init commit

This commit is contained in:
2025-02-19 11:00:04 +01:00
commit 0f2bda8ca1
111 changed files with 21616 additions and 0 deletions

1
axi-uartlite-rs/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

View File

@ -0,0 +1,27 @@
[package]
name = "axi-uartlite"
version = "0.1.0"
description = "LogiCORE AXI UART Lite v2.0 driver"
edition = "2024"
[dependencies]
derive-mmio = { git = "https://github.com/knurling-rs/derive-mmio.git", rev = "0806ce10b132ca15c6d9122a2d15a6e146b01520"}
bitbybit = "1.3"
arbitrary-int = "1.3"
nb = "1"
embedded-hal-nb = "1"
embedded-io = "0.6"
embedded-io-async = "0.6"
critical-section = "1"
thiserror = { version = "2", default-features = false }
embassy-sync = "0.6"
raw-slice = { git = "https://egit.irs.uni-stuttgart.de/rust/raw-slice.git" }
[features]
default = ["1-waker"]
1-waker = []
2-wakers = []
4-wakers = []
8-wakers = []
16-wakers = []
32-wakers = []

264
axi-uartlite-rs/src/lib.rs Normal file
View File

@ -0,0 +1,264 @@
//! # AXI UART Lite v2.0 driver
//!
//! This is a native Rust driver for the AMD AXI UART Lite v2.0 IP core.
//!
//! # Features
//!
//! If asynchronous TX operations are used, the number of wakers which defaults to 1 waker can
//! also be configured. The [tx_async] module provides more details on the meaning of this number.
//!
//! - `1-waker` which is also a `default` feature
//! - `2-wakers`
//! - `4-wakers`
//! - `8-wakers`
//! - `16-wakers`
//! - `32-wakers`
#![no_std]
use core::convert::Infallible;
use registers::Control;
pub mod registers;
pub mod tx;
pub use tx::*;
pub mod rx;
pub use rx::*;
pub mod tx_async;
pub use tx_async::*;
pub const FIFO_DEPTH: usize = 16;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct RxErrorsCounted {
parity: u8,
frame: u8,
overrun: u8,
}
impl RxErrorsCounted {
pub const fn new() -> Self {
Self {
parity: 0,
frame: 0,
overrun: 0,
}
}
pub const fn parity(&self) -> u8 {
self.parity
}
pub const fn frame(&self) -> u8 {
self.frame
}
pub const fn overrun(&self) -> u8 {
self.overrun
}
pub fn has_errors(&self) -> bool {
self.parity > 0 || self.frame > 0 || self.overrun > 0
}
}
pub struct AxiUartlite {
rx: Rx,
tx: Tx,
errors: RxErrorsCounted,
}
impl AxiUartlite {
/// Create a new AXI UART Lite peripheral driver.
///
/// # Safety
///
/// - The `base_addr` must be a valid memory-mapped register address of an AXI UART Lite peripheral.
/// - Dereferencing an invalid or misaligned address results in **undefined behavior**.
/// - The caller must ensure that no other code concurrently modifies the same peripheral registers
/// in an unsynchronized manner to prevent data races.
/// - This function does not enforce uniqueness of driver instances. Creating multiple instances
/// with the same `base_addr` can lead to unintended behavior if not externally synchronized.
/// - The driver performs **volatile** reads and writes to the provided address.
pub const unsafe fn new(base_addr: u32) -> Self {
let regs = unsafe { registers::AxiUartlite::new_mmio_at(base_addr as usize) };
Self {
rx: Rx {
regs: unsafe { regs.clone() },
errors: None,
},
tx: Tx { regs, errors: None },
errors: RxErrorsCounted::new(),
}
}
#[inline(always)]
pub const fn regs(&mut self) -> &mut registers::MmioAxiUartlite<'static> {
&mut self.tx.regs
}
/// Write into the UART Lite.
///
/// Returns [nb::Error::WouldBlock] if the TX FIFO is full.
#[inline]
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
self.tx.write_fifo(data).unwrap();
if let Some(errors) = self.tx.errors {
self.handle_status_reg_errors(errors);
}
Ok(())
}
/// Write into the FIFO without checking the FIFO fill status.
///
/// This can be useful to completely fill the FIFO if it is known to be empty.
#[inline(always)]
pub fn write_fifo_unchecked(&mut self, data: u8) {
self.tx.write_fifo_unchecked(data);
}
#[inline]
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
let val = self.rx.read_fifo().unwrap();
if let Some(errors) = self.rx.errors {
self.handle_status_reg_errors(errors);
}
Ok(val)
}
#[inline(always)]
pub fn read_fifo_unchecked(&mut self) -> u8 {
self.rx.read_fifo_unchecked()
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn tx_fifo_empty(&mut self) -> bool {
self.tx.fifo_empty()
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn tx_fifo_full(&mut self) -> bool {
self.tx.fifo_full()
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn rx_has_data(&mut self) -> bool {
self.rx.has_data()
}
/// Read the error counters and also resets them.
pub fn read_and_clear_errors(&mut self) -> RxErrorsCounted {
let errors = self.errors;
self.errors = RxErrorsCounted::new();
errors
}
#[inline(always)]
fn handle_status_reg_errors(&mut self, errors: RxErrors) {
if errors.frame() {
self.errors.frame = self.errors.frame.saturating_add(1);
}
if errors.parity() {
self.errors.parity = self.errors.parity.saturating_add(1);
}
if errors.overrun() {
self.errors.overrun = self.errors.overrun.saturating_add(1);
}
}
#[inline]
pub fn reset_rx_fifo(&mut self) {
self.regs().write_ctrl_reg(
Control::builder()
.with_enable_interrupt(false)
.with_reset_rx_fifo(true)
.with_reset_tx_fifo(false)
.build(),
);
}
#[inline]
pub fn reset_tx_fifo(&mut self) {
self.regs().write_ctrl_reg(
Control::builder()
.with_enable_interrupt(false)
.with_reset_rx_fifo(false)
.with_reset_tx_fifo(true)
.build(),
);
}
#[inline]
pub fn split(self) -> (Tx, Rx) {
(self.tx, self.rx)
}
#[inline]
pub fn enable_interrupt(&mut self) {
self.regs().write_ctrl_reg(
Control::builder()
.with_enable_interrupt(true)
.with_reset_rx_fifo(false)
.with_reset_tx_fifo(false)
.build(),
);
}
#[inline]
pub fn disable_interrupt(&mut self) {
self.regs().write_ctrl_reg(
Control::builder()
.with_enable_interrupt(false)
.with_reset_rx_fifo(false)
.with_reset_tx_fifo(false)
.build(),
);
}
}
impl embedded_hal_nb::serial::ErrorType for AxiUartlite {
type Error = Infallible;
}
impl embedded_hal_nb::serial::Write for AxiUartlite {
#[inline]
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
self.tx.write(word)
}
#[inline]
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.flush()
}
}
impl embedded_hal_nb::serial::Read for AxiUartlite {
#[inline]
fn read(&mut self) -> nb::Result<u8, Self::Error> {
self.rx.read()
}
}
impl embedded_io::ErrorType for AxiUartlite {
type Error = Infallible;
}
impl embedded_io::Read for AxiUartlite {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.rx.read(buf)
}
}
impl embedded_io::Write for AxiUartlite {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.tx.write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush()
}
}

View File

@ -0,0 +1,55 @@
#[bitbybit::bitfield(u32)]
pub struct RxFifo {
#[bits(0..=7, r)]
pub data: u8,
}
#[bitbybit::bitfield(u32)]
pub struct TxFifo {
#[bits(0..=7, w)]
pub data: u8,
}
#[bitbybit::bitfield(u32)]
pub struct Status {
#[bit(7, r)]
pub parity_error: bool,
#[bit(6, r)]
pub frame_error: bool,
#[bit(5, r)]
pub overrun_error: bool,
#[bit(4, r)]
pub intr_enabled: bool,
#[bit(3, r)]
pub tx_fifo_full: bool,
#[bit(2, r)]
pub tx_fifo_empty: bool,
#[bit(1, r)]
pub rx_fifo_full: bool,
/// RX FIFO contains valid data.
#[bit(0, r)]
pub rx_fifo_valid_data: bool,
}
#[bitbybit::bitfield(u32, default = 0x0)]
pub struct Control {
#[bit(4, w)]
enable_interrupt: bool,
#[bit(1, w)]
reset_rx_fifo: bool,
#[bit(0, w)]
reset_tx_fifo: bool,
}
#[derive(derive_mmio::Mmio)]
#[repr(C)]
pub struct AxiUartlite {
#[mmio(RO)]
rx_fifo: RxFifo,
tx_fifo: TxFifo,
#[mmio(RO)]
stat_reg: Status,
ctrl_reg: Control,
}
unsafe impl Send for MmioAxiUartlite<'static> {}

172
axi-uartlite-rs/src/rx.rs Normal file
View File

@ -0,0 +1,172 @@
use core::convert::Infallible;
use crate::registers::{self, AxiUartlite, Status};
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct RxErrors {
parity: bool,
frame: bool,
overrun: bool,
}
impl RxErrors {
pub const fn new() -> Self {
Self {
parity: false,
frame: false,
overrun: false,
}
}
pub const fn parity(&self) -> bool {
self.parity
}
pub const fn frame(&self) -> bool {
self.frame
}
pub const fn overrun(&self) -> bool {
self.overrun
}
pub const fn has_errors(&self) -> bool {
self.parity || self.frame || self.overrun
}
}
pub struct Rx {
pub(crate) regs: registers::MmioAxiUartlite<'static>,
pub(crate) errors: Option<RxErrors>,
}
impl Rx {
/// Steal the RX part of the UART Lite.
///
/// You should only use this if you can not use the regular [super::AxiUartlite] constructor
/// and the [super::AxiUartlite::split] method.
///
/// This function assumes that the setup of the UART was already done.
/// It can be used to create an RX handle inside an interrupt handler without having to use
/// a [critical_section::Mutex] if the user can guarantee that the RX handle will only be
/// used by the interrupt handler or only interrupt specific API will be used.
///
/// # Safety
///
/// The same safey rules specified in [super::AxiUartlite] apply.
#[inline]
pub const unsafe fn steal(base_addr: usize) -> Self {
Self {
regs: unsafe { AxiUartlite::new_mmio_at(base_addr) },
errors: None,
}
}
#[inline]
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
let status_reg = self.regs.read_stat_reg();
if !status_reg.rx_fifo_valid_data() {
return Err(nb::Error::WouldBlock);
}
let val = self.read_fifo_unchecked();
if let Some(errors) = handle_status_reg_errors(&status_reg) {
self.errors = Some(errors);
}
Ok(val)
}
#[inline(always)]
pub fn read_fifo_unchecked(&mut self) -> u8 {
self.regs.read_rx_fifo().data()
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn has_data(&mut self) -> bool {
self.regs.read_stat_reg().rx_fifo_valid_data()
}
/// This simply reads all available bytes in the RX FIFO.
///
/// It returns the number of read bytes.
#[inline]
pub fn read_whole_fifo(&mut self, buf: &mut [u8; 16]) -> usize {
let mut read = 0;
while read < buf.len() {
match self.read_fifo() {
Ok(byte) => {
buf[read] = byte;
read += 1;
}
Err(nb::Error::WouldBlock) => break,
}
}
read
}
/// Can be called in the interrupt handler for the UART Lite to handle RX reception.
///
/// Simply calls [Rx::read_whole_fifo].
#[inline]
pub fn on_interrupt_rx(&mut self, buf: &mut [u8; 16]) -> usize {
self.read_whole_fifo(buf)
}
pub fn read_and_clear_last_error(&mut self) -> Option<RxErrors> {
let errors = self.errors?;
self.errors = None;
Some(errors)
}
}
impl embedded_hal_nb::serial::ErrorType for Rx {
type Error = Infallible;
}
impl embedded_hal_nb::serial::Read for Rx {
#[inline]
fn read(&mut self) -> nb::Result<u8, Self::Error> {
self.read_fifo()
}
}
impl embedded_io::ErrorType for Rx {
type Error = Infallible;
}
impl embedded_io::Read for Rx {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
if buf.is_empty() {
return Ok(0);
}
while !self.has_data() {}
let mut read = 0;
for byte in buf.iter_mut() {
match self.read_fifo() {
Ok(data) => {
*byte = data;
read += 1;
}
Err(nb::Error::WouldBlock) => break,
}
}
Ok(read)
}
}
pub const fn handle_status_reg_errors(status_reg: &Status) -> Option<RxErrors> {
let mut errors = RxErrors::new();
if status_reg.frame_error() {
errors.frame = true;
}
if status_reg.parity_error() {
errors.parity = true;
}
if status_reg.overrun_error() {
errors.overrun = true;
}
if !errors.has_errors() {
return None;
}
Some(errors)
}

142
axi-uartlite-rs/src/tx.rs Normal file
View File

@ -0,0 +1,142 @@
use core::convert::Infallible;
use crate::{
RxErrors, handle_status_reg_errors,
registers::{self, Control, TxFifo},
};
pub struct Tx {
pub(crate) regs: registers::MmioAxiUartlite<'static>,
pub(crate) errors: Option<RxErrors>,
}
impl Tx {
/// Steal the TX part of the UART Lite.
///
/// You should only use this if you can not use the regular [super::AxiUartlite] constructor
/// and the [super::AxiUartlite::split] method.
///
/// This function assumes that the setup of the UART was already done.
/// It can be used to create a TX handle inside an interrupt handler without having to use
/// a [critical_section::Mutex] if the user can guarantee that the TX handle will only be
/// used by the interrupt handler, or only interrupt specific API will be used.
///
/// # Safety
///
/// The same safey rules specified in [super::AxiUartlite] apply.
pub unsafe fn steal(base_addr: usize) -> Self {
let regs = unsafe { registers::AxiUartlite::new_mmio_at(base_addr) };
Self { regs, errors: None }
}
/// Write into the UART Lite.
///
/// Returns [nb::Error::WouldBlock] if the TX FIFO is full.
#[inline]
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
let status_reg = self.regs.read_stat_reg();
if status_reg.tx_fifo_full() {
return Err(nb::Error::WouldBlock);
}
self.write_fifo_unchecked(data);
if let Some(errors) = handle_status_reg_errors(&status_reg) {
self.errors = Some(errors);
}
Ok(())
}
#[inline]
pub fn reset_fifo(&mut self) {
let status = self.regs.read_stat_reg();
self.regs.write_ctrl_reg(
Control::builder()
.with_enable_interrupt(status.intr_enabled())
.with_reset_rx_fifo(false)
.with_reset_tx_fifo(true)
.build(),
);
}
/// Write into the FIFO without checking the FIFO fill status.
///
/// This can be useful to completely fill the FIFO if it is known to be empty.
#[inline(always)]
pub fn write_fifo_unchecked(&mut self, data: u8) {
self.regs
.write_tx_fifo(TxFifo::new_with_raw_value(data as u32));
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn fifo_empty(&mut self) -> bool {
self.regs.read_stat_reg().tx_fifo_empty()
}
// TODO: Make this non-mut as soon as pure reads are available
#[inline(always)]
pub fn fifo_full(&mut self) -> bool {
self.regs.read_stat_reg().tx_fifo_full()
}
/// Fills the FIFO with user provided data until the user data
/// is consumed or the FIFO is full.
///
/// Returns the amount of written data, which might be smaller than the buffer size.
pub fn fill_fifo(&mut self, buf: &[u8]) -> usize {
let mut written = 0;
while written < buf.len() {
match self.write_fifo(buf[written]) {
Ok(_) => written += 1,
Err(nb::Error::WouldBlock) => break,
}
}
written
}
pub fn read_and_clear_last_error(&mut self) -> Option<RxErrors> {
let errors = self.errors?;
self.errors = None;
Some(errors)
}
}
impl embedded_hal_nb::serial::ErrorType for Tx {
type Error = Infallible;
}
impl embedded_hal_nb::serial::Write for Tx {
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
self.write_fifo(word)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
while !self.fifo_empty() {}
Ok(())
}
}
impl embedded_io::ErrorType for Tx {
type Error = Infallible;
}
impl embedded_io::Write for Tx {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
if buf.is_empty() {
return Ok(0);
}
while self.fifo_full() {}
let mut written = 0;
for &byte in buf.iter() {
match self.write_fifo(byte) {
Ok(_) => written += 1,
Err(nb::Error::WouldBlock) => break,
}
}
Ok(written)
}
fn flush(&mut self) -> Result<(), Self::Error> {
while !self.fifo_empty() {}
Ok(())
}
}

View File

@ -0,0 +1,221 @@
//! # Asynchronous TX support.
//!
//! This module provides support for asynchronous non-blocking TX transfers.
//!
//! It provides a static number of async wakers to allow a configurable amount of pollable
//! [TxFuture]s. Each UARTLite [Tx] instance which performs asynchronous TX operations needs
//! to be to explicitely assigned a waker when creating an awaitable [TxAsync] structure
//! as well as when calling the [on_interrupt_tx] handler.
//!
//! The maximum number of available wakers is configured via the waker feature flags:
//!
//! - `1-waker`
//! - `2-wakers`
//! - `4-wakers`
//! - `8-wakers`
//! - `16-wakers`
//! - `32-wakers`
use core::{cell::RefCell, convert::Infallible, sync::atomic::AtomicBool};
use critical_section::Mutex;
use embassy_sync::waitqueue::AtomicWaker;
use raw_slice::RawBufSlice;
use crate::{FIFO_DEPTH, Tx};
#[cfg(feature = "1-waker")]
pub const NUM_WAKERS: usize = 1;
#[cfg(feature = "2-wakers")]
pub const NUM_WAKERS: usize = 2;
#[cfg(feature = "4-wakers")]
pub const NUM_WAKERS: usize = 4;
#[cfg(feature = "8-wakers")]
pub const NUM_WAKERS: usize = 8;
#[cfg(feature = "16-wakers")]
pub const NUM_WAKERS: usize = 16;
#[cfg(feature = "32-wakers")]
pub const NUM_WAKERS: usize = 32;
static UART_TX_WAKERS: [AtomicWaker; NUM_WAKERS] = [const { AtomicWaker::new() }; NUM_WAKERS];
static TX_CONTEXTS: [Mutex<RefCell<TxContext>>; NUM_WAKERS] =
[const { Mutex::new(RefCell::new(TxContext::new())) }; NUM_WAKERS];
// Completion flag. Kept outside of the context structure as an atomic to avoid
// critical section.
static TX_DONE: [AtomicBool; NUM_WAKERS] = [const { AtomicBool::new(false) }; NUM_WAKERS];
#[derive(Debug, thiserror::Error)]
#[error("invalid waker slot index: {0}")]
pub struct InvalidWakerIndex(pub usize);
/// This is a generic interrupt handler to handle asynchronous UART TX operations for a given
/// UART peripheral.
///
/// The user has to call this once in the interrupt handler responsible if the interrupt was
/// triggered by the UARTLite. The relevant [Tx] handle of the UARTLite and the waker slot used
/// for it must be passed as well. [Tx::steal] can be used to create the required handle.
pub fn on_interrupt_tx(uartlite_tx: &mut Tx, waker_slot: usize) {
if waker_slot >= NUM_WAKERS {
return;
}
let status = uartlite_tx.regs.read_stat_reg();
// Interrupt are not even enabled.
if !status.intr_enabled() {
return;
}
let mut context = critical_section::with(|cs| {
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
*context_ref.borrow()
});
// No transfer active.
if context.slice.is_null() {
return;
}
let slice_len = context.slice.len().unwrap();
if (context.progress >= slice_len && status.tx_fifo_empty()) || slice_len == 0 {
// Write back updated context structure.
critical_section::with(|cs| {
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
*context_ref.borrow_mut() = context;
});
// Transfer is done.
TX_DONE[waker_slot].store(true, core::sync::atomic::Ordering::Relaxed);
UART_TX_WAKERS[waker_slot].wake();
return;
}
// Safety: We documented that the user provided slice must outlive the future, so we convert
// the raw pointer back to the slice here.
let slice = unsafe { context.slice.get() }.expect("slice is invalid");
while context.progress < slice_len {
if uartlite_tx.regs.read_stat_reg().tx_fifo_full() {
break;
}
// Safety: TX structure is owned by the future which does not write into the the data
// register, so we can assume we are the only one writing to the data register.
uartlite_tx.write_fifo_unchecked(slice[context.progress]);
context.progress += 1;
}
// Write back updated context structure.
critical_section::with(|cs| {
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
*context_ref.borrow_mut() = context;
});
}
#[derive(Debug, Copy, Clone)]
pub struct TxContext {
progress: usize,
slice: RawBufSlice,
}
#[allow(clippy::new_without_default)]
impl TxContext {
pub const fn new() -> Self {
Self {
progress: 0,
slice: RawBufSlice::new_nulled(),
}
}
}
pub struct TxFuture {
waker_idx: usize,
}
impl TxFuture {
/// Create a new TX future which can be used for asynchronous TX operations.
///
/// # Safety
///
/// This function stores the raw pointer of the passed data slice. The user MUST ensure
/// that the slice outlives the data structure.
pub unsafe fn new(
tx: &mut Tx,
waker_idx: usize,
data: &[u8],
) -> Result<Self, InvalidWakerIndex> {
TX_DONE[waker_idx].store(false, core::sync::atomic::Ordering::Relaxed);
tx.reset_fifo();
let init_fill_count = core::cmp::min(data.len(), FIFO_DEPTH);
// We fill the FIFO with initial data.
for data in data.iter().take(init_fill_count) {
tx.write_fifo_unchecked(*data);
}
critical_section::with(|cs| {
let context_ref = TX_CONTEXTS[waker_idx].borrow(cs);
let mut context = context_ref.borrow_mut();
unsafe {
context.slice.set(data);
}
context.progress = init_fill_count;
});
Ok(Self { waker_idx })
}
}
impl Future for TxFuture {
type Output = usize;
fn poll(
self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
UART_TX_WAKERS[self.waker_idx].register(cx.waker());
if TX_DONE[self.waker_idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
let progress = critical_section::with(|cs| {
let mut ctx = TX_CONTEXTS[self.waker_idx].borrow(cs).borrow_mut();
ctx.slice.set_null();
ctx.progress
});
return core::task::Poll::Ready(progress);
}
core::task::Poll::Pending
}
}
impl Drop for TxFuture {
fn drop(&mut self) {}
}
pub struct TxAsync {
tx: Tx,
waker_idx: usize,
}
impl TxAsync {
pub fn new(tx: Tx, waker_idx: usize) -> Result<Self, InvalidWakerIndex> {
if waker_idx >= NUM_WAKERS {
return Err(InvalidWakerIndex(waker_idx));
}
Ok(Self { tx, waker_idx })
}
/// Write a buffer asynchronously.
///
/// This implementation is not side effect free, and a started future might have already
/// written part of the passed buffer.
pub async fn write(&mut self, buf: &[u8]) -> usize {
if buf.is_empty() {
return 0;
}
let fut = unsafe { TxFuture::new(&mut self.tx, self.waker_idx, buf).unwrap() };
fut.await
}
pub fn release(self) -> Tx {
self.tx
}
}
impl embedded_io::ErrorType for TxAsync {
type Error = Infallible;
}
impl embedded_io_async::Write for TxAsync {
/// Write a buffer asynchronously.
///
/// This implementation is not side effect free, and a started future might have already
/// written part of the passed buffer.
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Ok(self.write(buf).await)
}
}