFFC> App image B CRC check length <halfword>
//! * <0x3FFFE> App image B CRC check value <halfword>
//! * <0x40000> <end>
#![no_main]
#![no_std]
use embedded_hal_nb::serial::Read;
use once_cell::sync::OnceCell;
use panic_rtt_target as _;
use va416xx_hal::{clock::Clocks, edac, pac, time::Hertz, wdt::Wdt};
const EXTCLK_FREQ: u32 = 40_000_000;
const COBS_FRAME_SEPARATOR: u8 = 0x0;
const MAX_PACKET_SIZE: usize = 1024;
const MAX_FRAME_SIZE: usize = cobs::max_encoding_length(MAX_PACKET_SIZE);
const UART_BAUDRATE: u32 = 115200;
const SERIAL_RX_WIRETAPPING: bool = false;
const COBS_RX_DEBUGGING: bool = false;
const BOOT_NVM_MEMORY_ID: u8 = 1;
pub enum ActionId {
CorruptImageA = 128,
CorruptImageB = 129,
}
pub trait WdtInterface {
fn feed(&self);
}
pub struct OptWdt(Option<Wdt>);
impl WdtInterface for OptWdt {
fn feed(&self) {
if self.0.is_some() {
self.0.as_ref().unwrap().feed();
}
}
}
static CLOCKS: OnceCell<Clocks> = OnceCell::new();
pub const APP_A_START_ADDR: u32 = 0x4000;
pub const APP_A_END_ADDR: u32 = 0x22000;
pub const APP_B_START_ADDR: u32 = 0x22000;
pub const APP_B_END_ADDR: u32 = 0x40000;
#[rtic::app(device = pac, dispatchers = [U1, U2, U3])]
mod app {
use super::*;
use cortex_m::asm;
use embedded_hal_nb::nb;
use panic_rtt_target as _;
use rtic::Mutex;
use rtic_monotonics::systick::prelude::*;
use rtic_sync::{
channel::{Receiver, Sender},
make_channel,
};
use rtt_target::rprintln;
use spacepackets::ecss::PusServiceId;
use spacepackets::ecss::{tc::PusTcReader, PusPacket};
use va416xx_hal::{
clock::ClkgenExt,
edac,
gpio::PinsG,
nvm::Nvm,
pac,
uart::{self, Uart},
};
use crate::{setup_edac, EXTCLK_FREQ};
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
pub enum CobsReaderStates {
#[default]
WaitingForStart,
WatingForEnd,
FrameOverflow,
}
#[local]
struct Local {
uart_rx: uart::Rx<pac::Uart0>,
uart_tx: uart::Tx<pac::Uart0>,
cobs_reader_state: CobsReaderStates,
tc_tx: TcTx,
tc_rx: TcRx,
rom_spi: Option<pac::Spi3>,
}
#[shared]
struct Shared {
decode_buffer_busy: bool,
decode_buf: [u8; MAX_PACKET_SIZE],
}
pub type TcTx = Sender<'static, usize, 2>;
pub type TcRx = Receiver<'static, usize, 2>;
rtic_monotonics::systick_monotonic!(Mono, 10_000);
#[init]
fn init(mut cx: init::Context) -> (Shared, Local) {
//rtt_init_default!();
rtt_log::init();
rprintln!("-- Vorago flashloader --");
// Initialize the systick interrupt & obtain the token to prove that we did
// Use the external clock connected to XTAL_N.
let clocks = cx
.device
.clkgen
.constrain()
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
.freeze(&mut cx.device.sysconfig)
.unwrap();
setup_edac(&mut cx.device.sysconfig);
let gpiob = PinsG::new(&mut cx.device.sysconfig, cx.device.portg);
let tx = gpiob.pg0.into_funsel_1();
let rx = gpiob.pg1.into_funsel_1();
let uart0 = Uart::new(
cx.device.uart0,
(tx, rx),
Hertz::from_raw(UART_BAUDRATE),
&mut cx.device.sysconfig,
&clocks,
);
let (tx, rx) = uart0.split();
let (tc_tx, tc_rx) = make_channel!(usize, 2);
Mono::start(cx.core.SYST, clocks.sysclk().raw());
CLOCKS.set(clocks).unwrap();
pus_tc_handler::spawn().unwrap();
uart_reader_task::spawn().unwrap();
pus_tm_tx_handler::spawn().unwrap();
(
Shared {
decode_buffer_busy: false,
decode_buf: [0; MAX_PACKET_SIZE],
},
Local {
uart_rx: rx,
uart_tx: tx,
cobs_reader_state: CobsReaderStates::default(),
tc_tx,
tc_rx,
rom_spi: Some(cx.device.spi3),
},
)
}
// `shared` cannot be accessed from this context
#[idle]
fn idle(_cx: idle::Context) -> ! {
loop {
asm::nop();
}
}
#[task(
priority = 3,
local=[
read_buf: [u8;MAX_FRAME_SIZE] = [0; MAX_FRAME_SIZE],
uart_rx,
cobs_reader_state,
tc_tx
],
shared=[decode_buffer_busy, decode_buf]
)]
async fn uart_reader_task(mut cx: uart_reader_task::Context) {
let mut current_idx = 0;
loop {
match cx.local.uart_rx.read() {
Ok(byte) => {
if SERIAL_RX_WIRETAPPING {
log::debug!("RX Byte: 0x{:x?}", byte);
}
handle_single_rx_byte(&mut cx, byte, &mut current_idx)
}
Err(e) => {
match e {
nb::Error::Other(e) => {
log::warn!("UART error: {:?}", e);
match e {
uart::Error::Overrun => {
cx.local.uart_rx.clear_fifo();
}
uart::Error::FramingError => todo!(),
uart::Error::ParityError => todo!(),
uart::Error::BreakCondition => todo!(),
uart::Error::TransferPending => todo!(),
uart::Error::BufferTooShort => todo!(),
}
}
nb::Error::WouldBlock => {
// Delay for a short period before polling again.
Mono::delay(400.micros()).await;
}
}
}
}
}
}
fn handle_single_rx_byte(
cx: &mut uart_reader_task::Context,
byte: u8,
current_idx: &mut usize,
) {
match cx.local.cobs_reader_state {
CobsReaderStates::WaitingForStart => {
if byte == COBS_FRAME_SEPARATOR {
if COBS_RX_DEBUGGING {
log::debug!("COBS start marker detected");
}
*cx.local.cobs_reader_state = CobsReaderStates::WatingForEnd;
*current_idx = 0;
}
}
CobsReaderStates::WatingForEnd => {
if byte == COBS_FRAME_SEPARATOR {
if COBS_RX_DEBUGGING {
log::debug!("COBS end marker detected");
}
let mut sending_failed = false;
let mut decoding_error = false;
let mut decode_buffer_busy = false;
cx.shared.decode_buffer_busy.lock(|busy| {
if *busy {
decode_buffer_busy = true;
} else {
cx.shared.decode_buf.lock(|buf| {
match cobs::decode(&cx.local.read_buf[..*current_idx], buf) {
Ok(packet_len) => {
if COBS_RX_DEBUGGING {
log::debug!(
"COBS decoded packet with length {}",
packet_len
);
}
if cx.local.tc_tx.try_send(packet_len).is_err() {
sending_failed = true;
}
*busy = true;
}
Err(_) => {
decoding_error = true;
}
}
});
}
});
if sending_failed {
log::warn!("sending TC packet failed, queue full");
}
if decoding_error {
log::warn!("decoding error");
}
if decode_buffer_busy {
log::warn!("decode buffer busy. data arriving too fast");
}
*cx.local.cobs_reader_state = CobsReaderStates::WaitingForStart;
} else if *current_idx >= cx.local.read_buf.len() {
*cx.local.cobs_reader_state = CobsReaderStates::FrameOverflow;
} else {
cx.local.read_buf[*current_idx] = byte;
*current_idx += 1;
}
}
CobsReaderStates::FrameOverflow => {
if byte == COBS_FRAME_SEPARATOR {
*cx.local.cobs_reader_state = CobsReaderStates::WaitingForStart;
*current_idx = 0;
}
}
}
}
#[task(
priority = 2,
local=[
read_buf: [u8;MAX_FRAME_SIZE] = [0; MAX_FRAME_SIZE],
tc_rx,
rom_spi
],
shared=[decode_buffer_busy, decode_buf]
)]
async fn pus_tc_handler(mut cx: pus_tc_handler::Context) {
loop {
let packet_len = cx.local.tc_rx.recv().await.expect("all senders down");
log::info!(target: "TC Handler", "received packet with length {}", packet_len);
// We still copy the data to a local buffer, so the exchange buffer can already be used
// for the next packet / decode process.
cx.shared
.decode_buf
.lock(|buf| cx.local.read_buf[0..buf.len()].copy_from_slice(buf));
cx.shared.decode_buffer_busy.lock(|busy| *busy = false);
match PusTcReader::new(cx.local.read_buf) {
Ok((pus_tc, _)) => {
if pus_tc.service() == PusServiceId::Action as u8 {
let mut corrupt_image = |base_addr: u32| {
// Safety: We only use this for NVM handling and we only do NVM
// handling here.
let mut sys_cfg = unsafe { pac::Sysconfig::steal() };
let nvm = Nvm::new(
&mut sys_cfg,
cx.local.rom_spi.take().unwrap(),
CLOCKS.get().as_ref().unwrap(),
);
let mut buf = [0u8; 4];
nvm.read_data(base_addr + 32, &mut buf);
buf[0] += 1;
nvm.write_data(base_addr + 32, &buf);
*cx.local.rom_spi = Some(nvm.release(&mut sys_cfg));
};
if pus_tc.subservice() == ActionId::CorruptImageA as u8 {
rprintln!("corrupting App Image A");
corrupt_image(APP_A_START_ADDR);
}
if pus_tc.subservice() == ActionId::CorruptImageB as u8 {
rprintln!("corrupting App Image B");
corrupt_image(APP_B_START_ADDR);
}
}
if pus_tc.service() == PusServiceId::Test as u8 && pus_tc.subservice() == 1 {
log::info!(target: "TC Handler", "received ping TC");
} else if pus_tc.service() == PusServiceId::MemoryManagement as u8 {
// Raw memory write TC
if pus_tc.subservice() == 2 {
let app_data = pus_tc.app_data();
if app_data.len() < 10 {
log::warn!(
target: "TC Handler",
"app data for raw memory write is too short: {}",
app_data.len()
);
}
let memory_id = app_data[0];
if memory_id != BOOT_NVM_MEMORY_ID {
log::warn!(target: "TC Handler", "memory ID {} not supported", memory_id);
// TODO: Error reporting
return;
}
let offset = u32::from_be_bytes(app_data[2..6].try_into().unwrap());
let data_len = u32::from_be_bytes(app_data[6..10].try_into().unwrap());
if 10 + data_len as usize > app_data.len() {
log::warn!(
target: "TC Handler",
"invalid data length {} for raw mem write detected",
data_len
);
// TODO: Error reporting
return;
}
let data = &app_data[10..10 + data_len as usize];
log::info!("writing {} bytes at offset {} to NVM", data_len, offset);
// Safety: We only use this for NVM handling and we only do NVM
// handling here.
let mut sys_cfg = unsafe { pac::Sysconfig::steal() };
let nvm = Nvm::new(
&mut sys_cfg,
cx.local.rom_spi.take().unwrap(),
CLOCKS.get().as_ref().unwrap(),
);
nvm.write_data(offset, data);
*cx.local.rom_spi = Some(nvm.release(&mut sys_cfg));
log::info!("NVM operation done");
}
}
}
Err(e) => {
log::warn!("PUS TC error: {}", e);
}
}
}
}
#[task(
priority = 1,
local=[
uart_tx,
],
shared=[]
)]
async fn pus_tm_tx_handler(_cx: pus_tm_tx_handler::Context) {
loop {
Mono::delay(500.millis()).await;
}
}
#[task(binds = EDAC_SBE, priority = 1)]
fn edac_sbe_isr(_cx: edac_sbe_isr::Context) {
// TODO: Send some command via UART for notification purposes. Also identify the problematic
// memory.
edac::clear_sbe_irq();
}
#[task(binds = EDAC_MBE, priority = 1)]
fn edac_mbe_isr(_cx: edac_mbe_isr::Context) {
// TODO: Send some command via UART for notification purposes.
edac::clear_mbe_irq();
// TODO: Reset like the vorago example?
}
#[task(binds = WATCHDOG, priority = 1)]
fn watchdog_isr(_cx: watchdog_isr::Context) {
let wdt = unsafe { pac::WatchDog::steal() };
// Clear interrupt.
wdt.wdogintclr().write(|w| unsafe { w.bits(1) });
}
}
fn setup_edac(syscfg: &mut pac::Sysconfig) {
// The scrub values are based on the Vorago provided bootloader.
edac::enable_rom_scrub(syscfg, 125);
edac::enable_ram0_scrub(syscfg, 1000);
edac::enable_ram1_scrub(syscfg, 1000);
edac::enable_sbe_irq();
edac::enable_mbe_irq();
}

23
scripts/memory.x Normal file
View File

@ -0,0 +1,23 @@
MEMORY
{
FLASH : ORIGIN = 0x00000000, LENGTH = 256K
/* RAM is a mandatory region. This RAM refers to the SRAM_0 */
RAM : ORIGIN = 0x1FFF8000, LENGTH = 32K
SRAM_1 : ORIGIN = 0x20000000, LENGTH = 32K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* NOTE Do NOT modify `_stack_start` unless you know what you are doing */
/* SRAM_0 can be used for all busses: Instruction, Data and System */
/* SRAM_1 only supports the system bus */
_stack_start = ORIGIN(RAM) + LENGTH(RAM);
/* Define sections for placing symbols into the extra memory regions above. */
/* This makes them accessible from code. */
SECTIONS {
.sram1 (NOLOAD) : ALIGN(8) {
*(.sram1 .sram1.*);
. = ALIGN(4);
} > SRAM_1
};

24
scripts/memory_app_a.x Normal file
View File

@ -0,0 +1,24 @@
/* Special linker script for application slot A with an offset at address 0x4000 */
MEMORY
{
FLASH : ORIGIN = 0x00004000, LENGTH = 256K
/* RAM is a mandatory region. This RAM refers to the SRAM_0 */
RAM : ORIGIN = 0x1FFF8000, LENGTH = 32K
SRAM_1 : ORIGIN = 0x20000000, LENGTH = 32K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* NOTE Do NOT modify `_stack_start` unless you know what you are doing */
/* SRAM_0 can be used for all busses: Instruction, Data and System */
/* SRAM_1 only supports the system bus */
_stack_start = ORIGIN(RAM) + LENGTH(RAM);
/* Define sections for placing symbols into the extra memory regions above. */
/* This makes them accessible from code. */
SECTIONS {
.sram1 (NOLOAD) : ALIGN(8) {
*(.sram1 .sram1.*);
. = ALIGN(4);
} > SRAM_1
};

24
scripts/memory_app_b.x Normal file
View File

@ -0,0 +1,24 @@
/* Special linker script for application slot B with an offset at address 0x22000 */
MEMORY
{
FLASH : ORIGIN = 0x00022000, LENGTH = 256K
/* RAM is a mandatory region. This RAM refers to the SRAM_0 */
RAM : ORIGIN = 0x1FFF8000, LENGTH = 32K
SRAM_1 : ORIGIN = 0x20000000, LENGTH = 32K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* NOTE Do NOT modify `_stack_start` unless you know what you are doing */
/* SRAM_0 can be used for all busses: Instruction, Data and System */
/* SRAM_1 only supports the system bus */
_stack_start = ORIGIN(RAM) + LENGTH(RAM);
/* Define sections for placing symbols into the extra memory regions above. */
/* This makes them accessible from code. */
SECTIONS {
.sram1 (NOLOAD) : ALIGN(8) {
*(.sram1 .sram1.*);
. = ALIGN(4);
} > SRAM_1
};

66
va416xx-hal/src/edac.rs Normal file
View File

@ -0,0 +1,66 @@
use crate::{enable_interrupt, pac};
#[inline(always)]
pub fn enable_rom_scrub(syscfg: &mut pac::Sysconfig, counter_reset: u16) {
syscfg
.rom_scrub()
.write(|w| unsafe { w.bits(counter_reset as u32) })
}
#[inline(always)]
pub fn enable_ram0_scrub(syscfg: &mut pac::Sysconfig, counter_reset: u16) {
syscfg
.ram0_scrub()
.write(|w| unsafe { w.bits(counter_reset as u32) })
}
#[inline(always)]
pub fn enable_ram1_scrub(syscfg: &mut pac::Sysconfig, counter_reset: u16) {
syscfg
.ram1_scrub()
.write(|w| unsafe { w.bits(counter_reset as u32) })
}
/// This function enables the SBE related interrupts. The user should also provide a
/// [pac::EDAC_SBE] ISR and use [clear_sbe_irq] inside that ISR at the very least.
#[inline(always)]
pub fn enable_sbe_irq() {
unsafe {
enable_interrupt(pac::Interrupt::EDAC_SBE);
}
}
/// This function enables the SBE related interrupts. The user should also provide a
/// [pac::EDAC_MBE] ISR and use [clear_mbe_irq] inside that ISR at the very least.
#[inline(always)]
pub fn enable_mbe_irq() {
unsafe {
enable_interrupt(pac::Interrupt::EDAC_MBE);
}
}
/// This function should be called in the user provided [pac::EDAC_SBE] interrupt-service routine
/// to clear the SBE related interrupts.
#[inline(always)]
pub fn clear_sbe_irq() {
// Safety: This function only clears SBE related IRQs
let syscfg = unsafe { pac::Sysconfig::steal() };
syscfg.irq_clr().write(|w| {
w.romsbe().set_bit();
w.ram0sbe().set_bit();
w.ram1sbe().set_bit()
});
}
/// This function should be called in the user provided [pac::EDAC_MBE] interrupt-service routine
/// to clear the MBE related interrupts.
#[inline(always)]
pub fn clear_mbe_irq() {
// Safety: This function only clears SBE related IRQs
let syscfg = unsafe { pac::Sysconfig::steal() };
syscfg.irq_clr().write(|w| {
w.rommbe().set_bit();
w.ram0mbe().set_bit();
w.ram1mbe().set_bit()
});
}

View File

@ -19,8 +19,10 @@ pub mod prelude;
pub mod clock;
pub mod dma;
pub mod edac;
pub mod gpio;
pub mod i2c;
pub mod nvm;
pub mod pwm;
pub mod spi;
pub mod time;

267
va416xx-hal/src/nvm.rs Normal file
View File

@ -0,0 +1,267 @@
use embedded_hal::spi::MODE_0;
use crate::clock::{Clocks, SyscfgExt};
use crate::pac;
use crate::spi::{
mode_to_cpo_cph_bit, spi_clk_config_from_div, Instance, WordProvider, BMSTART_BMSTOP_MASK,
};
const NVM_CLOCK_DIV: u16 = 2;
// Commands. The internal FRAM is based on the Cypress FM25V20A device.
/// Write enable register.
pub const FRAM_WREN: u8 = 0x06;
pub const FRAM_WRDI: u8 = 0x04;
pub const FRAM_RDSR: u8 = 0x05;
/// Write single status register
pub const FRAM_WRSR: u8 = 0x01;
pub const FRAM_READ: u8 = 0x03;
pub const FRAM_WRITE: u8 = 0x02;
pub const FRAM_RDID: u8 = 0x9F;
pub const FRAM_SLEEP: u8 = 0xB9;
/* Address Masks */
const ADDR_MSB_MASK: u32 = 0xFF0000;
const ADDR_MID_MASK: u32 = 0x00FF00;
const ADDR_LSB_MASK: u32 = 0x0000FF;
#[inline(always)]
const fn msb_addr_byte(addr: u32) -> u8 {
((addr & ADDR_MSB_MASK) >> 16) as u8
}
#[inline(always)]
const fn mid_addr_byte(addr: u32) -> u8 {
((addr & ADDR_MID_MASK) >> 8) as u8
}
#[inline(always)]
const fn lsb_addr_byte(addr: u32) -> u8 {
(addr & ADDR_LSB_MASK) as u8
}
pub const WPEN_ENABLE_MASK: u8 = 1 << 7;
pub const BP_0_ENABLE_MASK: u8 = 1 << 2;
pub const BP_1_ENABLE_MASK: u8 = 1 << 3;
pub struct Nvm {
spi: Option<pac::Spi3>,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", defmt::Format)]
pub struct VerifyError {
addr: u32,
found: u8,
expected: u8,
}
impl Nvm {
pub fn new(syscfg: &mut pac::Sysconfig, spi: pac::Spi3, _clocks: &Clocks) -> Self {
crate::clock::enable_peripheral_clock(syscfg, pac::Spi3::PERIPH_SEL);
// This is done in the C HAL.
syscfg.assert_periph_reset_for_two_cycles(pac::Spi3::PERIPH_SEL);
let spi_clk_cfg = spi_clk_config_from_div(NVM_CLOCK_DIV).unwrap();
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(MODE_0);
spi.ctrl0().write(|w| {
unsafe {
w.size().bits(u8::word_reg());
w.scrdv().bits(spi_clk_cfg.scrdv());
// Clear clock phase and polarity. Will be set to correct value for each
// transfer
w.spo().bit(cpo_bit);
w.sph().bit(cph_bit)
}
});
spi.ctrl1().write(|w| {
w.blockmode().set_bit();
unsafe { w.ss().bits(0) };
w.bmstart().set_bit();
w.bmstall().set_bit()
});
spi.clkprescale()
.write(|w| unsafe { w.bits(spi_clk_cfg.prescale_val() as u32) });
spi.fifo_clr().write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
// Enable the peripheral as the last step as recommended in the
// programmers guide
spi.ctrl1().modify(|_, w| w.enable().set_bit());
let mut nvm = Self { spi: Some(spi) };
nvm.disable_write_prot();
nvm
}
pub fn disable_write_prot(&mut self) {
self.wait_for_tx_idle();
self.write_with_bmstop(FRAM_WREN);
self.wait_for_tx_idle();
self.write_single(FRAM_WRSR);
self.write_with_bmstop(0x00);
self.wait_for_tx_idle();
}
pub fn read_rdsr(&self) -> u8 {
self.write_single(FRAM_RDSR);
self.write_with_bmstop(0x00);
self.wait_for_rx_available();
self.read_single_word();
self.wait_for_rx_available();
(self.read_single_word() & 0xff) as u8
}
pub fn enable_write_prot(&mut self) {
self.wait_for_tx_idle();
self.write_with_bmstop(FRAM_WREN);
self.wait_for_tx_idle();
self.write_single(FRAM_WRSR);
self.write_with_bmstop(0x00);
}
#[inline(always)]
pub fn spi(&self) -> &pac::Spi3 {
self.spi.as_ref().unwrap()
}
#[inline(always)]
pub fn write_single(&self, word: u8) {
self.spi().data().write(|w| unsafe { w.bits(word as u32) })
}
#[inline(always)]
pub fn write_with_bmstop(&self, word: u8) {
self.spi()
.data()
.write(|w| unsafe { w.bits(BMSTART_BMSTOP_MASK | word as u32) })
}
#[inline(always)]
pub fn wait_for_tx_idle(&self) {
while self.spi().status().read().tfe().bit_is_clear() {
cortex_m::asm::nop();
}
while self.spi().status().read().busy().bit_is_set() {
cortex_m::asm::nop();
}
self.clear_fifos()
}
#[inline(always)]
pub fn clear_fifos(&self) {
self.spi().fifo_clr().write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
})
}
#[inline(always)]
pub fn wait_for_rx_available(&self) {
while !self.spi().status().read().rne().bit_is_set() {
cortex_m::asm::nop();
}
}
#[inline(always)]
pub fn read_single_word(&self) -> u32 {
self.spi().data().read().bits()
}
pub fn write_data(&self, addr: u32, data: &[u8]) {
self.wait_for_tx_idle();
self.write_with_bmstop(FRAM_WREN);
self.wait_for_tx_idle();
self.write_single(FRAM_WRITE);
self.write_single(msb_addr_byte(addr));
self.write_single(mid_addr_byte(addr));
self.write_single(lsb_addr_byte(addr));
for byte in data.iter().take(data.len() - 1) {
while self.spi().status().read().tnf().bit_is_clear() {
cortex_m::asm::nop();
}
self.write_single(*byte);
self.read_single_word();
}
while self.spi().status().read().tnf().bit_is_clear() {
cortex_m::asm::nop();
}
self.write_with_bmstop(*data.last().unwrap());
self.wait_for_tx_idle();
}
pub fn read_data(&self, addr: u32, buf: &mut [u8]) {
self.common_read_start(addr);
for byte in buf {
// Pump the SPI.
self.write_single(0);
self.wait_for_rx_available();
*byte = self.read_single_word() as u8;
}
self.write_with_bmstop(0);
self.wait_for_tx_idle();
}
pub fn verify_data(&self, addr: u32, comp_buf: &[u8]) -> Result<(), VerifyError> {
self.common_read_start(addr);
for (idx, byte) in comp_buf.iter().enumerate() {
// Pump the SPI.
self.write_single(0);
self.wait_for_rx_available();
let next_word = self.read_single_word() as u8;
if next_word != *byte {
self.write_with_bmstop(0);
self.wait_for_tx_idle();
return Err(VerifyError {
addr: addr + idx as u32,
found: next_word,
expected: *byte,
});
}
}
self.write_with_bmstop(0);
self.wait_for_tx_idle();
Ok(())
}
/// Enable write-protection and disables the peripheral clock.
pub fn shutdown(&mut self, sys_cfg: &mut pac::Sysconfig) {
self.wait_for_tx_idle();
self.write_with_bmstop(FRAM_WREN);
self.wait_for_tx_idle();
self.write_single(WPEN_ENABLE_MASK | BP_0_ENABLE_MASK | BP_1_ENABLE_MASK);
crate::clock::disable_peripheral_clock(sys_cfg, pac::Spi3::PERIPH_SEL);
}
/// This function calls [Self::shutdown] and gives back the peripheral structure.
pub fn release(mut self, sys_cfg: &mut pac::Sysconfig) -> pac::Spi3 {
self.shutdown(sys_cfg);
self.spi.take().unwrap()
}
fn common_read_start(&self, addr: u32) {
self.wait_for_tx_idle();
self.write_single(FRAM_READ);
self.write_single(msb_addr_byte(addr));
self.write_single(mid_addr_byte(addr));
self.write_single(lsb_addr_byte(addr));
for _ in 0..4 {
// Pump the SPI.
self.write_single(0);
self.wait_for_rx_available();
// The first 4 data bytes received need to be ignored.
self.read_single_word();
}
}
}
/// Call [Self::shutdown] on drop.
impl Drop for Nvm {
fn drop(&mut self) {
if self.spi.is_some() {
self.shutdown(unsafe { &mut pac::Sysconfig::steal() });
}
}
}

View File

@ -8,7 +8,7 @@ use core::{convert::Infallible, marker::PhantomData, ops::Deref};
use embedded_hal::spi::Mode;
use crate::{
clock::{PeripheralSelect, SyscfgExt},
clock::{Clocks, PeripheralSelect, SyscfgExt},
gpio::{
AltFunc1, AltFunc2, AltFunc3, Pin, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PB0,
PB1, PB12, PB13, PB14, PB15, PB2, PB3, PB4, PC0, PC1, PC10, PC11, PC7, PC8, PC9, PE12,
@ -29,6 +29,11 @@ use crate::gpio::{PB10, PB11, PB5, PB6, PB7, PB8, PB9, PE10, PE11, PF2, PF3, PF4
// FIFO has a depth of 16.
const FILL_DEPTH: usize = 12;
pub const DEFAULT_CLK_DIV: u16 = 2;
pub const BMSTART_BMSTOP_MASK: u32 = 1 << 31;
pub const BMSKIPDATA_MASK: u32 = 1 << 30;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum HwChipSelectId {
Id0 = 0,
@ -106,6 +111,14 @@ impl OptionalHwCs<pac::Spi1> for NoneT {}
impl OptionalHwCs<pac::Spi2> for NoneT {}
impl OptionalHwCs<pac::Spi3> for NoneT {}
pub struct RomSpiSck;
pub struct RomSpiMiso;
pub struct RomSpiMosi;
impl Sealed for RomSpiSck {}
impl Sealed for RomSpiMosi {}
impl Sealed for RomSpiMiso {}
// SPI 0
impl PinSck<pac::Spi0> for Pin<PB15, AltFunc1> {}
@ -152,6 +165,10 @@ impl PinMosi<pac::Spi2> for Pin<PF7, AltFunc2> {}
impl PinMiso<pac::Spi2> for Pin<PF6, AltFunc2> {}
// SPI3 is shared with the ROM SPI pins and has its own dedicated pins.
//
impl PinSck<pac::Spi3> for RomSpiSck {}
impl PinMosi<pac::Spi3> for RomSpiMosi {}
impl PinMiso<pac::Spi3> for RomSpiMiso {}
// SPI 0 HW CS pins
@ -211,7 +228,7 @@ pub trait TransferConfigProvider {
fn sod(&mut self, sod: bool);
fn blockmode(&mut self, blockmode: bool);
fn mode(&mut self, mode: Mode);
fn frequency(&mut self, spi_clk: Hertz);
fn clk_div(&mut self, clk_div: u16);
fn hw_cs_id(&self) -> u8;
}
@ -219,8 +236,8 @@ pub trait TransferConfigProvider {
/// and might change for transfers to different SPI slaves
#[derive(Copy, Clone)]
pub struct TransferConfig<HwCs> {
pub spi_clk: Hertz,
pub mode: Mode,
pub clk_div: Option<u16>,
pub mode: Option<Mode>,
/// This only works if the Slave Output Disable (SOD) bit of the [`SpiConfig`] is set to
/// false
pub hw_cs: Option<HwCs>,
@ -234,8 +251,8 @@ pub struct TransferConfig<HwCs> {
/// Type erased variant of the transfer configuration. This is required to avoid generics in
/// the SPI constructor.
pub struct ErasedTransferConfig {
pub spi_clk: Hertz,
pub mode: Mode,
pub clk_div: Option<u16>,
pub mode: Option<Mode>,
pub sod: bool,
/// If this is enabled, all data in the FIFO is transmitted in a single frame unless
/// the BMSTOP bit is set on a dataword. A frame is defined as CSn being active for the
@ -245,9 +262,14 @@ pub struct ErasedTransferConfig {
}
impl TransferConfig<NoneT> {
pub fn new_no_hw_cs(spi_clk: impl Into<Hertz>, mode: Mode, blockmode: bool, sod: bool) -> Self {
pub fn new_no_hw_cs(
clk_div: Option<u16>,
mode: Option<Mode>,
blockmode: bool,
sod: bool,
) -> Self {
TransferConfig {
spi_clk: spi_clk.into(),
clk_div,
mode,
hw_cs: None,
sod,
@ -258,14 +280,14 @@ impl TransferConfig<NoneT> {
impl<HwCs: HwCsProvider> TransferConfig<HwCs> {
pub fn new(
spi_clk: impl Into<Hertz>,
mode: Mode,
clk_div: Option<u16>,
mode: Option<Mode>,
hw_cs: Option<HwCs>,
blockmode: bool,
sod: bool,
) -> Self {
TransferConfig {
spi_clk: spi_clk.into(),
clk_div,
mode,
hw_cs,
sod,
@ -275,7 +297,7 @@ impl<HwCs: HwCsProvider> TransferConfig<HwCs> {
pub fn downgrade(self) -> ErasedTransferConfig {
ErasedTransferConfig {
spi_clk: self.spi_clk,
clk_div: self.clk_div,
mode: self.mode,
sod: self.sod,
blockmode: self.blockmode,
@ -295,11 +317,11 @@ impl<HwCs: HwCsProvider> TransferConfigProvider for TransferConfig<HwCs> {
}
fn mode(&mut self, mode: Mode) {
self.mode = mode;
self.mode = Some(mode);
}
fn frequency(&mut self, spi_clk: Hertz) {
self.spi_clk = spi_clk;
fn clk_div(&mut self, clk_div: u16) {
self.clk_div = Some(clk_div);
}
fn hw_cs_id(&self) -> u8 {
@ -307,13 +329,9 @@ impl<HwCs: HwCsProvider> TransferConfigProvider for TransferConfig<HwCs> {
}
}
#[derive(Default)]
/// Configuration options for the whole SPI bus. See Programmer Guide p.92 for more details
pub struct SpiConfig {
/// Serial clock rate divider. Together with the CLKPRESCALE register, it determines
/// the SPI clock rate in master mode. 0 by default. Specifying a higher value
/// limits the maximum attainable SPI speed
pub ser_clock_rate_div: u8,
clk_div: u16,
/// By default, configure SPI for master mode (ms == false)
ms: bool,
/// Slave output disable. Useful if separate GPIO pins or decoders are used for CS control
@ -324,12 +342,29 @@ pub struct SpiConfig {
pub master_delayer_capture: bool,
}
impl Default for SpiConfig {
fn default() -> Self {
Self {
clk_div: DEFAULT_CLK_DIV,
ms: Default::default(),
slave_output_disable: Default::default(),
loopback_mode: Default::default(),
master_delayer_capture: Default::default(),
}
}
}
impl SpiConfig {
pub fn loopback(mut self, enable: bool) -> Self {
self.loopback_mode = enable;
self
}
pub fn clk_div(mut self, clk_div: u16) -> Self {
self.clk_div = clk_div;
self
}
pub fn master_mode(mut self, master: bool) -> Self {
self.ms = !master;
self
@ -406,6 +441,16 @@ impl Instance for pac::Spi2 {
}
}
impl Instance for pac::Spi3 {
const IDX: u8 = 3;
const PERIPH_SEL: PeripheralSelect = PeripheralSelect::Spi3;
#[inline(always)]
fn ptr() -> *const SpiRegBlock {
Self::ptr()
}
}
//==================================================================================================
// Spi
//==================================================================================================
@ -425,7 +470,7 @@ pub struct Spi<SpiInstance, Pins, Word = u8> {
pins: Pins,
}
fn mode_to_cpo_cph_bit(mode: embedded_hal::spi::Mode) -> (bool, bool) {
pub fn mode_to_cpo_cph_bit(mode: embedded_hal::spi::Mode) -> (bool, bool) {
match mode {
embedded_hal::spi::MODE_0 => (false, false),
embedded_hal::spi::MODE_1 => (false, true),
@ -434,10 +479,105 @@ fn mode_to_cpo_cph_bit(mode: embedded_hal::spi::Mode) -> (bool, bool) {
}
}
#[derive(Debug)]
pub struct SpiClkConfig {
prescale_val: u16,
scrdv: u8,
}
impl SpiClkConfig {
pub fn prescale_val(&self) -> u16 {
self.prescale_val
}
pub fn scrdv(&self) -> u8 {
self.scrdv
}
}
#[derive(Debug)]
pub enum SpiClkConfigError {
DivIsZero,
DivideValueNotEven,
ScrdvValueTooLarge,
}
#[inline]
pub fn spi_clk_config_from_div(mut div: u16) -> Result<SpiClkConfig, SpiClkConfigError> {
if div == 0 {
return Err(SpiClkConfigError::DivIsZero);
}
if div % 2 != 0 {
return Err(SpiClkConfigError::DivideValueNotEven);
}
let mut prescale_val = 0;
// find largest (even) prescale value that divides into div
for i in (2..=0xfe).rev().step_by(2) {
if div % i == 0 {
prescale_val = i;
break;
}
}
if prescale_val == 0 {
return Err(SpiClkConfigError::DivideValueNotEven);
}
div /= prescale_val;
if div > u8::MAX as u16 + 1 {
return Err(SpiClkConfigError::ScrdvValueTooLarge);
}
Ok(SpiClkConfig {
prescale_val,
scrdv: (div - 1) as u8,
})
}
#[inline]
pub fn clk_div_for_target_clock(spi_clk: impl Into<Hertz>, clocks: &Clocks) -> Option<u16> {
let spi_clk = spi_clk.into();
if spi_clk > clocks.apb1() {
return None;
}
// Step 1: Calculate raw divider.
let raw_div = clocks.apb1().raw() / spi_clk.raw();
let remainder = clocks.apb1().raw() % spi_clk.raw();
// Step 2: Round up if necessary.
let mut rounded_div = if remainder * 2 >= spi_clk.raw() {
raw_div + 1
} else {
raw_div
};
if rounded_div % 2 != 0 {
// Take slower clock conservatively.
rounded_div += 1;
}
if rounded_div > u16::MAX as u32 {
return None;
}
Some(rounded_div as u16)
}
impl<SpiInstance: Instance, Word: WordProvider> SpiBase<SpiInstance, Word>
where
<Word as TryFrom<u32>>::Error: core::fmt::Debug,
{
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError> {
let val = spi_clk_config_from_div(div)?;
self.spi_instance()
.ctrl0()
.modify(|_, w| unsafe { w.scrdv().bits(val.scrdv as u8) });
self.spi_instance()
.clkprescale()
.write(|w| unsafe { w.bits(val.prescale_val as u32) });
Ok(())
}
/*
#[inline]
pub fn cfg_clock(&mut self, spi_clk: impl Into<Hertz>) {
let clk_prescale =
@ -446,6 +586,7 @@ where
.clkprescale()
.write(|w| unsafe { w.bits(clk_prescale) });
}
*/
#[inline]
pub fn cfg_mode(&mut self, mode: Mode) {
@ -456,6 +597,11 @@ where
});
}
#[inline]
pub fn spi_instance(&self) -> &SpiInstance {
&self.spi
}
#[inline]
pub fn clear_tx_fifo(&self) {
self.spi.fifo_clr().write(|w| w.txfifo().set_bit());
@ -501,9 +647,13 @@ where
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiInstance>>(
&mut self,
transfer_cfg: &TransferConfig<HwCs>,
) {
self.cfg_clock(transfer_cfg.spi_clk);
self.cfg_mode(transfer_cfg.mode);
) -> Result<(), SpiClkConfigError> {
if let Some(trans_clk_div) = transfer_cfg.clk_div {
self.cfg_clock_from_div(trans_clk_div)?;
}
if let Some(mode) = transfer_cfg.mode {
self.cfg_mode(mode);
}
self.blockmode = transfer_cfg.blockmode;
self.spi.ctrl1().modify(|_, w| {
if transfer_cfg.sod {
@ -523,6 +673,7 @@ where
}
w
});
Ok(())
}
/// Sends a word to the slave
@ -616,43 +767,44 @@ where
/// to be done once.
/// * `syscfg` - Can be passed optionally to enable the peripheral clock
pub fn new(
syscfg: &mut pac::Sysconfig,
clocks: &crate::clock::Clocks,
spi: SpiI,
pins: (Sck, Miso, Mosi),
clocks: &crate::clock::Clocks,
spi_cfg: SpiConfig,
syscfg: &mut pac::Sysconfig,
transfer_cfg: Option<&ErasedTransferConfig>,
) -> Self {
) -> Result<Self, SpiClkConfigError> {
crate::clock::enable_peripheral_clock(syscfg, SpiI::PERIPH_SEL);
// This is done in the C HAL.
syscfg.assert_periph_reset_for_two_cycles(SpiI::PERIPH_SEL);
let SpiConfig {
ser_clock_rate_div,
clk_div,
ms,
slave_output_disable,
loopback_mode,
master_delayer_capture,
} = spi_cfg;
let mut mode = embedded_hal::spi::MODE_0;
let mut clk_prescale = 0x02;
let mut init_mode = embedded_hal::spi::MODE_0;
let mut ss = 0;
let mut init_blockmode = false;
let apb1_clk = clocks.apb1();
if let Some(transfer_cfg) = transfer_cfg {
mode = transfer_cfg.mode;
clk_prescale =
apb1_clk.raw() / (transfer_cfg.spi_clk.raw() * (ser_clock_rate_div as u32 + 1));
if let Some(mode) = transfer_cfg.mode {
init_mode = mode;
}
//self.cfg_clock_from_div(transfer_cfg.clk_div);
if transfer_cfg.hw_cs != HwChipSelectId::Invalid {
ss = transfer_cfg.hw_cs as u8;
}
init_blockmode = transfer_cfg.blockmode;
}
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(mode);
let spi_clk_cfg = spi_clk_config_from_div(clk_div)?;
let (cpo_bit, cph_bit) = mode_to_cpo_cph_bit(init_mode);
spi.ctrl0().write(|w| {
unsafe {
w.size().bits(Word::word_reg());
w.scrdv().bits(ser_clock_rate_div);
w.scrdv().bits(spi_clk_cfg.scrdv);
// Clear clock phase and polarity. Will be set to correct value for each
// transfer
w.spo().bit(cpo_bit);
@ -667,16 +819,17 @@ where
w.blockmode().bit(init_blockmode);
unsafe { w.ss().bits(ss) }
});
spi.clkprescale()
.write(|w| unsafe { w.bits(spi_clk_cfg.prescale_val as u32) });
spi.fifo_clr().write(|w| {
w.rxfifo().set_bit();
w.txfifo().set_bit()
});
spi.clkprescale().write(|w| unsafe { w.bits(clk_prescale) });
// Enable the peripheral as the last step as recommended in the
// programmers guide
spi.ctrl1().modify(|_, w| w.enable().set_bit());
Spi {
Ok(Spi {
inner: SpiBase {
spi,
cfg: spi_cfg,
@ -686,36 +839,39 @@ where
word: PhantomData,
},
pins,
})
}
delegate::delegate! {
to self.inner {
#[inline]
pub fn cfg_clock_from_div(&mut self, div: u16) -> Result<(), SpiClkConfigError>;
#[inline]
pub fn spi_instance(&self) -> &SpiI;
#[inline]
pub fn cfg_mode(&mut self, mode: Mode);
#[inline]
pub fn perid(&self) -> u32;
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiI>>(
&mut self, transfer_cfg: &TransferConfig<HwCs>
) -> Result<(), SpiClkConfigError>;
}
}
#[inline]
pub fn cfg_clock(&mut self, spi_clk: impl Into<Hertz>) {
self.inner.cfg_clock(spi_clk);
}
#[inline]
pub fn cfg_mode(&mut self, mode: Mode) {
self.inner.cfg_mode(mode);
}
pub fn set_fill_word(&mut self, fill_word: Word) {
self.inner.fill_word = fill_word;
}
#[inline]
pub fn fill_word(&self) -> Word {
self.inner.fill_word
}
#[inline]
pub fn perid(&self) -> u32 {
self.inner.perid()
}
pub fn cfg_transfer<HwCs: OptionalHwCs<SpiI>>(&mut self, transfer_cfg: &TransferConfig<HwCs>) {
self.inner.cfg_transfer(transfer_cfg);
}
/// Releases the SPI peripheral and associated pins
pub fn release(self) -> (SpiI, (Sck, Miso, Mosi), SpiConfig) {
(self.inner.spi, self.pins, self.inner.cfg)

View File

@ -3,7 +3,6 @@
//! ## Examples
//!
//! - [UART simple example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/uart.rs)
use core::marker::PhantomData;
use core::ops::Deref;
use embedded_hal_nb::serial::Read;
@ -336,27 +335,23 @@ pub struct UartWithIrqBase<UART> {
/// Serial receiver
pub struct Rx<Uart> {
_usart: PhantomData<Uart>,
uart: Uart,
}
/// Serial transmitter
pub struct Tx<Uart> {
_usart: PhantomData<Uart>,
uart: Uart,
}
impl<Uart> Rx<Uart> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
impl<Uart: Instance> Rx<Uart> {
fn new(uart: Uart) -> Self {
Self { uart }
}
}
impl<Uart> Tx<Uart> {
fn new() -> Self {
Self {
_usart: PhantomData,
}
fn new(uart: Uart) -> Self {
Self { uart }
}
}
@ -366,6 +361,12 @@ pub trait Instance: Deref<Target = uart_base::RegisterBlock> {
const IRQ_RX: pac::Interrupt;
const IRQ_TX: pac::Interrupt;
/// Retrieve the peripheral structure.
///
/// # Safety
///
/// This circumvents the safety guarantees of the HAL.
unsafe fn steal() -> Self;
fn ptr() -> *const uart_base::RegisterBlock;
}
@ -375,6 +376,9 @@ impl Instance for Uart0 {
const IRQ_RX: pac::Interrupt = pac::Interrupt::UART0_RX;
const IRQ_TX: pac::Interrupt = pac::Interrupt::UART0_TX;
unsafe fn steal() -> Self {
pac::Peripherals::steal().uart0
}
fn ptr() -> *const uart_base::RegisterBlock {
Uart0::ptr() as *const _
}
@ -386,6 +390,9 @@ impl Instance for Uart1 {
const IRQ_RX: pac::Interrupt = pac::Interrupt::UART1_RX;
const IRQ_TX: pac::Interrupt = pac::Interrupt::UART1_TX;
unsafe fn steal() -> Self {
pac::Peripherals::steal().uart1
}
fn ptr() -> *const uart_base::RegisterBlock {
Uart1::ptr() as *const _
}
@ -397,6 +404,9 @@ impl Instance for Uart2 {
const IRQ_RX: pac::Interrupt = pac::Interrupt::UART2_RX;
const IRQ_TX: pac::Interrupt = pac::Interrupt::UART2_TX;
unsafe fn steal() -> Self {
pac::Peripherals::steal().uart2
}
fn ptr() -> *const uart_base::RegisterBlock {
Uart2::ptr() as *const _
}
@ -551,8 +561,8 @@ impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstanc
Uart {
inner: UartBase {
uart,
tx: Tx::new(),
rx: Rx::new(),
tx: Tx::new(unsafe { UartInstance::steal() }),
rx: Rx::new(unsafe { UartInstance::steal() }),
},
pins,
}
@ -570,8 +580,8 @@ impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstanc
Uart {
inner: UartBase {
uart,
tx: Tx::new(),
rx: Rx::new(),
tx: Tx::new(unsafe { UartInstance::steal() }),
rx: Rx::new(unsafe { UartInstance::steal() }),
},
pins,
}
@ -656,6 +666,36 @@ impl<TxPinInst: TxPin<UartInstance>, RxPinInst: RxPin<UartInstance>, UartInstanc
}
}
impl<Uart: Instance> Rx<Uart> {
/// Direct access to the peripheral structure.
///
/// # Safety
///
/// You must ensure that only registers related to the operation of the RX side are used.
pub unsafe fn uart(&self) -> &Uart {
&self.uart
}
pub fn clear_fifo(&self) {
self.uart.fifo_clr().write(|w| w.rxfifo().set_bit());
}
}
impl<Uart: Instance> Tx<Uart> {
/// Direct access to the peripheral structure.
///
/// # Safety
///
/// You must ensure that only registers related to the operation of the TX side are used.
pub unsafe fn uart(&self) -> &Uart {
&self.uart
}
pub fn clear_fifo(&self) {
self.uart.fifo_clr().write(|w| w.txfifo().set_bit());
}
}
#[derive(Default, Debug)]
pub struct IrqUartError {
overflow: bool,

View File

@ -40,7 +40,6 @@ pub fn disable_wdt_interrupts() {
impl Wdt {
pub fn new(
&self,
syscfg: &mut pac::Sysconfig,
wdt: pac::WatchDog,
clocks: &Clocks,