Async GPIO implementation #53

Merged
muellerr merged 1 commits from add-async-gpio into main 2025-02-17 10:57:03 +01:00
21 changed files with 1666 additions and 684 deletions

View File

@ -9,32 +9,25 @@ cortex-m = { version = "0.7", features = ["critical-section-single-core"] }
cortex-m-rt = "0.7"
embedded-hal = "1"
embedded-io = "0.6"
embedded-hal-async = "1"
embedded-io-async = "0.6"
rtt-target = { version = "0.5" }
panic-rtt-target = { version = "0.1" }
critical-section = "1"
once_cell = { version = "1", default-features = false, features = ["critical-section"] }
ringbuf = { version = "0.4", default-features = false }
embassy-sync = "0.6"
embassy-time = "0.4"
embassy-executor = { version = "0.7", features = [
"arch-cortex-m",
"executor-thread",
"executor-interrupt"
]}
embassy-sync = { version = "0.6" }
embassy-time = { version = "0.4" }
va416xx-embassy = { path = "../../va416xx-embassy", default-features = false }
[dependencies.ringbuf]
version = "0.4"
default-features = false
[dependencies.once_cell]
version = "1"
default-features = false
features = ["critical-section"]
[dependencies.embassy-executor]
version = "0.7"
features = [
"arch-cortex-m",
"executor-thread",
"executor-interrupt",
]
[dependencies.va416xx-hal]
path = "../../va416xx-hal"
features = ["va41630"]

View File

@ -0,0 +1,371 @@
//! This example demonstrates the usage of async GPIO operations on VA416xx.
//!
//! You need to tie the PA0 to the PA1 pin for this example to work. You can optionally also tie
//! more pin combinations together and test other ports by setting the appropriate
//! [CHECK_XXX_TO_XXX] constants to true.
#![no_std]
#![no_main]
use embassy_example::EXTCLK_FREQ;
use embassy_executor::Spawner;
use embassy_sync::channel::{Receiver, Sender};
use embassy_sync::{blocking_mutex::raw::ThreadModeRawMutex, channel::Channel};
use embassy_time::{Duration, Instant, Timer};
use embedded_hal_async::digital::Wait;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::clock::ClkgenExt;
use va416xx_hal::gpio::{
on_interrupt_for_async_gpio_for_port, InputDynPinAsync, InputPinAsync, PinsB, PinsC, PinsD,
PinsE, PinsF, PinsG, Port,
};
use va416xx_hal::time::Hertz;
use va416xx_hal::{
gpio::{DynPin, PinsA},
pac::{self, interrupt},
};
const CHECK_PA0_TO_PA1: bool = true;
const CHECK_PB0_TO_PB1: bool = true;
const CHECK_PC14_TO_PC15: bool = true;
const CHECK_PD2_TO_PD3: bool = true;
const CHECK_PE0_TO_PE1: bool = true;
const CHECK_PF0_TO_PF1: bool = true;
#[derive(Clone, Copy)]
pub struct GpioCmd {
cmd_type: GpioCmdType,
after_delay: u32,
}
impl GpioCmd {
pub fn new(cmd_type: GpioCmdType, after_delay: u32) -> Self {
Self {
cmd_type,
after_delay,
}
}
}
#[derive(Clone, Copy)]
pub enum GpioCmdType {
SetHigh,
SetLow,
RisingEdge,
FallingEdge,
CloseTask,
}
// Declare a bounded channel of 3 u32s.
static CHANNEL_PA0_TO_PA1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PB0_TO_PB1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PC14_TO_PC15: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PD2_TO_PD3: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PE0_TO_PE1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
static CHANNEL_PF0_TO_PF1: Channel<ThreadModeRawMutex, GpioCmd, 3> = Channel::new();
#[embassy_executor::main]
async fn main(spawner: Spawner) {
rtt_init_print!();
rprintln!("-- VA416xx Async GPIO Demo --");
let mut dp = pac::Peripherals::take().unwrap();
// Initialize the systick interrupt & obtain the token to prove that we did
// Use the external clock connected to XTAL_N.
let clocks = dp
.clkgen
.constrain()
.xtal_n_clk_with_src_freq(Hertz::from_raw(EXTCLK_FREQ))
.freeze(&mut dp.sysconfig)
.unwrap();
// Safety: Only called once here.
unsafe {
va416xx_embassy::init(
&mut dp.sysconfig,
&dp.irq_router,
dp.tim15,
dp.tim14,
&clocks,
)
};
let porta = PinsA::new(&mut dp.sysconfig, dp.porta);
let portb = PinsB::new(&mut dp.sysconfig, dp.portb);
let portc = PinsC::new(&mut dp.sysconfig, dp.portc);
let portd = PinsD::new(&mut dp.sysconfig, dp.portd);
let porte = PinsE::new(&mut dp.sysconfig, dp.porte);
let portf = PinsF::new(&mut dp.sysconfig, dp.portf);
let portg = PinsG::new(&mut dp.sysconfig, dp.portg);
let mut led = portg.pg5.into_readable_push_pull_output();
if CHECK_PA0_TO_PA1 {
let out_pin = porta.pa0.into_readable_push_pull_output();
let in_pin = porta.pa1.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputPinAsync::new(in_pin).unwrap();
spawner
.spawn(output_task(
"PA0 to PA1",
out_pin,
CHANNEL_PA0_TO_PA1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PA0 to PA1", CHANNEL_PA0_TO_PA1.sender(), in_pin).await;
rprintln!("Example PA0 to PA1 done");
}
if CHECK_PB0_TO_PB1 {
let out_pin = portb.pb0.into_readable_push_pull_output();
let in_pin = portb.pb1.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputDynPinAsync::new(in_pin.downgrade()).unwrap();
spawner
.spawn(output_task(
"PB0 to PB1",
out_pin,
CHANNEL_PB0_TO_PB1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PB0 to PB1", CHANNEL_PB0_TO_PB1.sender(), in_pin).await;
rprintln!("Example PB0 to PB1 done");
}
if CHECK_PC14_TO_PC15 {
let out_pin = portc.pc14.into_readable_push_pull_output();
let in_pin = portc.pc15.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputDynPinAsync::new(in_pin.downgrade()).unwrap();
spawner
.spawn(output_task(
"PC14 to PC15",
out_pin,
CHANNEL_PC14_TO_PC15.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PC14 to PC15", CHANNEL_PC14_TO_PC15.sender(), in_pin).await;
rprintln!("Example PC14 to PC15 done");
}
if CHECK_PD2_TO_PD3 {
let out_pin = portd.pd2.into_readable_push_pull_output();
let in_pin = portd.pd3.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputDynPinAsync::new(in_pin.downgrade()).unwrap();
spawner
.spawn(output_task(
"PD2 to PD3",
out_pin,
CHANNEL_PD2_TO_PD3.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PD2 to PD3", CHANNEL_PD2_TO_PD3.sender(), in_pin).await;
rprintln!("Example PD2 to PD3 done");
}
if CHECK_PE0_TO_PE1 {
let out_pin = porte.pe0.into_readable_push_pull_output();
let in_pin = porte.pe1.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputDynPinAsync::new(in_pin.downgrade()).unwrap();
spawner
.spawn(output_task(
"PE0 to PE1",
out_pin,
CHANNEL_PE0_TO_PE1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PE0 to PE1", CHANNEL_PE0_TO_PE1.sender(), in_pin).await;
rprintln!("Example PE0 to PE1 done");
}
if CHECK_PF0_TO_PF1 {
let out_pin = portf.pf0.into_readable_push_pull_output();
let in_pin = portf.pf1.into_floating_input();
let out_pin = out_pin.downgrade();
let in_pin = InputDynPinAsync::new(in_pin.downgrade()).unwrap();
spawner
.spawn(output_task(
"PF0 to PF1",
out_pin,
CHANNEL_PF0_TO_PF1.receiver(),
))
.unwrap();
check_pin_to_pin_async_ops("PF0 to PF1", CHANNEL_PF0_TO_PF1.sender(), in_pin).await;
rprintln!("Example PF0 to PF1 done");
}
rprintln!("Example done, toggling LED0");
loop {
led.toggle();
Timer::after(Duration::from_millis(500)).await;
}
}
async fn check_pin_to_pin_async_ops(
ctx: &'static str,
sender: Sender<'static, ThreadModeRawMutex, GpioCmd, 3>,
mut async_input: impl Wait,
) {
rprintln!(
"{}: sending SetHigh command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::SetHigh, 20)).await;
async_input.wait_for_high().await.unwrap();
rprintln!(
"{}: Input pin is high now ({} ms)",
ctx,
Instant::now().as_millis()
);
rprintln!(
"{}: sending SetLow command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::SetLow, 20)).await;
async_input.wait_for_low().await.unwrap();
rprintln!(
"{}: Input pin is low now ({} ms)",
ctx,
Instant::now().as_millis()
);
rprintln!(
"{}: sending RisingEdge command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::RisingEdge, 20)).await;
async_input.wait_for_rising_edge().await.unwrap();
rprintln!(
"{}: input pin had rising edge ({} ms)",
ctx,
Instant::now().as_millis()
);
rprintln!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender
.send(GpioCmd::new(GpioCmdType::FallingEdge, 20))
.await;
async_input.wait_for_falling_edge().await.unwrap();
rprintln!(
"{}: input pin had a falling edge ({} ms)",
ctx,
Instant::now().as_millis()
);
rprintln!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender
.send(GpioCmd::new(GpioCmdType::FallingEdge, 20))
.await;
async_input.wait_for_any_edge().await.unwrap();
rprintln!(
"{}: input pin had a falling (any) edge ({} ms)",
ctx,
Instant::now().as_millis()
);
rprintln!(
"{}: sending Falling command ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::RisingEdge, 20)).await;
async_input.wait_for_any_edge().await.unwrap();
rprintln!(
"{}: input pin had a rising (any) edge ({} ms)",
ctx,
Instant::now().as_millis()
);
sender.send(GpioCmd::new(GpioCmdType::CloseTask, 0)).await;
}
#[embassy_executor::task(pool_size = 8)]
async fn output_task(
ctx: &'static str,
mut out: DynPin,
receiver: Receiver<'static, ThreadModeRawMutex, GpioCmd, 3>,
) {
loop {
let next_cmd = receiver.receive().await;
Timer::after(Duration::from_millis(next_cmd.after_delay.into())).await;
match next_cmd.cmd_type {
GpioCmdType::SetHigh => {
rprintln!("{}: Set output high", ctx);
out.set_high().unwrap();
}
GpioCmdType::SetLow => {
rprintln!("{}: Set output low", ctx);
out.set_low().unwrap();
}
GpioCmdType::RisingEdge => {
rprintln!("{}: Rising edge", ctx);
if !out.is_low().unwrap() {
out.set_low().unwrap();
}
out.set_high().unwrap();
}
GpioCmdType::FallingEdge => {
rprintln!("{}: Falling edge", ctx);
if !out.is_high().unwrap() {
out.set_high().unwrap();
}
out.set_low().unwrap();
}
GpioCmdType::CloseTask => {
rprintln!("{}: Closing task", ctx);
break;
}
}
}
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTA1() {
on_interrupt_for_async_gpio_for_port(Port::A).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTB1() {
on_interrupt_for_async_gpio_for_port(Port::B).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTC15() {
on_interrupt_for_async_gpio_for_port(Port::C).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTD3() {
on_interrupt_for_async_gpio_for_port(Port::D).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTE1() {
on_interrupt_for_async_gpio_for_port(Port::E).unwrap();
}
#[interrupt]
#[allow(non_snake_case)]
fn PORTF1() {
on_interrupt_for_async_gpio_for_port(Port::F).unwrap();
}

View File

@ -16,7 +16,6 @@ use embassy_executor::Spawner;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::blocking_mutex::Mutex;
use embassy_time::{Duration, Ticker};
use embedded_hal::digital::StatefulOutputPin;
use embedded_io::Write;
use panic_rtt_target as _;
use ringbuf::{
@ -119,7 +118,7 @@ async fn main(spawner: Spawner) {
async fn blinky(mut led: Pin<PG5, OutputReadablePushPull>) {
let mut ticker = Ticker::every(Duration::from_millis(500));
loop {
led.toggle().ok();
led.toggle();
ticker.next().await;
}
}

View File

@ -3,7 +3,6 @@
use embassy_example::EXTCLK_FREQ;
use embassy_executor::Spawner;
use embassy_time::{Duration, Instant, Ticker};
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{gpio::PinsG, pac, prelude::*, time::Hertz};
@ -59,6 +58,6 @@ async fn main(_spawner: Spawner) {
loop {
ticker.next().await;
rprintln!("Current time: {}", Instant::now().as_secs());
led.toggle().ok();
led.toggle();
}
}

View File

@ -10,7 +10,6 @@ const EXTCLK_FREQ: Hertz = Hertz::from_raw(40_000_000);
mod app {
use super::*;
use cortex_m::asm;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
use rtic_monotonics::systick::prelude::*;
use rtic_monotonics::Monotonic;
@ -64,7 +63,7 @@ mod app {
)]
async fn blinky(cx: blinky::Context) {
loop {
cx.local.led.toggle().ok();
cx.local.led.toggle();
Mono::delay(200.millis()).await;
}
}

View File

@ -3,7 +3,6 @@
#![no_std]
use cortex_m_rt::entry;
use embedded_hal::digital::StatefulOutputPin;
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use va416xx_hal::{gpio::PinsG, pac};
@ -18,6 +17,6 @@ fn main() -> ! {
let mut led = portg.pg5.into_readable_push_pull_output();
loop {
cortex_m::asm::delay(2_000_000);
led.toggle().ok();
led.toggle();
}
}

View File

@ -50,7 +50,7 @@ use embassy_time_queue_utils::Queue;
use once_cell::sync::OnceCell;
use va416xx_hal::{
clock::Clocks,
enable_interrupt,
enable_nvic_interrupt,
irq_router::enable_and_init_irq_router,
pac::{self, interrupt},
pwm::ValidTim,
@ -207,7 +207,7 @@ impl TimerDriver {
.write(|w| unsafe { w.bits(u32::MAX) });
// Switch on. Timekeeping should always be done.
unsafe {
enable_interrupt(TimekeeperTim::IRQ);
enable_nvic_interrupt(TimekeeperTim::IRQ);
}
timekeeper_tim_regs
.ctrl()
@ -224,7 +224,7 @@ impl TimerDriver {
});
// Enable general interrupts. The IRQ enable of the peripheral remains cleared.
unsafe {
enable_interrupt(AlarmTim::IRQ);
enable_nvic_interrupt(AlarmTim::IRQ);
}
}

View File

@ -16,21 +16,26 @@ critical-section = "1"
nb = "1"
paste = "1"
embedded-hal-nb = "1"
embedded-hal-async = "1"
embedded-hal = "1"
embedded-io = "0.6"
num_enum = { version = "0.7", default-features = false }
typenum = "1"
bitflags = "2"
bitfield = "0.17"
defmt = { version = "0.3", optional = true }
fugit = "0.3"
delegate = "0.12"
void = { version = "1", default-features = false }
thiserror = { version = "2", default-features = false }
portable-atomic = "1"
embassy-sync = "0.6"
defmt = { version = "0.3", optional = true }
[dependencies.va416xx]
default-features = false
version = "0.3"
path = "../va416xx"
version = "0.4"
features = ["critical-section"]
[features]

View File

@ -5,7 +5,7 @@
//! - [Simple DMA example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/dma.rs)
use crate::{
clock::{PeripheralClock, PeripheralSelect},
enable_interrupt, pac,
enable_nvic_interrupt, pac,
prelude::*,
};
@ -266,7 +266,7 @@ impl DmaChannel {
///
/// This function is `unsafe` because it can break mask-based critical sections.
pub unsafe fn enable_done_interrupt(&mut self) {
enable_interrupt(self.done_interrupt);
enable_nvic_interrupt(self.done_interrupt);
}
/// Enables the DMA_ACTIVE interrupt for the DMA channel.
@ -275,7 +275,7 @@ impl DmaChannel {
///
/// This function is `unsafe` because it can break mask-based critical sections.
pub unsafe fn enable_active_interrupt(&mut self) {
enable_interrupt(self.active_interrupt);
enable_nvic_interrupt(self.active_interrupt);
}
/// Prepares a 8-bit DMA transfer from memory to memory.

View File

@ -1,4 +1,4 @@
use crate::{enable_interrupt, pac};
use crate::{enable_nvic_interrupt, pac};
#[inline(always)]
pub fn enable_rom_scrub(syscfg: &mut pac::Sysconfig, counter_reset: u16) {
@ -26,7 +26,7 @@ pub fn enable_ram1_scrub(syscfg: &mut pac::Sysconfig, counter_reset: u16) {
#[inline(always)]
pub fn enable_sbe_irq() {
unsafe {
enable_interrupt(pac::Interrupt::EDAC_SBE);
enable_nvic_interrupt(pac::Interrupt::EDAC_SBE);
}
}
@ -35,7 +35,7 @@ pub fn enable_sbe_irq() {
#[inline(always)]
pub fn enable_mbe_irq() {
unsafe {
enable_interrupt(pac::Interrupt::EDAC_MBE);
enable_nvic_interrupt(pac::Interrupt::EDAC_MBE);
}
}

View File

@ -0,0 +1,448 @@
//! # Async GPIO functionality for the VA416xx family.
//!
//! This module provides the [InputPinAsync] and [InputDynPinAsync] which both implement
//! the [embedded_hal_async::digital::Wait] trait. These types allow for asynchronous waiting
//! on GPIO pins. Please note that this module does not specify/declare the interrupt handlers
//! which must be provided for async support to work. However, it provides the
//! [on_interrupt_for_async_gpio_for_port] generic interrupt handler. This should be called in all
//! IRQ functions which handle any GPIO interrupts with the corresponding [Port] argument.
//!
//! # Example
//!
//! - [Async GPIO example](https://egit.irs.uni-stuttgart.de/rust/va108xx-rs/src/branch/main/examples/embassy/src/bin/async-gpio.rs)
use core::future::Future;
use embassy_sync::waitqueue::AtomicWaker;
use embedded_hal_async::digital::Wait;
use portable_atomic::AtomicBool;
use va416xx::{self as pac};
use crate::enable_nvic_interrupt;
use super::{
pin, DynPin, DynPinId, InputConfig, InterruptEdge, InvalidPinTypeError, Pin, PinId, Port,
NUM_PINS_PORT_A_TO_F,
};
static WAKERS_FOR_PORT_A: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static WAKERS_FOR_PORT_B: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static WAKERS_FOR_PORT_C: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static WAKERS_FOR_PORT_D: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static WAKERS_FOR_PORT_E: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static WAKERS_FOR_PORT_F: [AtomicWaker; NUM_PINS_PORT_A_TO_F] =
[const { AtomicWaker::new() }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_A: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_B: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_C: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_D: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_E: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
static EDGE_DETECTION_PORT_F: [AtomicBool; NUM_PINS_PORT_A_TO_F] =
[const { AtomicBool::new(false) }; NUM_PINS_PORT_A_TO_F];
#[derive(Debug, thiserror::Error)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[error("port G does not support async functionality")]
pub struct PortGDoesNotSupportAsyncError;
#[derive(Debug, thiserror::Error)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AsyncDynPinError {
#[error("invalid pin type: {0}")]
InvalidPinType(#[from] InvalidPinTypeError),
#[error("port g does not support async functionality: {0}")]
PortGDoesNotSupportAsync(#[from] PortGDoesNotSupportAsyncError),
}
/// Generic interrupt handler for GPIO interrupts on a specific port to support async functionalities
///
/// This function should be called in all interrupt handlers which handle any GPIO interrupts
/// matching the [Port] argument.
/// The handler will wake the corresponding wakers for the pins that triggered an interrupts
/// as well as update the static edge detection structures. This allows the pin future tocomplete
/// complete async operations.
pub fn on_interrupt_for_async_gpio_for_port(
port: Port,
) -> Result<(), PortGDoesNotSupportAsyncError> {
let periphs = unsafe { pac::Peripherals::steal() };
let (irq_enb, edge_status, wakers, edge_detection) = match port {
Port::A => (
periphs.porta.irq_enb().read().bits(),
periphs.porta.edge_status().read().bits(),
&WAKERS_FOR_PORT_A,
&EDGE_DETECTION_PORT_A,
),
Port::B => (
periphs.portb.irq_enb().read().bits(),
periphs.portb.edge_status().read().bits(),
&WAKERS_FOR_PORT_B,
&EDGE_DETECTION_PORT_B,
),
Port::C => (
periphs.portc.irq_enb().read().bits(),
periphs.portc.edge_status().read().bits(),
&WAKERS_FOR_PORT_C,
&EDGE_DETECTION_PORT_C,
),
Port::D => (
periphs.portd.irq_enb().read().bits(),
periphs.portd.edge_status().read().bits(),
&WAKERS_FOR_PORT_D,
&EDGE_DETECTION_PORT_D,
),
Port::E => (
periphs.porte.irq_enb().read().bits(),
periphs.porte.edge_status().read().bits(),
&WAKERS_FOR_PORT_E,
&EDGE_DETECTION_PORT_E,
),
Port::F => (
periphs.portf.irq_enb().read().bits(),
periphs.portf.edge_status().read().bits(),
&WAKERS_FOR_PORT_F,
&EDGE_DETECTION_PORT_F,
),
Port::G => return Err(PortGDoesNotSupportAsyncError),
};
on_interrupt_for_port(irq_enb, edge_status, wakers, edge_detection);
Ok(())
}
#[inline]
fn on_interrupt_for_port(
mut irq_enb: u32,
edge_status: u32,
wakers: &'static [AtomicWaker],
edge_detection: &'static [AtomicBool],
) {
while irq_enb != 0 {
let bit_pos = irq_enb.trailing_zeros() as usize;
let bit_mask = 1 << bit_pos;
wakers[bit_pos].wake();
if edge_status & bit_mask != 0 {
edge_detection[bit_pos].store(true, core::sync::atomic::Ordering::Relaxed);
// Clear the processed bit
irq_enb &= !bit_mask;
}
}
}
/// Input pin future which implements the [Future] trait.
///
/// Generally, you want to use the [InputPinAsync] or [InputDynPinAsync] types instead of this
/// which also implements the [embedded_hal_async::digital::Wait] trait. However, access to this
/// struture is granted to allow writing custom async structures.
pub struct InputPinFuture {
pin_id: DynPinId,
waker_group: &'static [AtomicWaker],
edge_detection_group: &'static [AtomicBool],
}
impl InputPinFuture {
pub fn new_with_dyn_pin(
pin: &mut DynPin,
edge: InterruptEdge,
) -> Result<Self, AsyncDynPinError> {
if !pin.is_input_pin() {
return Err(InvalidPinTypeError(pin.mode()).into());
}
if pin.id().port() == Port::G {
return Err(PortGDoesNotSupportAsyncError.into());
}
let (waker_group, edge_detection_group) =
Self::pin_group_to_waker_and_edge_detection_group(pin.id().port());
edge_detection_group[pin.id().num() as usize]
.store(false, core::sync::atomic::Ordering::Relaxed);
// Unwraps okay, checked for PORT G previously
pin.configure_edge_interrupt(edge).unwrap();
unsafe { enable_nvic_interrupt(pin.irq_id().unwrap()) };
pin.enable_interrupt();
Ok(Self {
pin_id: pin.id(),
waker_group,
edge_detection_group,
})
}
pub fn new_with_pin<I: PinId, C: InputConfig>(
pin: &mut Pin<I, pin::Input<C>>,
edge: InterruptEdge,
) -> Result<Self, PortGDoesNotSupportAsyncError> {
if pin.id().port() == Port::G {
return Err(PortGDoesNotSupportAsyncError);
}
let (waker_group, edge_detection_group) =
Self::pin_group_to_waker_and_edge_detection_group(pin.id().port());
edge_detection_group[pin.id().num() as usize]
.store(false, core::sync::atomic::Ordering::Relaxed);
// Unwraps okay, checked for PORT G previously
pin.configure_edge_interrupt(edge);
unsafe { enable_nvic_interrupt(I::IRQ.unwrap()) };
pin.enable_interrupt();
Ok(Self {
pin_id: pin.id(),
waker_group,
edge_detection_group,
})
}
#[inline]
pub fn pin_group_to_waker_and_edge_detection_group(
group: Port,
) -> (&'static [AtomicWaker], &'static [AtomicBool]) {
match group {
Port::A => (WAKERS_FOR_PORT_A.as_ref(), EDGE_DETECTION_PORT_A.as_ref()),
Port::B => (WAKERS_FOR_PORT_B.as_ref(), EDGE_DETECTION_PORT_B.as_ref()),
Port::C => (WAKERS_FOR_PORT_C.as_ref(), EDGE_DETECTION_PORT_C.as_ref()),
Port::D => (WAKERS_FOR_PORT_D.as_ref(), EDGE_DETECTION_PORT_D.as_ref()),
Port::E => (WAKERS_FOR_PORT_E.as_ref(), EDGE_DETECTION_PORT_E.as_ref()),
Port::F => (WAKERS_FOR_PORT_F.as_ref(), EDGE_DETECTION_PORT_F.as_ref()),
_ => panic!("unexpected pin group G"),
}
}
}
impl Drop for InputPinFuture {
fn drop(&mut self) {
// The API ensures that we actually own the pin, so stealing it here is okay.
unsafe { DynPin::steal(self.pin_id) }.disable_interrupt();
}
}
impl Future for InputPinFuture {
type Output = ();
fn poll(
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
let idx = self.pin_id.num() as usize;
self.waker_group[idx].register(cx.waker());
if self.edge_detection_group[idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
return core::task::Poll::Ready(());
}
core::task::Poll::Pending
}
}
pub struct InputDynPinAsync {
pin: DynPin,
}
impl InputDynPinAsync {
/// Create a new asynchronous input pin from a [DynPin]. The interrupt ID to be used must be
/// passed as well and is used to route and enable the interrupt.
///
/// Please note that the interrupt handler itself must be provided by the user and the
/// generic [on_interrupt_for_async_gpio_for_port] function must be called inside that function
/// for the asynchronous functionality to work.
pub fn new(pin: DynPin) -> Result<Self, AsyncDynPinError> {
if !pin.is_input_pin() {
return Err(InvalidPinTypeError(pin.mode()).into());
}
if pin.id().port() == Port::G {
return Err(PortGDoesNotSupportAsyncError.into());
}
Ok(Self { pin })
}
/// Asynchronously wait until the pin is high.
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_high(&mut self) {
// Unwrap okay, checked pin in constructor.
let fut =
InputPinFuture::new_with_dyn_pin(&mut self.pin, InterruptEdge::LowToHigh).unwrap();
if self.pin.is_high().unwrap() {
return;
}
fut.await;
}
/// Asynchronously wait until the pin is low.
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_low(&mut self) {
// Unwrap okay, checked pin in constructor.
let fut =
InputPinFuture::new_with_dyn_pin(&mut self.pin, InterruptEdge::HighToLow).unwrap();
if self.pin.is_low().unwrap() {
return;
}
fut.await;
}
/// Asynchronously wait until the pin sees a falling edge.
pub async fn wait_for_falling_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, InterruptEdge::HighToLow)
.unwrap()
.await;
}
/// Asynchronously wait until the pin sees a rising edge.
pub async fn wait_for_rising_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, InterruptEdge::LowToHigh)
.unwrap()
.await;
}
/// Asynchronously wait until the pin sees any edge (either rising or falling).
pub async fn wait_for_any_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_dyn_pin(&mut self.pin, InterruptEdge::BothEdges)
.unwrap()
.await;
}
pub fn release(self) -> DynPin {
self.pin
}
}
impl embedded_hal::digital::ErrorType for InputDynPinAsync {
type Error = core::convert::Infallible;
}
impl Wait for InputDynPinAsync {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
pub struct InputPinAsync<I: PinId, C: InputConfig> {
pin: Pin<I, pin::Input<C>>,
}
impl<I: PinId, C: InputConfig> InputPinAsync<I, C> {
/// Create a new asynchronous input pin from a typed [Pin]. The interrupt ID to be used must be
/// passed as well and is used to route and enable the interrupt.
///
/// Please note that the interrupt handler itself must be provided by the user and the
/// generic [on_interrupt_for_async_gpio_for_port] function must be called inside that function
/// for the asynchronous functionality to work.
pub fn new(pin: Pin<I, pin::Input<C>>) -> Result<Self, PortGDoesNotSupportAsyncError> {
if pin.id().port() == Port::G {
return Err(PortGDoesNotSupportAsyncError);
}
Ok(Self { pin })
}
/// Asynchronously wait until the pin is high.
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_high(&mut self) {
// Unwrap okay, checked pin in constructor.
let fut = InputPinFuture::new_with_pin(&mut self.pin, InterruptEdge::LowToHigh).unwrap();
if self.pin.is_high() {
return;
}
fut.await;
}
/// Asynchronously wait until the pin is low.
///
/// This returns immediately if the pin is already high.
pub async fn wait_for_low(&mut self) {
let fut = InputPinFuture::new_with_pin(&mut self.pin, InterruptEdge::HighToLow).unwrap();
if self.pin.is_low() {
return;
}
fut.await;
}
/// Asynchronously wait until the pin sees falling edge.
pub async fn wait_for_falling_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_pin(&mut self.pin, InterruptEdge::HighToLow)
.unwrap()
.await;
}
/// Asynchronously wait until the pin sees rising edge.
pub async fn wait_for_rising_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_pin(&mut self.pin, InterruptEdge::LowToHigh)
.unwrap()
.await;
}
/// Asynchronously wait until the pin sees any edge (either rising or falling).
pub async fn wait_for_any_edge(&mut self) {
// Unwrap okay, checked pin in constructor.
InputPinFuture::new_with_pin(&mut self.pin, InterruptEdge::BothEdges)
.unwrap()
.await;
}
pub fn release(self) -> Pin<I, pin::Input<C>> {
self.pin
}
}
impl<I: PinId, C: InputConfig> embedded_hal::digital::ErrorType for InputPinAsync<I, C> {
type Error = core::convert::Infallible;
}
impl<I: PinId, C: InputConfig> Wait for InputPinAsync<I, C> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}

View File

@ -55,11 +55,14 @@
//! error. If the [`DynPin`] is not in the correct [`DynPinMode`] for the
//! operation, the trait functions will return
//! [InvalidPinTypeError].
use embedded_hal::digital::{ErrorType, InputPin, OutputPin, StatefulOutputPin};
use crate::FunSel;
use va416xx as pac;
use super::{
reg::RegisterInterface, FilterClkSel, FilterType, InterruptEdge, InterruptLevel, Pin, PinId,
PinMode, PinState,
AsyncDynPinError, FilterClkSel, FilterType, InputDynPinAsync, InterruptEdge, InterruptLevel,
IsMaskedError, Pin, PinId, PinMode, PinState, Port,
};
//==================================================================================================
@ -155,61 +158,213 @@ pub const DYN_ALT_FUNC_3: DynPinMode = DynPinMode::Alternate(DynAlternate::Sel3)
// DynGroup & DynPinId
//==================================================================================================
/// Value-level `enum` for pin groups
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum DynGroup {
A,
B,
C,
D,
E,
F,
G,
pub type DynGroup = Port;
#[inline]
pub const fn irq_id(port: Port, num: u8) -> Option<va416xx::Interrupt> {
match port {
Port::A => match num {
0 => Some(va416xx::Interrupt::PORTA0),
1 => Some(va416xx::Interrupt::PORTA1),
2 => Some(va416xx::Interrupt::PORTA2),
3 => Some(va416xx::Interrupt::PORTA3),
4 => Some(va416xx::Interrupt::PORTA4),
5 => Some(va416xx::Interrupt::PORTA5),
6 => Some(va416xx::Interrupt::PORTA6),
7 => Some(va416xx::Interrupt::PORTA7),
8 => Some(va416xx::Interrupt::PORTA8),
9 => Some(va416xx::Interrupt::PORTA9),
10 => Some(va416xx::Interrupt::PORTA10),
11 => Some(va416xx::Interrupt::PORTA11),
12 => Some(va416xx::Interrupt::PORTA12),
13 => Some(va416xx::Interrupt::PORTA13),
14 => Some(va416xx::Interrupt::PORTA14),
15 => Some(va416xx::Interrupt::PORTA15),
_ => None,
},
Port::B => match num {
0 => Some(va416xx::Interrupt::PORTB0),
1 => Some(va416xx::Interrupt::PORTB1),
2 => Some(va416xx::Interrupt::PORTB2),
3 => Some(va416xx::Interrupt::PORTB3),
4 => Some(va416xx::Interrupt::PORTB4),
5 => Some(va416xx::Interrupt::PORTB5),
6 => Some(va416xx::Interrupt::PORTB6),
7 => Some(va416xx::Interrupt::PORTB7),
8 => Some(va416xx::Interrupt::PORTB8),
9 => Some(va416xx::Interrupt::PORTB9),
10 => Some(va416xx::Interrupt::PORTB10),
11 => Some(va416xx::Interrupt::PORTB11),
12 => Some(va416xx::Interrupt::PORTB12),
13 => Some(va416xx::Interrupt::PORTB13),
14 => Some(va416xx::Interrupt::PORTB14),
15 => Some(va416xx::Interrupt::PORTB15),
_ => None,
},
Port::C => match num {
0 => Some(va416xx::Interrupt::PORTC0),
1 => Some(va416xx::Interrupt::PORTC1),
2 => Some(va416xx::Interrupt::PORTC2),
3 => Some(va416xx::Interrupt::PORTC3),
4 => Some(va416xx::Interrupt::PORTC4),
5 => Some(va416xx::Interrupt::PORTC5),
6 => Some(va416xx::Interrupt::PORTC6),
7 => Some(va416xx::Interrupt::PORTC7),
8 => Some(va416xx::Interrupt::PORTC8),
9 => Some(va416xx::Interrupt::PORTC9),
10 => Some(va416xx::Interrupt::PORTC10),
11 => Some(va416xx::Interrupt::PORTC11),
12 => Some(va416xx::Interrupt::PORTC12),
13 => Some(va416xx::Interrupt::PORTC13),
14 => Some(va416xx::Interrupt::PORTC14),
15 => Some(va416xx::Interrupt::PORTC15),
_ => None,
},
Port::D => match num {
0 => Some(va416xx::Interrupt::PORTD0),
1 => Some(va416xx::Interrupt::PORTD1),
2 => Some(va416xx::Interrupt::PORTD2),
3 => Some(va416xx::Interrupt::PORTD3),
4 => Some(va416xx::Interrupt::PORTD4),
5 => Some(va416xx::Interrupt::PORTD5),
6 => Some(va416xx::Interrupt::PORTD6),
7 => Some(va416xx::Interrupt::PORTD7),
8 => Some(va416xx::Interrupt::PORTD8),
9 => Some(va416xx::Interrupt::PORTD9),
10 => Some(va416xx::Interrupt::PORTD10),
11 => Some(va416xx::Interrupt::PORTD11),
12 => Some(va416xx::Interrupt::PORTD12),
13 => Some(va416xx::Interrupt::PORTD13),
14 => Some(va416xx::Interrupt::PORTD14),
15 => Some(va416xx::Interrupt::PORTD15),
_ => None,
},
Port::E => match num {
0 => Some(va416xx::Interrupt::PORTE0),
1 => Some(va416xx::Interrupt::PORTE1),
2 => Some(va416xx::Interrupt::PORTE2),
3 => Some(va416xx::Interrupt::PORTE3),
4 => Some(va416xx::Interrupt::PORTE4),
5 => Some(va416xx::Interrupt::PORTE5),
6 => Some(va416xx::Interrupt::PORTE6),
7 => Some(va416xx::Interrupt::PORTE7),
8 => Some(va416xx::Interrupt::PORTE8),
9 => Some(va416xx::Interrupt::PORTE9),
10 => Some(va416xx::Interrupt::PORTE10),
11 => Some(va416xx::Interrupt::PORTE11),
12 => Some(va416xx::Interrupt::PORTE12),
13 => Some(va416xx::Interrupt::PORTE13),
14 => Some(va416xx::Interrupt::PORTE14),
15 => Some(va416xx::Interrupt::PORTE15),
_ => None,
},
Port::F => match num {
0 => Some(va416xx::Interrupt::PORTF0),
1 => Some(va416xx::Interrupt::PORTF1),
2 => Some(va416xx::Interrupt::PORTF2),
3 => Some(va416xx::Interrupt::PORTF3),
4 => Some(va416xx::Interrupt::PORTF4),
5 => Some(va416xx::Interrupt::PORTF5),
6 => Some(va416xx::Interrupt::PORTF6),
7 => Some(va416xx::Interrupt::PORTF7),
8 => Some(va416xx::Interrupt::PORTF8),
9 => Some(va416xx::Interrupt::PORTF9),
10 => Some(va416xx::Interrupt::PORTF10),
11 => Some(va416xx::Interrupt::PORTF11),
12 => Some(va416xx::Interrupt::PORTF12),
13 => Some(va416xx::Interrupt::PORTF13),
14 => Some(va416xx::Interrupt::PORTF14),
15 => Some(va416xx::Interrupt::PORTF15),
_ => None,
},
Port::G => None,
}
}
/// Value-level `struct` representing pin IDs
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct DynPinId {
pub group: DynGroup,
pub num: u8,
port: Port,
num: u8,
}
//==============================================================================
// DynRegisters
//==============================================================================
impl DynPinId {
pub const fn new(port: Port, num: u8) -> Self {
DynPinId { port, num }
}
/// Provide a safe register interface for [`DynPin`]s
///
/// This `struct` takes ownership of a [`DynPinId`] and provides an API to
/// access the corresponding regsiters.
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct DynRegisters(DynPinId);
// [`DynRegisters`] takes ownership of the [`DynPinId`], and [`DynPin`]
// guarantees that each pin is a singleton, so this implementation is safe.
unsafe impl RegisterInterface for DynRegisters {
#[inline]
fn id(&self) -> DynPinId {
self.0
pub const fn port(&self) -> Port {
self.port
}
pub const fn num(&self) -> u8 {
self.num
}
}
impl DynRegisters {
/// Create a new instance of [`DynRegisters`]
///
/// # Safety
///
/// Users must never create two simultaneous instances of this `struct` with
/// the same [`DynPinId`]
//==================================================================================================
// ModeFields
//==================================================================================================
/// Collect all fields needed to set the [`PinMode`](super::PinMode)
#[derive(Default)]
struct ModeFields {
dir: bool,
opendrn: bool,
pull_en: bool,
/// true for pullup, false for pulldown
pull_dir: bool,
funsel: u8,
enb_input: bool,
}
impl From<DynPinMode> for ModeFields {
#[inline]
unsafe fn new(id: DynPinId) -> Self {
DynRegisters(id)
fn from(mode: DynPinMode) -> Self {
let mut fields = Self::default();
match mode {
DynPinMode::Input(config) => {
fields.dir = false;
fields.funsel = FunSel::Sel0 as u8;
match config {
DynInput::Floating => (),
DynInput::PullUp => {
fields.pull_en = true;
fields.pull_dir = true;
}
DynInput::PullDown => {
fields.pull_en = true;
}
}
}
DynPinMode::Output(config) => {
fields.dir = true;
fields.funsel = FunSel::Sel0 as u8;
match config {
DynOutput::PushPull => (),
DynOutput::OpenDrain => {
fields.opendrn = true;
}
DynOutput::ReadableOpenDrain => {
fields.enb_input = true;
fields.opendrn = true;
}
DynOutput::ReadablePushPull => {
fields.enb_input = true;
}
}
}
DynPinMode::Alternate(config) => {
fields.funsel = config as u8;
}
}
fields
}
}
/// Type definition to avoid confusion: These register blocks are identical
type PortRegisterBlock = pac::porta::RegisterBlock;
pub type PortReg = pac::ioconfig::Porta;
//==================================================================================================
// DynPin
//==================================================================================================
@ -221,58 +376,89 @@ impl DynRegisters {
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct DynPin {
pub(crate) regs: DynRegisters,
id: DynPinId,
mode: DynPinMode,
}
impl DynPin {
/// Create a new [`DynPin`]
/// Create a new [DynPin]
///
/// # Safety
///
/// Each [`DynPin`] must be a singleton. For a given [`DynPinId`], there
/// Each [DynPin] must be a singleton. For a given [DynPinId], there
/// must be at most one corresponding [`DynPin`] in existence at any given
/// time. Violating this requirement is `unsafe`.
#[inline]
pub(crate) unsafe fn new(id: DynPinId, mode: DynPinMode) -> Self {
pub(crate) const unsafe fn new(id: DynPinId, mode: DynPinMode) -> Self {
DynPin { id, mode }
}
/// Steals a new [DynPin].
///
/// This function will simply set the internal mode to [DYN_FLOATING_INPUT] pin without
/// modifying any registers related to the behaviour of the pin. The user should call
/// [Self::into_mode] to ensure the correct mode of the pin.
///
/// # Safety
///
/// Circumvents the HAL's safety guarantees. The caller must ensure that the pin is not
/// used cocurrently somewhere else. The caller might also want to call [Self::into_mode]
/// to ensure the correct desired state of the pin. It is recommended to create the pin using
/// [Pin::downgrade] instead.
pub const unsafe fn steal(id: DynPinId) -> Self {
DynPin {
regs: DynRegisters::new(id),
mode,
id,
mode: DYN_FLOATING_INPUT,
}
}
/// Return a copy of the pin ID
#[inline]
pub fn id(&self) -> DynPinId {
self.regs.0
pub const fn id(&self) -> DynPinId {
self.id
}
#[inline]
pub const fn irq_id(&self) -> Option<va416xx::Interrupt> {
irq_id(self.id.port(), self.id.num())
}
/// Return a copy of the pin mode
#[inline]
pub fn mode(&self) -> DynPinMode {
pub const fn mode(&self) -> DynPinMode {
self.mode
}
/// Convert the pin to the requested [`DynPinMode`]
#[inline]
pub fn into_mode(&mut self, mode: DynPinMode) {
// Only modify registers if we are actually changing pin mode
if mode != self.mode {
self.regs.change_mode(mode);
self.mode = mode;
}
self.change_mode(mode);
self.mode = mode;
}
#[inline]
pub fn is_input_pin(&self) -> bool {
matches!(self.mode, DynPinMode::Input(_))
}
#[inline]
pub fn is_output_pin(&self) -> bool {
matches!(self.mode, DynPinMode::Output(_))
}
/// Configure the pin for function select 1. See Programmer Guide p.286 for the function table
#[inline]
pub fn into_funsel_1(&mut self) {
self.into_mode(DYN_ALT_FUNC_1);
}
/// Configure the pin for function select 2. See Programmer Guide p.286 for the function table
#[inline]
pub fn into_funsel_2(&mut self) {
self.into_mode(DYN_ALT_FUNC_2);
}
/// Configure the pin for function select 3. See Programmer Guide p.286 for the function table
#[inline]
pub fn into_funsel_3(&mut self) {
self.into_mode(DYN_ALT_FUNC_3);
@ -320,47 +506,118 @@ impl DynPin {
self.into_mode(DYN_RD_OPEN_DRAIN_OUTPUT);
}
#[inline(always)]
pub fn is_low(&self) -> Result<bool, InvalidPinTypeError> {
self.read_internal().map(|v| !v)
}
#[inline(always)]
pub fn is_high(&self) -> Result<bool, InvalidPinTypeError> {
self.read_internal()
}
#[inline(always)]
pub fn set_low(&mut self) -> Result<(), InvalidPinTypeError> {
self.write_internal(false)
}
#[inline(always)]
pub fn set_high(&mut self) -> Result<(), InvalidPinTypeError> {
self.write_internal(true)
}
/// Toggle the logic level of an output pin
#[inline(always)]
pub fn toggle(&mut self) -> Result<(), InvalidPinTypeError> {
if !self.is_output_pin() {
return Err(InvalidPinTypeError(self.mode));
}
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { self.port_reg().togout().write(|w| w.bits(self.mask_32())) };
Ok(())
}
#[inline(always)]
pub fn enable_interrupt(&self) {
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
#[inline(always)]
pub fn disable_interrupt(&self) {
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() & !self.mask_32()) });
}
/// Try to recreate a type-level [`Pin`] from a value-level [`DynPin`]
///
/// There is no way for the compiler to know if the conversion will be
/// successful at compile-time. We must verify the conversion at run-time
/// or refuse to perform it.
#[inline]
pub fn upgrade<I: PinId, M: PinMode>(self) -> Result<Pin<I, M>, InvalidPinTypeError> {
if self.id == I::DYN && self.mode == M::DYN {
// The `DynPin` is consumed, so it is safe to replace it with the
// corresponding `Pin`
return Ok(unsafe { Pin::new() });
}
Err(InvalidPinTypeError(self.mode))
}
/// Convert the pin into an async pin. The pin can be converted back by calling
/// [InputDynPinAsync::release]
pub fn into_async_input(self) -> Result<InputDynPinAsync, AsyncDynPinError> {
InputDynPinAsync::new(self)
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
pub fn datamask(&self) -> bool {
self.regs.datamask()
(self.port_reg().datamask().read().bits() >> self.id().num) == 1
}
#[inline]
pub fn clear_datamask(&mut self) {
self.regs.clear_datamask();
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
pub fn clear_datamask(&self) {
self.port_reg()
.datamask()
.modify(|r, w| unsafe { w.bits(r.bits() & !self.mask_32()) });
}
#[inline]
pub fn set_datamask(&mut self) {
self.regs.set_datamask();
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
pub fn set_datamask(&self) {
self.port_reg()
.datamask()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
#[inline]
pub fn is_high_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.regs.read_pin_masked()
self.read_pin_masked()
}
#[inline]
pub fn is_low_masked(&self) -> Result<bool, crate::gpio::IsMaskedError> {
self.regs.read_pin_masked().map(|v| !v)
self.read_pin_masked().map(|v| !v)
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.regs.write_pin_masked(true)
self.write_pin_masked(true)
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.regs.write_pin_masked(false)
self.write_pin_masked(false)
}
#[inline]
pub fn irq_enb(&mut self) {
self.regs.enable_irq();
}
/// See p.53 of the programmers guide for more information.
/// See p.293 of the programmers guide for more information.
/// Possible delays in clock cycles:
/// - Delay 1: 1
/// - Delay 2: 2
@ -373,14 +630,14 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.configure_delay(delay_1, delay_2);
self.configure_delay_internal(delay_1, delay_2);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
/// See p.52 of the programmers guide for more information.
/// See p.293 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
pub fn configure_pulse_mode(
@ -390,14 +647,14 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.configure_pulse_mode(enable, default_state);
self.configure_pulse_mode_internal(enable, default_state);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
/// See p.37 and p.38 of the programmers guide for more information.
/// See p.284 of the programmers guide for more information.
#[inline]
pub fn configure_filter_type(
&mut self,
@ -406,7 +663,7 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) => {
self.regs.configure_filter_type(filter, clksel);
self.configure_filter_type_internal(filter, clksel);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
@ -419,8 +676,7 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DynPinMode::Output(_) => {
self.regs.configure_edge_interrupt(edge_type);
self.irq_enb();
self.configure_edge_interrupt_internal(edge_type);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
@ -433,64 +689,273 @@ impl DynPin {
) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DynPinMode::Output(_) => {
self.regs.configure_level_interrupt(level_type);
self.irq_enb();
self.configure_level_interrupt_internal(level_type);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
fn _read(&self) -> Result<bool, InvalidPinTypeError> {
#[inline(always)]
fn read_internal(&self) -> Result<bool, InvalidPinTypeError> {
match self.mode {
DynPinMode::Input(_) | DYN_RD_OPEN_DRAIN_OUTPUT | DYN_RD_PUSH_PULL_OUTPUT => {
Ok(self.regs.read_pin())
Ok(self.read_pin())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
#[inline]
fn _write(&mut self, bit: bool) -> Result<(), InvalidPinTypeError> {
#[inline(always)]
fn write_internal(&mut self, bit: bool) -> Result<(), InvalidPinTypeError> {
match self.mode {
DynPinMode::Output(_) => {
self.regs.write_pin(bit);
self.write_pin(bit);
Ok(())
}
_ => Err(InvalidPinTypeError(self.mode)),
}
}
/// Change the pin mode
#[inline]
fn _is_low(&self) -> Result<bool, InvalidPinTypeError> {
self._read().map(|v| !v)
}
#[inline]
fn _is_high(&self) -> Result<bool, InvalidPinTypeError> {
self._read()
}
#[inline]
fn _set_low(&mut self) -> Result<(), InvalidPinTypeError> {
self._write(false)
}
#[inline]
fn _set_high(&mut self) -> Result<(), InvalidPinTypeError> {
self._write(true)
pub(crate) fn change_mode(&mut self, mode: DynPinMode) {
let ModeFields {
dir,
funsel,
opendrn,
pull_dir,
pull_en,
enb_input,
} = mode.into();
let (portreg, iocfg) = (self.port_reg(), self.iocfg_port());
iocfg.write(|w| {
w.opendrn().bit(opendrn);
w.pen().bit(pull_en);
w.plevel().bit(pull_dir);
w.iewo().bit(enb_input);
unsafe { w.funsel().bits(funsel) }
});
let mask = self.mask_32();
unsafe {
if dir {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
// Clear output
portreg.clrout().write(|w| w.bits(mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
}
}
/// Try to recreate a type-level [`Pin`] from a value-level [`DynPin`]
///
/// There is no way for the compiler to know if the conversion will be
/// successful at compile-time. We must verify the conversion at run-time
/// or refuse to perform it.
#[inline]
pub fn upgrade<I: PinId, M: PinMode>(self) -> Result<Pin<I, M>, InvalidPinTypeError> {
if self.regs.0 == I::DYN && self.mode == M::DYN {
// The `DynPin` is consumed, so it is safe to replace it with the
// corresponding `Pin`
return Ok(unsafe { Pin::new() });
#[inline(always)]
const fn port_reg(&self) -> &PortRegisterBlock {
match self.id().port() {
Port::A => unsafe { &(*pac::Porta::ptr()) },
Port::B => unsafe { &(*pac::Portb::ptr()) },
Port::C => unsafe { &(*pac::Portc::ptr()) },
Port::D => unsafe { &(*pac::Portd::ptr()) },
Port::E => unsafe { &(*pac::Porte::ptr()) },
Port::F => unsafe { &(*pac::Portf::ptr()) },
Port::G => unsafe { &(*pac::Portg::ptr()) },
}
Err(InvalidPinTypeError(self.mode))
}
#[inline(always)]
const fn iocfg_port(&self) -> &PortReg {
let ioconfig = unsafe { pac::Ioconfig::ptr().as_ref().unwrap() };
match self.id().port() {
Port::A => ioconfig.porta(self.id().num() as usize),
Port::B => ioconfig.portb0(self.id().num() as usize),
Port::C => ioconfig.portc0(self.id().num() as usize),
Port::D => ioconfig.portd0(self.id().num() as usize),
Port::E => ioconfig.porte0(self.id().num() as usize),
Port::F => ioconfig.portf0(self.id().num() as usize),
Port::G => ioconfig.portg0(self.id().num() as usize),
}
}
#[inline(always)]
const fn mask_32(&self) -> u32 {
1 << self.id().num()
}
#[inline]
/// Read the logic level of an output pin
pub(crate) fn read_pin(&self) -> bool {
let portreg = self.port_reg();
((portreg.datainraw().read().bits() >> self.id().num) & 0x01) == 1
}
/// Read a pin but use the masked version but check whether the datamask for the pin is
/// cleared as well
#[inline(always)]
fn read_pin_masked(&self) -> Result<bool, IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
Ok(((self.port_reg().datain().read().bits() >> self.id().num) & 0x01) == 1)
}
}
/// Write the logic level of an output pin
#[inline(always)]
pub(crate) fn write_pin(&mut self, bit: bool) {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
}
}
/// Write the logic level of an output pin but check whether the datamask for the pin is
/// cleared as well
#[inline]
fn write_pin_masked(&mut self, bit: bool) -> Result<(), IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
Ok(())
}
}
}
/// Only useful for interrupt pins. Configure whether to use edges or level as interrupt soure
/// When using edge mode, it is possible to generate interrupts on both edges as well
#[inline]
fn configure_edge_interrupt_internal(&mut self, edge_type: InterruptEdge) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
match edge_type {
InterruptEdge::HighToLow => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
InterruptEdge::LowToHigh => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
InterruptEdge::BothEdges => {
self.port_reg()
.irq_edge()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
}
/// Configure which edge or level type triggers an interrupt
#[inline]
fn configure_level_interrupt_internal(&mut self, level: InterruptLevel) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
if level == InterruptLevel::Low {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for input pins
#[inline]
fn configure_filter_type_internal(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.iocfg_port().modify(|_, w| {
// Safety: Only write to register for this Pin ID
unsafe {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
}
});
}
/// Only useful for output pins
/// See p.293 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
#[inline]
fn configure_pulse_mode_internal(&mut self, enable: bool, default_state: PinState) {
let portreg = self.port_reg();
unsafe {
if enable {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if default_state == PinState::Low {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for output pins
#[inline]
fn configure_delay_internal(&mut self, delay_1: bool, delay_2: bool) {
let portreg = self.port_reg();
unsafe {
if delay_1 {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if delay_2 {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
}
// Only serves disambiguation purposes for the Embedded HAL impl
#[inline(always)]
fn is_low_mut(&mut self) -> Result<bool, InvalidPinTypeError> {
self.is_low()
}
// Only serves disambiguation purposes for the Embedded HAL impl
#[inline(always)]
fn is_high_mut(&mut self) -> Result<bool, InvalidPinTypeError> {
self.is_high()
}
}
@ -533,39 +998,44 @@ where
// Embedded HAL v1 traits
//==============================================================================
impl ErrorType for DynPin {
impl embedded_hal::digital::ErrorType for DynPin {
type Error = InvalidPinTypeError;
}
impl OutputPin for DynPin {
impl embedded_hal::digital::OutputPin for DynPin {
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high()
self.set_high()
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low()
self.set_low()
}
}
impl InputPin for DynPin {
impl embedded_hal::digital::InputPin for DynPin {
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
self._is_high()
self.is_high_mut()
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
self._is_low()
self.is_low_mut()
}
}
impl StatefulOutputPin for DynPin {
impl embedded_hal::digital::StatefulOutputPin for DynPin {
#[inline]
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
self._is_high()
self.is_high_mut()
}
#[inline]
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
self._is_low()
self.is_low_mut()
}
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle()
}
}

View File

@ -21,15 +21,60 @@
//! ## Examples
//!
//! - [Blinky example](https://egit.irs.uni-stuttgart.de/rust/va416xx-rs/src/branch/main/examples/simple/examples/blinky.rs)
//==================================================================================================
// Errors, Definitions and Constants
//==================================================================================================
pub const NUM_PINS_PORT_A_TO_F: usize = 16;
pub const NUM_PINS_PORT_G: usize = 8;
pub const NUM_GPIO_PINS: usize = NUM_PINS_PORT_A_TO_F * 6 + NUM_PINS_PORT_G;
pub const NUM_GPIO_PINS_WITH_IRQ: usize = NUM_GPIO_PINS - NUM_PINS_PORT_G;
#[derive(Debug, PartialEq, Eq, thiserror::Error)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[error("pin is masked")]
pub struct IsMaskedError;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Port {
A,
B,
C,
D,
E,
F,
G,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptEdge {
HighToLow,
LowToHigh,
BothEdges,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptLevel {
Low = 0,
High = 1,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum PinState {
Low = 0,
High = 1,
}
pub mod pin;
pub use pin::*;
pub mod dynpin;
pub use dynpin::*;
mod reg;
pub mod asynch;
pub use asynch::*;

View File

@ -68,46 +68,19 @@
//! # Embedded HAL traits
//!
//! This module implements all of the embedded HAL GPIO traits for each [`Pin`]
//! in the corresponding [`PinMode`]s, namely: [`InputPin`], [`OutputPin`],
//! and [`StatefulOutputPin`].
//! in the corresponding [`PinMode`]s, namely: [embedded_hal::digital::InputPin],
//! [embedded_hal::digital::OutputPin] and [embedded_hal::digital::StatefulOutputPin].
use core::{convert::Infallible, marker::PhantomData, mem::transmute};
pub use crate::clock::FilterClkSel;
use crate::typelevel::Sealed;
use embedded_hal::digital::{ErrorType, InputPin, OutputPin, StatefulOutputPin};
use va416xx::{Porta, Portb, Portc, Portd, Porte, Portf, Portg};
use va416xx::{self as pac, Porta, Portb, Portc, Portd, Porte, Portf, Portg};
use super::{
reg::RegisterInterface, DynAlternate, DynGroup, DynInput, DynOutput, DynPin, DynPinId,
DynPinMode,
DynAlternate, DynInput, DynOutput, DynPin, DynPinId, DynPinMode, InputPinAsync, InterruptEdge,
InterruptLevel, PinState, Port, PortGDoesNotSupportAsyncError,
};
//==================================================================================================
// Errors and Definitions
//==================================================================================================
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptEdge {
HighToLow,
LowToHigh,
BothEdges,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptLevel {
Low = 0,
High = 1,
}
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum PinState {
Low = 0,
High = 1,
}
//==================================================================================================
// Input configuration
//==================================================================================================
@ -296,10 +269,11 @@ impl<C: AlternateConfig> PinMode for Alternate<C> {
pub trait PinId: Sealed {
/// Corresponding [DynPinId]
const DYN: DynPinId;
const IRQ: Option<pac::Interrupt>;
}
macro_rules! pin_id {
($Group:ident, $Id:ident, $NUM:literal $(, $meta: meta)?) => {
($Port:ident, $Id:ident, $NUM:literal, $Irq:expr, $(, $meta: meta)?) => {
// Need paste macro to use ident in doc attribute
paste::paste! {
$(#[$meta])?
@ -311,10 +285,8 @@ macro_rules! pin_id {
$(#[$meta])?
impl PinId for $Id {
const DYN: DynPinId = DynPinId {
group: DynGroup::$Group,
num: $NUM,
};
const DYN: DynPinId = DynPinId::new(Port::$Port, $NUM);
const IRQ: Option<pac::Interrupt> = $Irq;
}
}
};
@ -340,7 +312,7 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
/// at most one corresponding [`Pin`] in existence at any given time.
/// Violating this requirement is `unsafe`.
#[inline]
pub(crate) unsafe fn new() -> Pin<I, M> {
pub(crate) const unsafe fn new() -> Pin<I, M> {
Pin {
inner: DynPin::new(I::DYN, M::DYN),
mode: PhantomData,
@ -348,35 +320,40 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
}
#[inline]
pub fn id(&self) -> DynPinId {
pub const fn id(&self) -> DynPinId {
self.inner.id()
}
#[inline(always)]
pub const fn irq_id(&self) -> Option<pac::Interrupt> {
I::IRQ
}
/// Convert the pin to the requested [`PinMode`]
#[inline]
pub fn into_mode<N: PinMode>(mut self) -> Pin<I, N> {
// Only modify registers if we are actually changing pin mode
// This check should compile away
if N::DYN != M::DYN {
self.inner.regs.change_mode(N::DYN);
self.inner.change_mode(N::DYN);
}
// Safe because we drop the existing Pin
unsafe { Pin::new() }
}
/// Configure the pin for function select 1. See Programmer Guide p.40 for the function table
/// Configure the pin for function select 1. See Programmer Guide p. 286 for the function table
#[inline]
pub fn into_funsel_1(self) -> Pin<I, AltFunc1> {
self.into_mode()
}
/// Configure the pin for function select 2. See Programmer Guide p.40 for the function table
/// Configure the pin for function select 2. See Programmer Guide p. 286 for the function table
#[inline]
pub fn into_funsel_2(self) -> Pin<I, AltFunc2> {
self.into_mode()
}
/// Configure the pin for function select 3. See Programmer Guide p.40 for the function table
/// Configure the pin for function select 3. See Programmer Guide p. 286 for the function table
#[inline]
pub fn into_funsel_3(self) -> Pin<I, AltFunc3> {
self.into_mode()
@ -418,6 +395,16 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
self.into_mode()
}
#[inline]
pub fn is_low(&self) -> bool {
!self.inner.read_pin()
}
#[inline]
pub fn is_high(&self) -> bool {
self.inner.read_pin()
}
#[inline]
pub fn datamask(&self) -> bool {
self.inner.datamask()
@ -443,43 +430,41 @@ impl<I: PinId, M: PinMode> Pin<I, M> {
self.inner.is_low_masked()
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_high_masked()
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_low_masked()
}
#[inline]
pub fn downgrade(self) -> DynPin {
self.inner
}
fn irq_enb(&mut self) {
self.inner.irq_enb();
// Those only serve for the embedded HAL implementations which have different mutability.
#[inline]
fn is_low_mut(&mut self) -> bool {
self.is_low()
}
#[inline]
pub(crate) fn _set_high(&mut self) {
self.inner.regs.write_pin(true)
fn is_high_mut(&mut self) -> bool {
self.is_high()
}
#[inline]
pub(crate) fn _set_low(&mut self) {
self.inner.regs.write_pin(false)
pub fn enable_interrupt(&mut self) {
self.inner.enable_interrupt();
}
#[inline]
pub(crate) fn _is_low(&self) -> bool {
!self.inner.regs.read_pin()
pub fn disable_interrupt(&mut self) {
self.inner.disable_interrupt();
}
#[inline]
pub(crate) fn _is_high(&self) -> bool {
self.inner.regs.read_pin()
/// Configure the pin for an edge interrupt but does not enable the interrupt.
pub fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
self.inner.configure_edge_interrupt(edge_type).unwrap();
}
/// Configure the pin for a level interrupt but does not enable the interrupt.
pub fn configure_level_interrupt(&mut self, level_type: InterruptLevel) {
self.inner.configure_level_interrupt(level_type).unwrap();
}
}
@ -571,56 +556,61 @@ impl<P: AnyPin> AsMut<P> for SpecificPin<P> {
//==================================================================================================
impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
pub fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
self.inner.regs.configure_edge_interrupt(edge_type);
self.irq_enb();
}
pub fn configure_interrupt_level(&mut self, level_type: InterruptLevel) {
self.inner.regs.configure_level_interrupt(level_type);
self.irq_enb();
/// Convert the pin into an async pin. The pin can be converted back by calling
/// [InputPinAsync::release]
pub fn into_async_input(self) -> Result<InputPinAsync<I, C>, PortGDoesNotSupportAsyncError> {
InputPinAsync::new(self)
}
}
impl<I: PinId, C: OutputConfig> Pin<I, Output<C>> {
/// See p.53 of the programmers guide for more information.
#[inline]
pub fn set_high(&mut self) {
self.inner.write_pin(true)
}
#[inline]
pub fn set_low(&mut self) {
self.inner.write_pin(false)
}
#[inline]
pub fn toggle(&mut self) {
self.inner.toggle().unwrap()
}
#[inline]
pub fn set_high_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_high_masked()
}
#[inline]
pub fn set_low_masked(&mut self) -> Result<(), crate::gpio::IsMaskedError> {
self.inner.set_low_masked()
}
/// Possible delays in clock cycles:
/// - Delay 1: 1
/// - Delay 2: 2
/// - Delay 1 + Delay 2: 3
#[inline]
pub fn configure_delay(&mut self, delay_1: bool, delay_2: bool) {
self.inner.regs.configure_delay(delay_1, delay_2);
self.inner.configure_delay(delay_1, delay_2).unwrap();
}
#[inline]
pub fn toggle_with_toggle_reg(&mut self) {
self.inner.regs.toggle()
}
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
pub fn configure_pulse_mode(&mut self, enable: bool, default_state: PinState) {
self.inner.regs.configure_pulse_mode(enable, default_state);
}
pub fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
self.inner.regs.configure_edge_interrupt(edge_type);
self.irq_enb();
}
pub fn configure_level_interrupt(&mut self, level_type: InterruptLevel) {
self.inner.regs.configure_level_interrupt(level_type);
self.irq_enb();
self.inner
.configure_pulse_mode(enable, default_state)
.unwrap();
}
}
impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
/// See p.37 and p.38 of the programmers guide for more information.
#[inline]
pub fn configure_filter_type(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.inner.regs.configure_filter_type(filter, clksel);
self.inner.configure_filter_type(filter, clksel).unwrap();
}
}
@ -628,7 +618,7 @@ impl<I: PinId, C: InputConfig> Pin<I, Input<C>> {
// Embedded HAL traits
//==================================================================================================
impl<I, M> ErrorType for Pin<I, M>
impl<I, M> embedded_hal::digital::ErrorType for Pin<I, M>
where
I: PinId,
M: PinMode,
@ -636,63 +626,69 @@ where
type Error = Infallible;
}
impl<I: PinId, C: OutputConfig> OutputPin for Pin<I, Output<C>> {
impl<I: PinId, C: OutputConfig> embedded_hal::digital::OutputPin for Pin<I, Output<C>> {
#[inline]
fn set_high(&mut self) -> Result<(), Self::Error> {
self._set_high();
self.set_high();
Ok(())
}
#[inline]
fn set_low(&mut self) -> Result<(), Self::Error> {
self._set_low();
self.set_low();
Ok(())
}
}
impl<I, C> InputPin for Pin<I, Input<C>>
impl<I, C> embedded_hal::digital::InputPin for Pin<I, Input<C>>
where
I: PinId,
C: InputConfig,
{
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_high_mut())
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
Ok(self.is_low_mut())
}
}
impl<I, C> StatefulOutputPin for Pin<I, Output<C>>
impl<I, C> embedded_hal::digital::StatefulOutputPin for Pin<I, Output<C>>
where
I: PinId,
C: OutputConfig + ReadableOutput,
{
#[inline]
fn is_set_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_high())
}
#[inline]
fn is_set_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
Ok(self.is_low())
}
#[inline]
fn toggle(&mut self) -> Result<(), Self::Error> {
self.toggle();
Ok(())
}
}
impl<I, C> InputPin for Pin<I, Output<C>>
impl<I, C> embedded_hal::digital::InputPin for Pin<I, Output<C>>
where
I: PinId,
C: OutputConfig + ReadableOutput,
{
#[inline]
fn is_high(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_high())
Ok(self.is_high_mut())
}
#[inline]
fn is_low(&mut self) -> Result<bool, Self::Error> {
Ok(self._is_low())
Ok(self.is_low_mut())
}
}
@ -754,18 +750,31 @@ macro_rules! pins {
}
}
macro_rules! declare_pins_with_irq {
(
$Group:ident, $PinsName:ident, $Port:ident, [$(($Id:ident, $NUM:literal $(, $meta:meta)?)),+]
) => {
pins!($Port, $PinsName, $($Id $(, $meta)?)+,);
$(
paste::paste! {
pin_id!($Group, $Id, $NUM, Some(pac::Interrupt::[<$Port:upper $NUM>]), $(, $meta)?);
}
)+
}
}
macro_rules! declare_pins {
(
$Group:ident, $PinsName:ident, $Port:ident, [$(($Id:ident, $NUM:literal $(, $meta:meta)?)),+]
) => {
pins!($Port, $PinsName, $($Id $(, $meta)?)+,);
$(
pin_id!($Group, $Id, $NUM $(, $meta)?);
pin_id!($Group, $Id, $NUM, None, $(, $meta)?);
)+
}
}
declare_pins!(
declare_pins_with_irq!(
A,
PinsA,
Porta,
@ -789,7 +798,7 @@ declare_pins!(
]
);
declare_pins!(
declare_pins_with_irq!(
B,
PinsB,
Portb,
@ -813,7 +822,7 @@ declare_pins!(
]
);
declare_pins!(
declare_pins_with_irq!(
C,
PinsC,
Portc,
@ -837,7 +846,7 @@ declare_pins!(
]
);
declare_pins!(
declare_pins_with_irq!(
D,
PinsD,
Portd,
@ -861,7 +870,7 @@ declare_pins!(
]
);
declare_pins!(
declare_pins_with_irq!(
E,
PinsE,
Porte,
@ -885,7 +894,7 @@ declare_pins!(
]
);
declare_pins!(
declare_pins_with_irq!(
F,
PinsF,
Portf,

View File

@ -1,388 +0,0 @@
use crate::FunSel;
use super::{
dynpin::{self, DynGroup, DynPinId},
DynPinMode, FilterClkSel, FilterType, InterruptEdge, InterruptLevel, IsMaskedError, PinState,
};
use va416xx::{ioconfig, porta, Ioconfig, Porta, Portb, Portc, Portd, Porte, Portf, Portg};
/// Type definition to avoid confusion: These register blocks are identical
type PortRegisterBlock = porta::RegisterBlock;
//==================================================================================================
// ModeFields
//==================================================================================================
/// Collect all fields needed to set the [`PinMode`](super::PinMode)
#[derive(Default)]
struct ModeFields {
dir: bool,
opendrn: bool,
pull_en: bool,
/// true for pullup, false for pulldown
pull_dir: bool,
funsel: u8,
enb_input: bool,
}
impl From<DynPinMode> for ModeFields {
#[inline]
fn from(mode: DynPinMode) -> Self {
let mut fields = Self::default();
use DynPinMode::*;
match mode {
Input(config) => {
use dynpin::DynInput::*;
fields.dir = false;
fields.funsel = FunSel::Sel0 as u8;
match config {
Floating => (),
PullUp => {
fields.pull_en = true;
fields.pull_dir = true;
}
PullDown => {
fields.pull_en = true;
}
}
}
Output(config) => {
use dynpin::DynOutput::*;
fields.dir = true;
fields.funsel = FunSel::Sel0 as u8;
match config {
PushPull => (),
OpenDrain => {
fields.opendrn = true;
}
ReadableOpenDrain => {
fields.enb_input = true;
fields.opendrn = true;
}
ReadablePushPull => {
fields.enb_input = true;
}
}
}
Alternate(config) => {
fields.funsel = config as u8;
}
}
fields
}
}
//==============================================================================
// RegisterInterface
//==============================================================================
pub type PortReg = ioconfig::Porta;
/// Provide a safe register interface for pin objects
///
/// [`PORT`], like every PAC `struct`, is [`Send`] but not [`Sync`], because it
/// points to a `RegisterBlock` of `VolatileCell`s. Unfortunately, such an
/// interface is quite restrictive. Instead, it would be ideal if we could split
/// the [`PORT`] into independent pins that are both [`Send`] and [`Sync`].
///
/// [`PORT`] is a single, zero-sized marker `struct` that provides access to
/// every [`PORT`] register. Instead, we would like to create zero-sized marker
/// `struct`s for every pin, where each pin is only allowed to control its own
/// registers. Furthermore, each pin `struct` should be a singleton, so that
/// exclusive access to the `struct` also guarantees exclusive access to the
/// corresponding registers. Finally, the pin `struct`s should not have any
/// interior mutability. Together, these requirements would allow the pin
/// `struct`s to be both [`Send`] and [`Sync`].
///
/// This trait creates a safe API for accomplishing these goals. Implementers
/// supply a pin ID through the [`id`] function. The remaining functions provide
/// a safe API for accessing the registers associated with that pin ID. Any
/// modification of the registers requires `&mut self`, which destroys interior
/// mutability.
///
/// # Safety
///
/// Users should only implement the [`id`] function. No default function
/// implementations should be overridden. The implementing type must also have
/// "control" over the corresponding pin ID, i.e. it must guarantee that a each
/// pin ID is a singleton.
///
/// [`id`]: Self::id
pub(super) unsafe trait RegisterInterface {
/// Provide a [`DynPinId`] identifying the set of registers controlled by
/// this type.
fn id(&self) -> DynPinId;
/// Change the pin mode
#[inline]
fn change_mode(&mut self, mode: DynPinMode) {
let ModeFields {
dir,
funsel,
opendrn,
pull_dir,
pull_en,
enb_input,
} = mode.into();
let (portreg, iocfg) = (self.port_reg(), self.iocfg_port());
iocfg.write(|w| {
w.opendrn().bit(opendrn);
w.pen().bit(pull_en);
w.plevel().bit(pull_dir);
w.iewo().bit(enb_input);
unsafe { w.funsel().bits(funsel) }
});
let mask = self.mask_32();
unsafe {
if dir {
portreg.dir().modify(|r, w| w.bits(r.bits() | mask));
// Clear output
portreg.clrout().write(|w| w.bits(mask));
} else {
portreg.dir().modify(|r, w| w.bits(r.bits() & !mask));
}
}
}
#[inline(always)]
fn port_reg(&self) -> &PortRegisterBlock {
match self.id().group {
DynGroup::A => unsafe { &(*Porta::ptr()) },
DynGroup::B => unsafe { &(*Portb::ptr()) },
DynGroup::C => unsafe { &(*Portc::ptr()) },
DynGroup::D => unsafe { &(*Portd::ptr()) },
DynGroup::E => unsafe { &(*Porte::ptr()) },
DynGroup::F => unsafe { &(*Portf::ptr()) },
DynGroup::G => unsafe { &(*Portg::ptr()) },
}
}
#[inline(always)]
fn iocfg_port(&self) -> &PortReg {
let ioconfig = unsafe { Ioconfig::ptr().as_ref().unwrap() };
match self.id().group {
DynGroup::A => ioconfig.porta(self.id().num as usize),
DynGroup::B => ioconfig.portb0(self.id().num as usize),
DynGroup::C => ioconfig.portc0(self.id().num as usize),
DynGroup::D => ioconfig.portd0(self.id().num as usize),
DynGroup::E => ioconfig.porte0(self.id().num as usize),
DynGroup::F => ioconfig.portf0(self.id().num as usize),
DynGroup::G => ioconfig.portg0(self.id().num as usize),
}
}
#[inline(always)]
fn mask_32(&self) -> u32 {
1 << self.id().num
}
#[inline(always)]
fn enable_irq(&self) {
self.port_reg()
.irq_enb()
.modify(|r, w| unsafe { w.bits(r.bits() | self.mask_32()) });
}
#[inline]
/// Read the logic level of an output pin
fn read_pin(&self) -> bool {
let portreg = self.port_reg();
((portreg.datainraw().read().bits() >> self.id().num) & 0x01) == 1
}
// Get DATAMASK bit for this particular pin
#[inline(always)]
fn datamask(&self) -> bool {
let portreg = self.port_reg();
(portreg.datamask().read().bits() >> self.id().num) == 1
}
/// Read a pin but use the masked version but check whether the datamask for the pin is
/// cleared as well
#[inline(always)]
fn read_pin_masked(&self) -> Result<bool, IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
Ok(((self.port_reg().datain().read().bits() >> self.id().num) & 0x01) == 1)
}
}
/// Write the logic level of an output pin
#[inline(always)]
fn write_pin(&mut self, bit: bool) {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
}
}
/// Write the logic level of an output pin but check whether the datamask for the pin is
/// cleared as well
#[inline]
fn write_pin_masked(&mut self, bit: bool) -> Result<(), IsMaskedError> {
if !self.datamask() {
Err(IsMaskedError)
} else {
// Safety: SETOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe {
if bit {
self.port_reg().setout().write(|w| w.bits(self.mask_32()));
} else {
self.port_reg().clrout().write(|w| w.bits(self.mask_32()));
}
Ok(())
}
}
}
/// Toggle the logic level of an output pin
#[inline(always)]
fn toggle(&mut self) {
// Safety: TOGOUT is a "mask" register, and we only write the bit for
// this pin ID
unsafe { self.port_reg().togout().write(|w| w.bits(self.mask_32())) };
}
/// Only useful for interrupt pins. Configure whether to use edges or level as interrupt soure
/// When using edge mode, it is possible to generate interrupts on both edges as well
#[inline]
fn configure_edge_interrupt(&mut self, edge_type: InterruptEdge) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
match edge_type {
InterruptEdge::HighToLow => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
InterruptEdge::LowToHigh => {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
InterruptEdge::BothEdges => {
self.port_reg()
.irq_edge()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
}
/// Configure which edge or level type triggers an interrupt
#[inline]
fn configure_level_interrupt(&mut self, level: InterruptLevel) {
unsafe {
self.port_reg()
.irq_sen()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
if level == InterruptLevel::Low {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
self.port_reg()
.irq_evt()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for input pins
#[inline]
fn configure_filter_type(&mut self, filter: FilterType, clksel: FilterClkSel) {
self.iocfg_port().modify(|_, w| {
// Safety: Only write to register for this Pin ID
unsafe {
w.flttype().bits(filter as u8);
w.fltclk().bits(clksel as u8)
}
});
}
/// Set DATAMASK bit for this particular pin. 1 is the default
/// state of the bit and allows access of the corresponding bit
#[inline(always)]
fn set_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
/// Clear DATAMASK bit for this particular pin. This prevents access
/// of the corresponding bit for output and input operations
#[inline(always)]
fn clear_datamask(&self) {
let portreg = self.port_reg();
unsafe {
portreg
.datamask()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
/// Only useful for output pins
/// See p.52 of the programmers guide for more information.
/// When configured for pulse mode, a given pin will set the non-default state for exactly
/// one clock cycle before returning to the configured default state
fn configure_pulse_mode(&mut self, enable: bool, default_state: PinState) {
let portreg = self.port_reg();
unsafe {
if enable {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.pulse()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if default_state == PinState::Low {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
} else {
portreg
.pulsebase()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
}
}
}
/// Only useful for output pins
fn configure_delay(&mut self, delay_1: bool, delay_2: bool) {
let portreg = self.port_reg();
unsafe {
if delay_1 {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay1()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
if delay_2 {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() | self.mask_32()));
} else {
portreg
.delay2()
.modify(|r, w| w.bits(r.bits() & !self.mask_32()));
}
}
}
}

View File

@ -35,6 +35,7 @@ compile_error!(
"
);
use gpio::Port;
pub use va416xx as device;
pub use va416xx as pac;
@ -71,20 +72,52 @@ pub enum FunSel {
Sel3 = 0b11,
}
#[derive(Debug, PartialEq, Eq, thiserror::Error)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[error("invalid pin with number {0}")]
pub struct InvalidPinError(u8);
/// Can be used to manually manipulate the function select of port pins.
///
/// The function selection table can be found on p.286 of the programmers guide. Please note
/// that most of the structures and APIs in this library will automatically correctly configure
/// the pin or statically expect the correct pin type.
#[inline]
pub fn port_function_select(
ioconfig: &mut pac::Ioconfig,
port: Port,
pin: u8,
funsel: FunSel,
) -> Result<(), InvalidPinError> {
if (port == Port::G && pin >= 8) || pin >= 16 {
return Err(InvalidPinError(pin));
}
let reg_block = match port {
Port::A => ioconfig.porta(pin as usize),
Port::B => ioconfig.portb0(pin as usize),
Port::C => ioconfig.portc0(pin as usize),
Port::D => ioconfig.portd0(pin as usize),
Port::E => ioconfig.porte0(pin as usize),
Port::F => ioconfig.portf0(pin as usize),
Port::G => ioconfig.portg0(pin as usize),
};
reg_block.modify(|_, w| unsafe { w.funsel().bits(funsel as u8) });
Ok(())
}
/// Enable a specific interrupt using the NVIC peripheral.
///
/// # Safety
///
/// This function is `unsafe` because it can break mask-based critical sections.
#[inline]
pub unsafe fn enable_interrupt(irq: pac::Interrupt) {
unsafe {
cortex_m::peripheral::NVIC::unmask(irq);
}
pub unsafe fn enable_nvic_interrupt(irq: pac::Interrupt) {
cortex_m::peripheral::NVIC::unmask(irq);
}
/// Disable a specific interrupt using the NVIC peripheral.
#[inline]
pub fn disable_interrupt(irq: pac::Interrupt) {
pub fn disable_nvic_interrupt(irq: pac::Interrupt) {
cortex_m::peripheral::NVIC::mask(irq);
}

View File

@ -24,8 +24,7 @@ use crate::gpio::{
use crate::time::Hertz;
use crate::typelevel::Sealed;
use crate::{disable_interrupt, prelude::*};
use crate::{enable_interrupt, pac};
use crate::{disable_nvic_interrupt, enable_nvic_interrupt, pac, prelude::*};
pub static MS_COUNTER: Mutex<Cell<u32>> = Mutex::new(Cell::new(0));
@ -406,7 +405,7 @@ pub type TimRegBlock = pac::tim0::RegisterBlock;
///
/// # Safety
///
/// Users should only implement the [`tim_id`] function. No default function
/// Users should only implement the [Self::tim_id] function. No default function
/// implementations should be overridden. The implementing type must also have
/// "control" over the corresponding pin ID, i.e. it must guarantee that a each
/// pin ID is a singleton.
@ -590,7 +589,7 @@ impl<Tim: ValidTim> CountdownTimer<Tim> {
pub fn listen(&mut self) {
self.listening = true;
self.enable_interrupt();
unsafe { enable_interrupt(Tim::IRQ) }
unsafe { enable_nvic_interrupt(Tim::IRQ) }
}
/// Return `Ok` if the timer has wrapped. Peripheral will automatically clear the
@ -618,7 +617,7 @@ impl<Tim: ValidTim> CountdownTimer<Tim> {
pub fn unlisten(&mut self) {
self.listening = true;
self.disable_interrupt();
disable_interrupt(Tim::IRQ);
disable_nvic_interrupt(Tim::IRQ);
}
#[inline(always)]

View File

@ -1,7 +1,7 @@
//! # API for the UART peripheral
//!
//! The core of this API are the [Uart], [UartBase], [Rx] and [Tx] structures.
//! The RX structure also has a dedicated [RxWithIrq] variant which allows reading the receiver
//! The RX structure also has a dedicated [RxWithInterrupt] variant which allows reading the receiver
//! using interrupts.
//!
//! ## Examples
@ -18,7 +18,7 @@ use fugit::RateExtU32;
use crate::clock::{Clocks, PeripheralSelect, SyscfgExt};
use crate::gpio::PF13;
use crate::time::Hertz;
use crate::{disable_interrupt, enable_interrupt};
use crate::{disable_nvic_interrupt, enable_nvic_interrupt};
use crate::{
gpio::{
AltFunc1, AltFunc2, AltFunc3, Pin, PA2, PA3, PB14, PB15, PC14, PC4, PC5, PD11, PD12, PE2,
@ -580,7 +580,7 @@ impl<Uart: Instance> UartBase<Uart> {
w.rxenable().clear_bit();
w.txenable().clear_bit()
});
disable_interrupt(Uart::IRQ_RX);
disable_nvic_interrupt(Uart::IRQ_RX);
self.uart
}
@ -975,7 +975,7 @@ impl<Uart: Instance> RxWithInterrupt<Uart> {
pub fn start(&mut self) {
self.0.enable();
self.enable_rx_irq_sources(true);
unsafe { enable_interrupt(Uart::IRQ_RX) };
unsafe { enable_nvic_interrupt(Uart::IRQ_RX) };
}
#[inline(always)]

View File

@ -9,7 +9,7 @@ use crate::{
pac,
prelude::SyscfgExt,
};
use crate::{disable_interrupt, enable_interrupt};
use crate::{disable_nvic_interrupt, enable_nvic_interrupt};
pub const WDT_UNLOCK_VALUE: u32 = 0x1ACC_E551;
@ -30,12 +30,12 @@ pub type WdtController = Wdt;
/// This function is `unsafe` because it can break mask-based critical sections.
#[inline]
pub unsafe fn enable_wdt_interrupts() {
enable_interrupt(pac::Interrupt::WATCHDOG)
enable_nvic_interrupt(pac::Interrupt::WATCHDOG)
}
#[inline]
pub fn disable_wdt_interrupts() {
disable_interrupt(pac::Interrupt::WATCHDOG)
disable_nvic_interrupt(pac::Interrupt::WATCHDOG)
}
impl Wdt {

View File

@ -16,6 +16,7 @@ cortex-m-rt = "0.7"
embedded-hal = "1"
[dependencies.va416xx-hal]
path = "../va416xx-hal"
features = ["va41630"]
version = ">=0.3, <0.4"

View File

@ -14,7 +14,7 @@ pub mod accelerometer {
use lis2dh12::{self, detect_i2c_addr, AddrDetectionError, Lis2dh12};
use va416xx_hal::{
clock::Clocks,
i2c::{self, ClockTooSlowForFastI2c, I2cMaster, I2cSpeed, MasterConfig},
i2c::{self, ClockTooSlowForFastI2cError, I2cMaster, I2cSpeed, MasterConfig},
pac,
};
@ -23,7 +23,7 @@ pub mod accelerometer {
#[derive(Debug)]
pub enum ConstructorError {
ClkError(ClockTooSlowForFastI2c),
ClkError(ClockTooSlowForFastI2cError),
AddrDetectionError(AddrDetectionError<i2c::Error>),
AccelerometerError(lis2dh12::Error<i2c::Error>),
}