move AXI UART drivers to separate crates
This commit is contained in:
parent
0f2bda8ca1
commit
198e17c134
@ -5,8 +5,6 @@ members = [
|
||||
"zynq7000",
|
||||
"zynq7000-hal",
|
||||
"zynq7000-embassy",
|
||||
"axi-uartlite-rs",
|
||||
"axi-uart16550-rs",
|
||||
"examples/simple",
|
||||
"examples/embassy",
|
||||
"examples/zedboard",
|
||||
|
@ -1,32 +0,0 @@
|
||||
[package]
|
||||
name = "axi-uart16550"
|
||||
version = "0.1.0"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
derive-mmio = { git = "https://github.com/knurling-rs/derive-mmio.git", rev = "0806ce10b132ca15c6d9122a2d15a6e146b01520"}
|
||||
bitbybit = "1.3"
|
||||
arbitrary-int = "1.3"
|
||||
nb = "1"
|
||||
libm = "0.2"
|
||||
critical-section = "1"
|
||||
thiserror = { version = "2", default-features = false }
|
||||
fugit = "0.3"
|
||||
embedded-hal-async = "1"
|
||||
embedded-hal-nb = "1"
|
||||
embedded-io = "0.6"
|
||||
embedded-io-async = "0.6"
|
||||
embassy-sync = "0.6"
|
||||
raw-slice = { git = "https://egit.irs.uni-stuttgart.de/rust/raw-slice.git" }
|
||||
|
||||
[features]
|
||||
default = ["1-waker"]
|
||||
1-waker = []
|
||||
2-wakers = []
|
||||
4-wakers = []
|
||||
8-wakers = []
|
||||
16-wakers = []
|
||||
32-wakers = []
|
||||
|
||||
[dev-dependencies]
|
||||
approx = "0.5"
|
@ -1,372 +0,0 @@
|
||||
#![no_std]
|
||||
|
||||
use core::convert::Infallible;
|
||||
|
||||
use registers::{Fcr, Ier, Lcr, RxFifoTrigger, StopBits, WordLen};
|
||||
pub mod registers;
|
||||
|
||||
pub mod tx;
|
||||
pub use tx::*;
|
||||
|
||||
pub mod tx_async;
|
||||
pub use tx_async::*;
|
||||
|
||||
pub mod rx;
|
||||
pub use rx::*;
|
||||
|
||||
pub const FIFO_DEPTH: usize = 16;
|
||||
pub const DEFAULT_RX_TRIGGER_LEVEL: RxFifoTrigger = RxFifoTrigger::EightBytes;
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct ClkConfig {
|
||||
pub div: u16,
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
|
||||
#[error("divisor is zero")]
|
||||
pub struct DivisorZeroError;
|
||||
|
||||
/// Calculate the error rate of the baudrate with the given clock frequency, baudrate and
|
||||
/// divisor as a floating point value between 0.0 and 1.0.
|
||||
#[inline]
|
||||
pub fn calculate_error_rate_from_div(
|
||||
clk_in: fugit::HertzU32,
|
||||
baudrate: u32,
|
||||
div: u16,
|
||||
) -> Result<f32, DivisorZeroError> {
|
||||
if baudrate == 0 || div == 0 {
|
||||
return Err(DivisorZeroError);
|
||||
}
|
||||
let actual = (clk_in.raw() as f32) / (16.0 * div as f32);
|
||||
Ok(libm::fabsf(actual - baudrate as f32) / baudrate as f32)
|
||||
}
|
||||
|
||||
/// If this error occurs, the calculated baudrate divisor is too large, either because the
|
||||
/// used clock is too large, or the baudrate is too slow for the used clock frequency.
|
||||
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
|
||||
#[error("divisor too large")]
|
||||
pub enum ClkConfigError {
|
||||
DivisorTooLargeError(u32),
|
||||
DivisorZero(#[from] DivisorZeroError),
|
||||
}
|
||||
|
||||
impl ClkConfig {
|
||||
pub fn new(div: u16) -> Self {
|
||||
Self { div }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn div_msb(&self) -> u8 {
|
||||
(self.div >> 8) as u8
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn div_lsb(&self) -> u8 {
|
||||
self.div as u8
|
||||
}
|
||||
|
||||
/// This function calculates the required divisor values for a given input clock and baudrate
|
||||
/// as well as an baud error rate.
|
||||
#[inline]
|
||||
pub fn new_autocalc_with_error(
|
||||
clk_in: fugit::HertzU32,
|
||||
baudrate: u32,
|
||||
) -> Result<(Self, f32), ClkConfigError> {
|
||||
let cfg = Self::new_autocalc(clk_in, baudrate)?;
|
||||
Ok((cfg, cfg.calculate_error_rate(clk_in, baudrate)?))
|
||||
}
|
||||
|
||||
/// This function calculates the required divisor values for a given input clock and baudrate.
|
||||
///
|
||||
/// The function will not calculate the error rate. You can use [Self::calculate_error_rate]
|
||||
/// to check the error rate, or use the [Self::new_autocalc_with_error] function to get both
|
||||
/// the clock config and its baud error.
|
||||
#[inline]
|
||||
pub fn new_autocalc(clk_in: fugit::HertzU32, baudrate: u32) -> Result<Self, ClkConfigError> {
|
||||
let div = Self::calc_div_with_integer_div(clk_in, baudrate)?;
|
||||
if div > u16::MAX as u32 {
|
||||
return Err(ClkConfigError::DivisorTooLargeError(div));
|
||||
}
|
||||
Ok(Self { div: div as u16 })
|
||||
}
|
||||
|
||||
/// Calculate the error rate of the baudrate with the given clock frequency, baudrate and the
|
||||
/// current clock config as a floating point value between 0.0 and 1.0.
|
||||
#[inline]
|
||||
pub fn calculate_error_rate(
|
||||
&self,
|
||||
clk_in: fugit::HertzU32,
|
||||
baudrate: u32,
|
||||
) -> Result<f32, DivisorZeroError> {
|
||||
calculate_error_rate_from_div(clk_in, baudrate, self.div)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const fn calc_div_with_integer_div(
|
||||
clk_in: fugit::HertzU32,
|
||||
baudrate: u32,
|
||||
) -> Result<u32, DivisorZeroError> {
|
||||
if baudrate == 0 {
|
||||
return Err(DivisorZeroError);
|
||||
}
|
||||
// Rounding integer division, by adding half the divisor to the dividend.
|
||||
Ok((clk_in.raw() + (8 * baudrate)) / (16 * baudrate))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub enum Parity {
|
||||
#[default]
|
||||
None,
|
||||
Odd,
|
||||
Even,
|
||||
}
|
||||
|
||||
pub struct AxiUart16550 {
|
||||
rx: Rx,
|
||||
tx: Tx,
|
||||
config: UartConfig,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||
pub struct UartConfig {
|
||||
clk: ClkConfig,
|
||||
word_len: WordLen,
|
||||
parity: Parity,
|
||||
stop_bits: StopBits,
|
||||
}
|
||||
|
||||
impl UartConfig {
|
||||
pub const fn new_with_clk_config(clk: ClkConfig) -> Self {
|
||||
Self {
|
||||
clk,
|
||||
word_len: WordLen::Eight,
|
||||
parity: Parity::None,
|
||||
stop_bits: StopBits::One,
|
||||
}
|
||||
}
|
||||
|
||||
pub const fn new(
|
||||
clk: ClkConfig,
|
||||
word_len: WordLen,
|
||||
parity: Parity,
|
||||
stop_bits: StopBits,
|
||||
) -> Self {
|
||||
Self {
|
||||
clk,
|
||||
word_len,
|
||||
parity,
|
||||
stop_bits,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AxiUart16550 {
|
||||
/// Create a new AXI UART16550 peripheral driver.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// - The `base_addr` must be a valid memory-mapped register address of an AXI UART 16550
|
||||
/// peripheral.
|
||||
/// - Dereferencing an invalid or misaligned address results in **undefined behavior**.
|
||||
/// - The caller must ensure that no other code concurrently modifies the same peripheral registers
|
||||
/// in an unsynchronized manner to prevent data races.
|
||||
/// - This function does not enforce uniqueness of driver instances. Creating multiple instances
|
||||
/// with the same `base_addr` can lead to unintended behavior if not externally synchronized.
|
||||
/// - The driver performs **volatile** reads and writes to the provided address.
|
||||
pub unsafe fn new(base_addr: u32, config: UartConfig) -> Self {
|
||||
let mut regs = unsafe { registers::AxiUart16550::new_mmio_at(base_addr as usize) };
|
||||
// This unlocks the divisor config registers.
|
||||
regs.write_lcr(Lcr::new_for_divisor_access());
|
||||
regs.write_fifo_or_dll(config.clk.div_lsb() as u32);
|
||||
regs.write_ier_or_dlm(config.clk.div_msb() as u32);
|
||||
// Configure all other settings and reset the div acess latch. This is important
|
||||
// for accessing IER and the FIFO control register again.
|
||||
regs.write_lcr(
|
||||
Lcr::builder()
|
||||
.with_div_access_latch(false)
|
||||
.with_set_break(false)
|
||||
.with_stick_parity(false)
|
||||
.with_even_parity(config.parity == Parity::Even)
|
||||
.with_parity_enable(config.parity != Parity::None)
|
||||
.with_stop_bits(config.stop_bits)
|
||||
.with_word_len(config.word_len)
|
||||
.build(),
|
||||
);
|
||||
// Disable all interrupts.
|
||||
regs.write_ier_or_dlm(Ier::new_with_raw_value(0x0).raw_value());
|
||||
// Enable FIFO, configure 8 bytes FIFO trigger by default.
|
||||
regs.write_iir_or_fcr(
|
||||
Fcr::builder()
|
||||
.with_rx_fifo_trigger(DEFAULT_RX_TRIGGER_LEVEL)
|
||||
.with_dma_mode_sel(false)
|
||||
.with_reset_tx_fifo(true)
|
||||
.with_reset_rx_fifo(true)
|
||||
.with_fifo_enable(true)
|
||||
.build()
|
||||
.raw_value(),
|
||||
);
|
||||
Self {
|
||||
rx: Rx::new(unsafe { regs.clone() }),
|
||||
tx: Tx::new(regs),
|
||||
config,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const fn regs(&mut self) -> &mut registers::MmioAxiUart16550<'static> {
|
||||
&mut self.rx.regs
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const fn config(&mut self) -> &UartConfig {
|
||||
&self.config
|
||||
}
|
||||
|
||||
/// Write into the UART Lite.
|
||||
///
|
||||
/// Returns [nb::Error::WouldBlock] if the TX FIFO is full.
|
||||
#[inline]
|
||||
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
|
||||
self.tx.write_fifo(data)
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available.
|
||||
#[inline(always)]
|
||||
pub fn thr_empty(&mut self) -> bool {
|
||||
self.tx.thr_empty()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn tx_empty(&mut self) -> bool {
|
||||
self.tx.tx_empty()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn rx_has_data(&mut self) -> bool {
|
||||
self.rx.has_data()
|
||||
}
|
||||
|
||||
/// Write into the FIFO without checking the FIFO fill status.
|
||||
///
|
||||
/// This can be useful to completely fill the FIFO if it is known to be empty.
|
||||
#[inline(always)]
|
||||
pub fn write_fifo_unchecked(&mut self, data: u8) {
|
||||
self.tx.write_fifo_unchecked(data);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
|
||||
self.rx.read_fifo()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn read_fifo_unchecked(&mut self) -> u8 {
|
||||
self.rx.read_fifo_unchecked()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn enable_interrupts(&mut self, ier: Ier) {
|
||||
self.regs().write_ier_or_dlm(ier.raw_value());
|
||||
}
|
||||
|
||||
pub fn split(self) -> (Tx, Rx) {
|
||||
(self.tx, self.rx)
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for AxiUart16550 {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Write for AxiUart16550 {
|
||||
#[inline]
|
||||
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
|
||||
self.tx.write(word)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
||||
self.tx.flush()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Read for AxiUart16550 {
|
||||
#[inline]
|
||||
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
||||
self.rx.read()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for AxiUart16550 {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Read for AxiUart16550 {
|
||||
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||||
self.rx.read(buf)
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::Write for AxiUart16550 {
|
||||
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
self.tx.write(buf)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> Result<(), Self::Error> {
|
||||
self.tx.flush()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::ClkConfigError;
|
||||
|
||||
//extern crate std;
|
||||
use super::{DivisorZeroError, calculate_error_rate_from_div};
|
||||
|
||||
use super::ClkConfig;
|
||||
use approx::abs_diff_eq;
|
||||
use fugit::RateExtU32;
|
||||
|
||||
#[test]
|
||||
fn test_clk_calc_example_0() {
|
||||
let clk_cfg = ClkConfig::new_autocalc(100.MHz(), 56000).unwrap();
|
||||
// For some reason, the Xilinx example rounds up here..
|
||||
assert_eq!(clk_cfg.div, 0x0070);
|
||||
assert_eq!(clk_cfg.div_msb(), 0x00);
|
||||
assert_eq!(clk_cfg.div_lsb(), 0x70);
|
||||
let error = clk_cfg.calculate_error_rate(100.MHz(), 56000).unwrap();
|
||||
assert!(abs_diff_eq!(error, 0.0035, epsilon = 0.001));
|
||||
let (clk_cfg_checked, error_checked) =
|
||||
ClkConfig::new_autocalc_with_error(100.MHz(), 56000).unwrap();
|
||||
assert_eq!(clk_cfg, clk_cfg_checked);
|
||||
assert!(abs_diff_eq!(error, error_checked, epsilon = 0.001));
|
||||
let error_calc = calculate_error_rate_from_div(100.MHz(), 56000, clk_cfg.div).unwrap();
|
||||
assert!(abs_diff_eq!(error, error_calc, epsilon = 0.001));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_clk_calc_example_1() {
|
||||
let clk_cfg = ClkConfig::new_autocalc(1843200.Hz(), 56000).unwrap();
|
||||
assert_eq!(clk_cfg.div, 0x0002);
|
||||
assert_eq!(clk_cfg.div_msb(), 0x00);
|
||||
assert_eq!(clk_cfg.div_lsb(), 0x02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_invalid_baud() {
|
||||
let clk_cfg = ClkConfig::new_autocalc_with_error(100.MHz(), 0);
|
||||
assert_eq!(clk_cfg, Err(ClkConfigError::DivisorZero(DivisorZeroError)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_invalid_div() {
|
||||
let error = calculate_error_rate_from_div(100.MHz(), 115200, 0);
|
||||
assert_eq!(error.unwrap_err(), DivisorZeroError);
|
||||
let error = calculate_error_rate_from_div(100.MHz(), 0, 0);
|
||||
assert_eq!(error.unwrap_err(), DivisorZeroError);
|
||||
let error = calculate_error_rate_from_div(100.MHz(), 0, 16);
|
||||
assert_eq!(error.unwrap_err(), DivisorZeroError);
|
||||
}
|
||||
}
|
@ -1,177 +0,0 @@
|
||||
use arbitrary_int::u2;
|
||||
|
||||
/// Transmitter Holding Register.
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct Fifo {
|
||||
#[bits(0..=7, rw)]
|
||||
data: u8,
|
||||
}
|
||||
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct Ier {
|
||||
/// Enable Modem Status Interrupt
|
||||
#[bit(3, rw)]
|
||||
modem_status: bool,
|
||||
/// Enable Receiver Line Status Interrupt
|
||||
#[bit(2, rw)]
|
||||
line_status: bool,
|
||||
/// Enable Transmitter Holding Register Empty Interrupt
|
||||
#[bit(1, rw)]
|
||||
thr_empty: bool,
|
||||
/// Enable Received Data Available Interrupt
|
||||
#[bit(0, rw)]
|
||||
rx_avl: bool,
|
||||
}
|
||||
|
||||
/// Interrupt identification ID
|
||||
#[bitbybit::bitenum(u3, exhaustive = false)]
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub enum IntId2 {
|
||||
ReceiverLineStatus = 0b011,
|
||||
RxDataAvailable = 0b010,
|
||||
CharTimeout = 0b110,
|
||||
ThrEmpty = 0b001,
|
||||
ModemStatus = 0b000,
|
||||
}
|
||||
|
||||
/// Interrupt Identification Register
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct Iir {
|
||||
/// 16550 mode enabled?
|
||||
#[bits(6..=7, r)]
|
||||
fifo_enabled: u2,
|
||||
#[bits(1..=3, r)]
|
||||
int_id: Option<IntId2>,
|
||||
/// Interrupt Pending, active low.
|
||||
#[bit(0, r)]
|
||||
int_pend_n: bool,
|
||||
}
|
||||
|
||||
#[bitbybit::bitenum(u2, exhaustive = true)]
|
||||
pub enum RxFifoTrigger {
|
||||
OneByte = 0b00,
|
||||
FourBytes = 0b01,
|
||||
EightBytes = 0b10,
|
||||
FourteenBytes = 0b11,
|
||||
}
|
||||
|
||||
impl RxFifoTrigger {
|
||||
pub const fn as_num(self) -> u32 {
|
||||
match self {
|
||||
RxFifoTrigger::OneByte => 1,
|
||||
RxFifoTrigger::FourBytes => 4,
|
||||
RxFifoTrigger::EightBytes => 8,
|
||||
RxFifoTrigger::FourteenBytes => 14,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// FIFO Control Register
|
||||
#[bitbybit::bitfield(u32, default = 0x0)]
|
||||
pub struct Fcr {
|
||||
#[bits(4..=5, rw)]
|
||||
rx_fifo_trigger: RxFifoTrigger,
|
||||
#[bit(3, rw)]
|
||||
dma_mode_sel: bool,
|
||||
#[bit(2, rw)]
|
||||
reset_tx_fifo: bool,
|
||||
#[bit(1, rw)]
|
||||
reset_rx_fifo: bool,
|
||||
#[bit(0, rw)]
|
||||
fifo_enable: bool,
|
||||
}
|
||||
|
||||
#[bitbybit::bitenum(u2, exhaustive = true)]
|
||||
#[derive(Default, Debug, PartialEq, Eq)]
|
||||
pub enum WordLen {
|
||||
Five = 0b00,
|
||||
Six = 0b01,
|
||||
Seven = 0b10,
|
||||
#[default]
|
||||
Eight = 0b11,
|
||||
}
|
||||
|
||||
#[bitbybit::bitenum(u1, exhaustive = true)]
|
||||
#[derive(Default, Debug, PartialEq, Eq)]
|
||||
pub enum StopBits {
|
||||
#[default]
|
||||
One = 0b0,
|
||||
/// 1.5 for 5 bits/char, 2 otherwise.
|
||||
OnePointFiveOrTwo = 0b1,
|
||||
}
|
||||
|
||||
/// Line control register
|
||||
#[bitbybit::bitfield(u32, default = 0x00)]
|
||||
pub struct Lcr {
|
||||
#[bit(7, rw)]
|
||||
div_access_latch: bool,
|
||||
#[bit(6, rw)]
|
||||
set_break: bool,
|
||||
#[bit(5, rw)]
|
||||
stick_parity: bool,
|
||||
#[bit(4, rw)]
|
||||
even_parity: bool,
|
||||
#[bit(3, rw)]
|
||||
parity_enable: bool,
|
||||
/// 0: 1 stop bit, 1: 2 stop bits or 1.5 if 5 bits/char selected
|
||||
#[bit(2, rw)]
|
||||
stop_bits: StopBits,
|
||||
#[bits(0..=1, rw)]
|
||||
word_len: WordLen,
|
||||
}
|
||||
|
||||
impl Lcr {
|
||||
pub fn new_for_divisor_access() -> Self {
|
||||
Self::new_with_raw_value(0x80)
|
||||
}
|
||||
}
|
||||
|
||||
/// Line Status Register
|
||||
#[bitbybit::bitfield(u32)]
|
||||
#[derive(Debug)]
|
||||
pub struct Lsr {
|
||||
#[bit(7, rw)]
|
||||
error_in_rx_fifo: bool,
|
||||
/// In the FIFO mode, this is set to 1 when the TX FIFO and shift register are both empty.
|
||||
#[bit(6, rw)]
|
||||
tx_empty: bool,
|
||||
/// In the FIFO mode, this is set to 1 when the TX FIFO is empty. There might still be a byte
|
||||
/// in the TX shift register.
|
||||
#[bit(5, rw)]
|
||||
thr_empty: bool,
|
||||
#[bit(4, rw)]
|
||||
break_interrupt: bool,
|
||||
#[bit(3, rw)]
|
||||
framing_error: bool,
|
||||
#[bit(2, rw)]
|
||||
parity_error: bool,
|
||||
#[bit(1, rw)]
|
||||
overrun_error: bool,
|
||||
#[bit(0, rw)]
|
||||
data_ready: bool,
|
||||
}
|
||||
|
||||
#[derive(derive_mmio::Mmio)]
|
||||
#[repr(C)]
|
||||
pub struct AxiUart16550 {
|
||||
_reserved: [u32; 0x400],
|
||||
/// FIFO register for LCR[7] == 0 or Divisor Latch (LSB) register for LCR[7] == 1
|
||||
fifo_or_dll: u32,
|
||||
/// Interrupt Enable Register for LCR[7] == 0 or Divisor Latch (MSB) register for LCR[7] == 1
|
||||
ier_or_dlm: u32,
|
||||
/// Interrupt Identification Register or FIFO Control Register. FCR is not included in 16450
|
||||
/// mode. If LCR[7] == 1, this register will be the read-only FIFO control register.
|
||||
/// If LCR[7] == 0, this register will be the read-only interrupt IIR register or the
|
||||
/// write-only FIFO control register.
|
||||
iir_or_fcr: u32,
|
||||
/// Line Control Register
|
||||
lcr: Lcr,
|
||||
/// Modem Control Register
|
||||
mcr: u32,
|
||||
/// Line Status Register
|
||||
lsr: Lsr,
|
||||
/// Modem Status Register
|
||||
msr: u32,
|
||||
/// Scratch Register
|
||||
scr: u32,
|
||||
}
|
@ -1,223 +0,0 @@
|
||||
use core::convert::Infallible;
|
||||
|
||||
use crate::{
|
||||
DEFAULT_RX_TRIGGER_LEVEL,
|
||||
registers::{self, Fcr, Ier, Iir, IntId2, Lsr},
|
||||
};
|
||||
|
||||
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
||||
pub struct RxErrors {
|
||||
parity: bool,
|
||||
frame: bool,
|
||||
overrun: bool,
|
||||
}
|
||||
|
||||
impl RxErrors {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
parity: false,
|
||||
frame: false,
|
||||
overrun: false,
|
||||
}
|
||||
}
|
||||
|
||||
pub const fn parity(&self) -> bool {
|
||||
self.parity
|
||||
}
|
||||
|
||||
pub const fn frame(&self) -> bool {
|
||||
self.frame
|
||||
}
|
||||
|
||||
pub const fn overrun(&self) -> bool {
|
||||
self.overrun
|
||||
}
|
||||
|
||||
pub const fn has_errors(&self) -> bool {
|
||||
self.parity || self.frame || self.overrun
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Rx {
|
||||
/// Internal MMIO register structure.
|
||||
pub(crate) regs: registers::MmioAxiUart16550<'static>,
|
||||
pub(crate) errors: Option<RxErrors>,
|
||||
}
|
||||
|
||||
impl Rx {
|
||||
/// Steal the RX part of the UART 16550.
|
||||
///
|
||||
/// You should only use this if you can not use the regular [super::AxiUart16550] constructor
|
||||
/// and the [super::AxiUart16550::split] method.
|
||||
///
|
||||
/// This function assumes that the setup of the UART was already done.
|
||||
/// It can be used to create an RX handle inside an interrupt handler without having to use
|
||||
/// a [critical_section::Mutex] if the user can guarantee that the RX handle will only be
|
||||
/// used by the interrupt handler or only interrupt specific API will be used.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The same safey rules specified in [super::AxiUart16550::new] apply.
|
||||
pub const unsafe fn steal(base_addr: usize) -> Self {
|
||||
Self {
|
||||
regs: unsafe { registers::AxiUart16550::new_mmio_at(base_addr) },
|
||||
errors: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn new(regs: registers::MmioAxiUart16550<'static>) -> Self {
|
||||
Self { regs, errors: None }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
|
||||
let status_reg = self.regs.read_lsr();
|
||||
if !status_reg.data_ready() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
if status_reg.error_in_rx_fifo() {
|
||||
self.errors = Some(Self::lsr_to_errors(status_reg));
|
||||
}
|
||||
Ok(self.read_fifo_unchecked())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn read_fifo_unchecked(&mut self) -> u8 {
|
||||
self.regs.read_fifo_or_dll() as u8
|
||||
}
|
||||
|
||||
/// Start interrupt driven reception.
|
||||
///
|
||||
/// This function resets the FIFO with [Self::reset_fifo] and then enables the interrupts
|
||||
/// with [Self::enable_interrupt].
|
||||
/// After this, you only need to call [Self::on_interrupt_receiver_line_status] and
|
||||
/// [Self::on_interrupt_data_available_or_char_timeout] in your interrupt handler depending
|
||||
/// on the value of the IIR register to continously receive data.
|
||||
#[inline]
|
||||
pub fn start_interrupt_driven_reception(&mut self) {
|
||||
self.reset_fifo();
|
||||
self.enable_interrupt();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn enable_interrupt(&mut self) {
|
||||
self.regs.modify_ier_or_dlm(|val| {
|
||||
let mut ier = Ier::new_with_raw_value(val);
|
||||
ier.set_rx_avl(true);
|
||||
ier.set_line_status(true);
|
||||
ier.raw_value()
|
||||
});
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn disable_interrupt(&mut self) {
|
||||
self.regs.modify_ier_or_dlm(|val| {
|
||||
let mut ier = Ier::new_with_raw_value(val);
|
||||
ier.set_rx_avl(false);
|
||||
ier.set_line_status(false);
|
||||
ier.raw_value()
|
||||
});
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset_fifo(&mut self) {
|
||||
self.regs.write_iir_or_fcr(
|
||||
Fcr::builder()
|
||||
.with_rx_fifo_trigger(DEFAULT_RX_TRIGGER_LEVEL)
|
||||
.with_dma_mode_sel(false)
|
||||
.with_reset_tx_fifo(false)
|
||||
.with_reset_rx_fifo(true)
|
||||
.with_fifo_enable(true)
|
||||
.build()
|
||||
.raw_value(),
|
||||
);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn has_data(&mut self) -> bool {
|
||||
self.regs.read_lsr().data_ready()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn read_iir(&mut self) -> Iir {
|
||||
Iir::new_with_raw_value(self.regs.read_iir_or_fcr())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn on_interrupt_receiver_line_status(&mut self, _iir: Iir) -> RxErrors {
|
||||
let lsr = self.regs.read_lsr();
|
||||
Self::lsr_to_errors(lsr)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn on_interrupt_data_available_or_char_timeout(
|
||||
&mut self,
|
||||
int_id2: IntId2,
|
||||
buf: &mut [u8; 16],
|
||||
) -> usize {
|
||||
let mut read = 0;
|
||||
// It is guaranteed that we can read the FIFO trigger level.
|
||||
if int_id2 == IntId2::RxDataAvailable {
|
||||
let trigger_level = Fcr::new_with_raw_value(self.regs.read_iir_or_fcr());
|
||||
(0..trigger_level.rx_fifo_trigger().as_num() as usize).for_each(|i| {
|
||||
buf[i] = self.read_fifo_unchecked();
|
||||
read += 1;
|
||||
});
|
||||
}
|
||||
// Read the rest of the FIFO.
|
||||
while self.has_data() && read < 16 {
|
||||
buf[read] = self.read_fifo_unchecked();
|
||||
read += 1;
|
||||
}
|
||||
read
|
||||
}
|
||||
|
||||
pub fn lsr_to_errors(status_reg: Lsr) -> RxErrors {
|
||||
let mut errors = RxErrors::new();
|
||||
if status_reg.framing_error() {
|
||||
errors.frame = true;
|
||||
}
|
||||
if status_reg.parity_error() {
|
||||
errors.parity = true;
|
||||
}
|
||||
if status_reg.overrun_error() {
|
||||
errors.overrun = true;
|
||||
}
|
||||
errors
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for Rx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Read for Rx {
|
||||
#[inline]
|
||||
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
||||
self.read_fifo()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for Rx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Read for Rx {
|
||||
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||||
if buf.is_empty() {
|
||||
return Ok(0);
|
||||
}
|
||||
while !self.has_data() {}
|
||||
let mut read = 0;
|
||||
for byte in buf.iter_mut() {
|
||||
match self.read_fifo() {
|
||||
Ok(data) => {
|
||||
*byte = data;
|
||||
read += 1;
|
||||
}
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
Ok(read)
|
||||
}
|
||||
}
|
@ -1,152 +0,0 @@
|
||||
use core::convert::Infallible;
|
||||
|
||||
use crate::{
|
||||
DEFAULT_RX_TRIGGER_LEVEL,
|
||||
registers::{self, Fcr, Ier},
|
||||
};
|
||||
|
||||
pub struct Tx {
|
||||
/// Internal MMIO register structure.
|
||||
pub(crate) regs: registers::MmioAxiUart16550<'static>,
|
||||
}
|
||||
|
||||
impl Tx {
|
||||
/// Steal the TX part of the UART 16550.
|
||||
///
|
||||
/// You should only use this if you can not use the regular [super::AxiUart16550] constructor
|
||||
/// and the [super::AxiUart16550::split] method.
|
||||
///
|
||||
/// This function assumes that the setup of the UART was already done.
|
||||
/// It can be used to create a TX handle inside an interrupt handler without having to use
|
||||
/// a [critical_section::Mutex] if the user can guarantee that the TX handle will only be
|
||||
/// used by the interrupt handler, or only interrupt specific API will be used.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The same safey rules specified in [super::AxiUart16550::new] apply.
|
||||
pub const unsafe fn steal(base_addr: usize) -> Self {
|
||||
Self {
|
||||
regs: unsafe { registers::AxiUart16550::new_mmio_at(base_addr) },
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn new(regs: registers::MmioAxiUart16550<'static>) -> Self {
|
||||
Self { regs }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
|
||||
if !self.thr_empty() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
self.write_fifo_unchecked(data);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn enable_interrupt(&mut self) {
|
||||
self.regs.modify_ier_or_dlm(|val| {
|
||||
let mut ier = Ier::new_with_raw_value(val);
|
||||
ier.set_thr_empty(true);
|
||||
ier.raw_value()
|
||||
});
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn disable_interrupt(&mut self) {
|
||||
self.regs.modify_ier_or_dlm(|val| {
|
||||
let mut ier = Ier::new_with_raw_value(val);
|
||||
ier.set_thr_empty(false);
|
||||
ier.raw_value()
|
||||
});
|
||||
}
|
||||
|
||||
/// Write into the FIFO without checking the FIFO fill status.
|
||||
///
|
||||
/// This can be useful to completely fill the FIFO if it is known to be empty.
|
||||
#[inline(always)]
|
||||
pub fn write_fifo_unchecked(&mut self, data: u8) {
|
||||
self.regs.write_fifo_or_dll(data as u32);
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available.
|
||||
#[inline(always)]
|
||||
pub fn thr_empty(&mut self) -> bool {
|
||||
self.regs.read_lsr().thr_empty()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn tx_empty(&mut self) -> bool {
|
||||
self.regs.read_lsr().tx_empty()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset_fifo(&mut self) {
|
||||
self.regs.write_iir_or_fcr(
|
||||
Fcr::builder()
|
||||
.with_rx_fifo_trigger(DEFAULT_RX_TRIGGER_LEVEL)
|
||||
.with_dma_mode_sel(false)
|
||||
.with_reset_tx_fifo(true)
|
||||
.with_reset_rx_fifo(false)
|
||||
.with_fifo_enable(true)
|
||||
.build()
|
||||
.raw_value(),
|
||||
);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn on_interrupt_thr_empty(&mut self, next_write_chunk: &[u8]) -> usize {
|
||||
if next_write_chunk.is_empty() {
|
||||
return 0;
|
||||
}
|
||||
let mut written = 0;
|
||||
while self.thr_empty() && written < next_write_chunk.len() {
|
||||
self.write_fifo_unchecked(next_write_chunk[written]);
|
||||
written += 1;
|
||||
}
|
||||
written
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for Tx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Write for Tx {
|
||||
#[inline]
|
||||
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
|
||||
self.write_fifo(word)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
||||
while !self.tx_empty() {}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for Tx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Write for Tx {
|
||||
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
if buf.is_empty() {
|
||||
return Ok(0);
|
||||
}
|
||||
while !self.thr_empty() {}
|
||||
let mut written = 0;
|
||||
for &byte in buf.iter() {
|
||||
match self.write_fifo(byte) {
|
||||
Ok(_) => written += 1,
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
Ok(written)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> Result<(), Self::Error> {
|
||||
while !self.tx_empty() {}
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -1,259 +0,0 @@
|
||||
//! # Asynchronous TX support.
|
||||
//!
|
||||
//! This module provides support for asynchronous non-blocking TX transfers.
|
||||
//!
|
||||
//! It provides a static number of async wakers to allow a configurable amount of pollable
|
||||
//! [TxFuture]s. Each UARTLite [Tx] instance which performs asynchronous TX operations needs
|
||||
//! to be to explicitely assigned a waker when creating an awaitable [TxAsync] structure
|
||||
//! as well as when calling the [on_interrupt_tx] handler.
|
||||
//!
|
||||
//! The maximum number of available wakers is configured via the waker feature flags:
|
||||
//!
|
||||
//! - `1-waker`
|
||||
//! - `2-wakers`
|
||||
//! - `4-wakers`
|
||||
//! - `8-wakers`
|
||||
//! - `16-wakers`
|
||||
//! - `32-wakers`
|
||||
use core::{cell::RefCell, convert::Infallible, sync::atomic::AtomicBool};
|
||||
|
||||
use critical_section::Mutex;
|
||||
use embassy_sync::waitqueue::AtomicWaker;
|
||||
use embedded_hal_async::delay::DelayNs;
|
||||
use raw_slice::RawBufSlice;
|
||||
|
||||
use crate::{
|
||||
FIFO_DEPTH, Tx,
|
||||
registers::{self, Ier},
|
||||
};
|
||||
|
||||
#[cfg(feature = "1-waker")]
|
||||
pub const NUM_WAKERS: usize = 1;
|
||||
#[cfg(feature = "2-wakers")]
|
||||
pub const NUM_WAKERS: usize = 2;
|
||||
#[cfg(feature = "4-wakers")]
|
||||
pub const NUM_WAKERS: usize = 4;
|
||||
#[cfg(feature = "8-wakers")]
|
||||
pub const NUM_WAKERS: usize = 8;
|
||||
#[cfg(feature = "16-wakers")]
|
||||
pub const NUM_WAKERS: usize = 16;
|
||||
#[cfg(feature = "32-wakers")]
|
||||
pub const NUM_WAKERS: usize = 32;
|
||||
static UART_TX_WAKERS: [AtomicWaker; NUM_WAKERS] = [const { AtomicWaker::new() }; NUM_WAKERS];
|
||||
static TX_CONTEXTS: [Mutex<RefCell<TxContext>>; NUM_WAKERS] =
|
||||
[const { Mutex::new(RefCell::new(TxContext::new())) }; NUM_WAKERS];
|
||||
// Completion flag. Kept outside of the context structure as an atomic to avoid
|
||||
// critical section.
|
||||
static TX_DONE: [AtomicBool; NUM_WAKERS] = [const { AtomicBool::new(false) }; NUM_WAKERS];
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("invalid waker slot index: {0}")]
|
||||
pub struct InvalidWakerIndex(pub usize);
|
||||
|
||||
/// This is a generic interrupt handler to handle asynchronous UART TX operations for a given
|
||||
/// UART peripheral.
|
||||
///
|
||||
/// The user has to call this once in the interrupt handler responsible if the interrupt was
|
||||
/// triggered by the UARTLite. The relevant [Tx] handle of the UARTLite and the waker slot used
|
||||
/// for it must be passed as well. [Tx::steal] can be used to create the required handle.
|
||||
pub fn on_interrupt_tx(tx: &mut Tx, waker_slot: usize) {
|
||||
if waker_slot >= NUM_WAKERS {
|
||||
return;
|
||||
}
|
||||
let status = tx.regs.read_lsr();
|
||||
let ier = Ier::new_with_raw_value(tx.regs.read_ier_or_dlm());
|
||||
// Interrupt are not even enabled.
|
||||
if !ier.thr_empty() {
|
||||
return;
|
||||
}
|
||||
let mut context = critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow()
|
||||
});
|
||||
// No transfer active.
|
||||
if context.slice.is_null() {
|
||||
return;
|
||||
}
|
||||
let slice_len = context.slice.len().unwrap();
|
||||
// We have to use the THRE instead of the TEMT status flag here, because the interrupt
|
||||
// is configured to trigger on the THRE flag and the UART might still be busy shifting the
|
||||
// last byte out.
|
||||
if (context.progress >= slice_len && status.thr_empty()) || slice_len == 0 {
|
||||
// Write back updated context structure.
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow_mut() = context;
|
||||
});
|
||||
// Transfer is done.
|
||||
TX_DONE[waker_slot].store(true, core::sync::atomic::Ordering::Relaxed);
|
||||
tx.disable_interrupt();
|
||||
UART_TX_WAKERS[waker_slot].wake();
|
||||
return;
|
||||
}
|
||||
// Safety: We documented that the user provided slice must outlive the future, so we convert
|
||||
// the raw pointer back to the slice here.
|
||||
let slice = unsafe { context.slice.get() }.expect("slice is invalid");
|
||||
while context.progress < slice_len {
|
||||
match tx.write_fifo(slice[context.progress]) {
|
||||
Ok(_) => context.progress += 1,
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
// Write back updated context structure.
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow_mut() = context;
|
||||
});
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct TxContext {
|
||||
progress: usize,
|
||||
slice: RawBufSlice,
|
||||
}
|
||||
|
||||
#[allow(clippy::new_without_default)]
|
||||
impl TxContext {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
progress: 0,
|
||||
slice: RawBufSlice::new_nulled(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TxFuture {
|
||||
waker_idx: usize,
|
||||
reg_block: registers::MmioAxiUart16550<'static>,
|
||||
}
|
||||
|
||||
impl TxFuture {
|
||||
/// Create a new TX future which can be used for asynchronous TX operations.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// This function stores the raw pointer of the passed data slice. The user MUST ensure
|
||||
/// that the slice outlives the data structure.
|
||||
pub unsafe fn new(
|
||||
tx: &mut Tx,
|
||||
waker_idx: usize,
|
||||
data: &[u8],
|
||||
) -> Result<Self, InvalidWakerIndex> {
|
||||
TX_DONE[waker_idx].store(false, core::sync::atomic::Ordering::Relaxed);
|
||||
tx.disable_interrupt();
|
||||
tx.reset_fifo();
|
||||
|
||||
let init_fill_count = core::cmp::min(data.len(), FIFO_DEPTH);
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_idx].borrow(cs);
|
||||
let mut context = context_ref.borrow_mut();
|
||||
unsafe {
|
||||
context.slice.set(data);
|
||||
}
|
||||
context.progress = init_fill_count;
|
||||
});
|
||||
// We fill the FIFO with initial data.
|
||||
for data in data.iter().take(init_fill_count) {
|
||||
tx.write_fifo_unchecked(*data);
|
||||
}
|
||||
tx.enable_interrupt();
|
||||
Ok(Self {
|
||||
waker_idx,
|
||||
reg_block: unsafe { tx.regs.clone() },
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Future for TxFuture {
|
||||
type Output = usize;
|
||||
|
||||
fn poll(
|
||||
self: core::pin::Pin<&mut Self>,
|
||||
cx: &mut core::task::Context<'_>,
|
||||
) -> core::task::Poll<Self::Output> {
|
||||
UART_TX_WAKERS[self.waker_idx].register(cx.waker());
|
||||
if TX_DONE[self.waker_idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
|
||||
let progress = critical_section::with(|cs| {
|
||||
let mut ctx = TX_CONTEXTS[self.waker_idx].borrow(cs).borrow_mut();
|
||||
ctx.slice.set_null();
|
||||
ctx.progress
|
||||
});
|
||||
return core::task::Poll::Ready(progress);
|
||||
}
|
||||
core::task::Poll::Pending
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for TxFuture {
|
||||
fn drop(&mut self) {
|
||||
let mut tx = Tx::new(unsafe { self.reg_block.clone() });
|
||||
tx.disable_interrupt();
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TxAsync<D: DelayNs> {
|
||||
tx: Tx,
|
||||
waker_idx: usize,
|
||||
delay: D,
|
||||
}
|
||||
|
||||
impl<D: DelayNs> TxAsync<D> {
|
||||
/// Create a new asynchronous TX structure.
|
||||
///
|
||||
/// The delay function is a [DelayNs] provider which is used to allow flushing the
|
||||
/// device properly. This is because even when a write finished, the UART might still
|
||||
/// be busy shifting the last byte out.
|
||||
pub fn new(tx: Tx, waker_idx: usize, delay: D) -> Result<Self, InvalidWakerIndex> {
|
||||
if waker_idx >= NUM_WAKERS {
|
||||
return Err(InvalidWakerIndex(waker_idx));
|
||||
}
|
||||
Ok(Self {
|
||||
tx,
|
||||
waker_idx,
|
||||
delay,
|
||||
})
|
||||
}
|
||||
|
||||
/// Write a buffer asynchronously.
|
||||
///
|
||||
/// This implementation is not side effect free, and a started future might have already
|
||||
/// written part of the passed buffer.
|
||||
pub async fn write(&mut self, buf: &[u8]) -> usize {
|
||||
if buf.is_empty() {
|
||||
return 0;
|
||||
}
|
||||
let fut = unsafe { TxFuture::new(&mut self.tx, self.waker_idx, buf).unwrap() };
|
||||
fut.await
|
||||
}
|
||||
|
||||
/// Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
|
||||
pub async fn flush(&mut self) {
|
||||
while !self.tx.tx_empty() {
|
||||
self.delay.delay_us(10).await;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn release(self) -> Tx {
|
||||
self.tx
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: DelayNs> embedded_io::ErrorType for TxAsync<D> {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl<D: DelayNs> embedded_io_async::Write for TxAsync<D> {
|
||||
/// Write a buffer asynchronously.
|
||||
///
|
||||
/// This implementation is not side effect free, and a started future might have already
|
||||
/// written part of the passed buffer.
|
||||
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
Ok(self.write(buf).await)
|
||||
}
|
||||
|
||||
/// Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
|
||||
async fn flush(&mut self) -> Result<(), Self::Error> {
|
||||
self.flush().await;
|
||||
Ok(())
|
||||
}
|
||||
}
|
1
axi-uartlite-rs/.gitignore
vendored
1
axi-uartlite-rs/.gitignore
vendored
@ -1 +0,0 @@
|
||||
/target
|
@ -1,27 +0,0 @@
|
||||
[package]
|
||||
name = "axi-uartlite"
|
||||
version = "0.1.0"
|
||||
description = "LogiCORE AXI UART Lite v2.0 driver"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
derive-mmio = { git = "https://github.com/knurling-rs/derive-mmio.git", rev = "0806ce10b132ca15c6d9122a2d15a6e146b01520"}
|
||||
bitbybit = "1.3"
|
||||
arbitrary-int = "1.3"
|
||||
nb = "1"
|
||||
embedded-hal-nb = "1"
|
||||
embedded-io = "0.6"
|
||||
embedded-io-async = "0.6"
|
||||
critical-section = "1"
|
||||
thiserror = { version = "2", default-features = false }
|
||||
embassy-sync = "0.6"
|
||||
raw-slice = { git = "https://egit.irs.uni-stuttgart.de/rust/raw-slice.git" }
|
||||
|
||||
[features]
|
||||
default = ["1-waker"]
|
||||
1-waker = []
|
||||
2-wakers = []
|
||||
4-wakers = []
|
||||
8-wakers = []
|
||||
16-wakers = []
|
||||
32-wakers = []
|
@ -1,264 +0,0 @@
|
||||
//! # AXI UART Lite v2.0 driver
|
||||
//!
|
||||
//! This is a native Rust driver for the AMD AXI UART Lite v2.0 IP core.
|
||||
//!
|
||||
//! # Features
|
||||
//!
|
||||
//! If asynchronous TX operations are used, the number of wakers which defaults to 1 waker can
|
||||
//! also be configured. The [tx_async] module provides more details on the meaning of this number.
|
||||
//!
|
||||
//! - `1-waker` which is also a `default` feature
|
||||
//! - `2-wakers`
|
||||
//! - `4-wakers`
|
||||
//! - `8-wakers`
|
||||
//! - `16-wakers`
|
||||
//! - `32-wakers`
|
||||
#![no_std]
|
||||
|
||||
use core::convert::Infallible;
|
||||
use registers::Control;
|
||||
pub mod registers;
|
||||
|
||||
pub mod tx;
|
||||
pub use tx::*;
|
||||
|
||||
pub mod rx;
|
||||
pub use rx::*;
|
||||
|
||||
pub mod tx_async;
|
||||
pub use tx_async::*;
|
||||
|
||||
pub const FIFO_DEPTH: usize = 16;
|
||||
|
||||
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
||||
pub struct RxErrorsCounted {
|
||||
parity: u8,
|
||||
frame: u8,
|
||||
overrun: u8,
|
||||
}
|
||||
|
||||
impl RxErrorsCounted {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
parity: 0,
|
||||
frame: 0,
|
||||
overrun: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub const fn parity(&self) -> u8 {
|
||||
self.parity
|
||||
}
|
||||
|
||||
pub const fn frame(&self) -> u8 {
|
||||
self.frame
|
||||
}
|
||||
|
||||
pub const fn overrun(&self) -> u8 {
|
||||
self.overrun
|
||||
}
|
||||
|
||||
pub fn has_errors(&self) -> bool {
|
||||
self.parity > 0 || self.frame > 0 || self.overrun > 0
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AxiUartlite {
|
||||
rx: Rx,
|
||||
tx: Tx,
|
||||
errors: RxErrorsCounted,
|
||||
}
|
||||
|
||||
impl AxiUartlite {
|
||||
/// Create a new AXI UART Lite peripheral driver.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// - The `base_addr` must be a valid memory-mapped register address of an AXI UART Lite peripheral.
|
||||
/// - Dereferencing an invalid or misaligned address results in **undefined behavior**.
|
||||
/// - The caller must ensure that no other code concurrently modifies the same peripheral registers
|
||||
/// in an unsynchronized manner to prevent data races.
|
||||
/// - This function does not enforce uniqueness of driver instances. Creating multiple instances
|
||||
/// with the same `base_addr` can lead to unintended behavior if not externally synchronized.
|
||||
/// - The driver performs **volatile** reads and writes to the provided address.
|
||||
pub const unsafe fn new(base_addr: u32) -> Self {
|
||||
let regs = unsafe { registers::AxiUartlite::new_mmio_at(base_addr as usize) };
|
||||
Self {
|
||||
rx: Rx {
|
||||
regs: unsafe { regs.clone() },
|
||||
errors: None,
|
||||
},
|
||||
tx: Tx { regs, errors: None },
|
||||
errors: RxErrorsCounted::new(),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const fn regs(&mut self) -> &mut registers::MmioAxiUartlite<'static> {
|
||||
&mut self.tx.regs
|
||||
}
|
||||
|
||||
/// Write into the UART Lite.
|
||||
///
|
||||
/// Returns [nb::Error::WouldBlock] if the TX FIFO is full.
|
||||
#[inline]
|
||||
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
|
||||
self.tx.write_fifo(data).unwrap();
|
||||
if let Some(errors) = self.tx.errors {
|
||||
self.handle_status_reg_errors(errors);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Write into the FIFO without checking the FIFO fill status.
|
||||
///
|
||||
/// This can be useful to completely fill the FIFO if it is known to be empty.
|
||||
#[inline(always)]
|
||||
pub fn write_fifo_unchecked(&mut self, data: u8) {
|
||||
self.tx.write_fifo_unchecked(data);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
|
||||
let val = self.rx.read_fifo().unwrap();
|
||||
if let Some(errors) = self.rx.errors {
|
||||
self.handle_status_reg_errors(errors);
|
||||
}
|
||||
Ok(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn read_fifo_unchecked(&mut self) -> u8 {
|
||||
self.rx.read_fifo_unchecked()
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn tx_fifo_empty(&mut self) -> bool {
|
||||
self.tx.fifo_empty()
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn tx_fifo_full(&mut self) -> bool {
|
||||
self.tx.fifo_full()
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn rx_has_data(&mut self) -> bool {
|
||||
self.rx.has_data()
|
||||
}
|
||||
|
||||
/// Read the error counters and also resets them.
|
||||
pub fn read_and_clear_errors(&mut self) -> RxErrorsCounted {
|
||||
let errors = self.errors;
|
||||
self.errors = RxErrorsCounted::new();
|
||||
errors
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn handle_status_reg_errors(&mut self, errors: RxErrors) {
|
||||
if errors.frame() {
|
||||
self.errors.frame = self.errors.frame.saturating_add(1);
|
||||
}
|
||||
if errors.parity() {
|
||||
self.errors.parity = self.errors.parity.saturating_add(1);
|
||||
}
|
||||
if errors.overrun() {
|
||||
self.errors.overrun = self.errors.overrun.saturating_add(1);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset_rx_fifo(&mut self) {
|
||||
self.regs().write_ctrl_reg(
|
||||
Control::builder()
|
||||
.with_enable_interrupt(false)
|
||||
.with_reset_rx_fifo(true)
|
||||
.with_reset_tx_fifo(false)
|
||||
.build(),
|
||||
);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset_tx_fifo(&mut self) {
|
||||
self.regs().write_ctrl_reg(
|
||||
Control::builder()
|
||||
.with_enable_interrupt(false)
|
||||
.with_reset_rx_fifo(false)
|
||||
.with_reset_tx_fifo(true)
|
||||
.build(),
|
||||
);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn split(self) -> (Tx, Rx) {
|
||||
(self.tx, self.rx)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn enable_interrupt(&mut self) {
|
||||
self.regs().write_ctrl_reg(
|
||||
Control::builder()
|
||||
.with_enable_interrupt(true)
|
||||
.with_reset_rx_fifo(false)
|
||||
.with_reset_tx_fifo(false)
|
||||
.build(),
|
||||
);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn disable_interrupt(&mut self) {
|
||||
self.regs().write_ctrl_reg(
|
||||
Control::builder()
|
||||
.with_enable_interrupt(false)
|
||||
.with_reset_rx_fifo(false)
|
||||
.with_reset_tx_fifo(false)
|
||||
.build(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for AxiUartlite {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Write for AxiUartlite {
|
||||
#[inline]
|
||||
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
|
||||
self.tx.write(word)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
||||
self.tx.flush()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Read for AxiUartlite {
|
||||
#[inline]
|
||||
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
||||
self.rx.read()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for AxiUartlite {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Read for AxiUartlite {
|
||||
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||||
self.rx.read(buf)
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::Write for AxiUartlite {
|
||||
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
self.tx.write(buf)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> Result<(), Self::Error> {
|
||||
self.tx.flush()
|
||||
}
|
||||
}
|
@ -1,55 +0,0 @@
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct RxFifo {
|
||||
#[bits(0..=7, r)]
|
||||
pub data: u8,
|
||||
}
|
||||
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct TxFifo {
|
||||
#[bits(0..=7, w)]
|
||||
pub data: u8,
|
||||
}
|
||||
|
||||
#[bitbybit::bitfield(u32)]
|
||||
pub struct Status {
|
||||
#[bit(7, r)]
|
||||
pub parity_error: bool,
|
||||
#[bit(6, r)]
|
||||
pub frame_error: bool,
|
||||
#[bit(5, r)]
|
||||
pub overrun_error: bool,
|
||||
#[bit(4, r)]
|
||||
pub intr_enabled: bool,
|
||||
#[bit(3, r)]
|
||||
pub tx_fifo_full: bool,
|
||||
#[bit(2, r)]
|
||||
pub tx_fifo_empty: bool,
|
||||
#[bit(1, r)]
|
||||
pub rx_fifo_full: bool,
|
||||
/// RX FIFO contains valid data.
|
||||
#[bit(0, r)]
|
||||
pub rx_fifo_valid_data: bool,
|
||||
}
|
||||
|
||||
#[bitbybit::bitfield(u32, default = 0x0)]
|
||||
pub struct Control {
|
||||
#[bit(4, w)]
|
||||
enable_interrupt: bool,
|
||||
#[bit(1, w)]
|
||||
reset_rx_fifo: bool,
|
||||
#[bit(0, w)]
|
||||
reset_tx_fifo: bool,
|
||||
}
|
||||
|
||||
#[derive(derive_mmio::Mmio)]
|
||||
#[repr(C)]
|
||||
pub struct AxiUartlite {
|
||||
#[mmio(RO)]
|
||||
rx_fifo: RxFifo,
|
||||
tx_fifo: TxFifo,
|
||||
#[mmio(RO)]
|
||||
stat_reg: Status,
|
||||
ctrl_reg: Control,
|
||||
}
|
||||
|
||||
unsafe impl Send for MmioAxiUartlite<'static> {}
|
@ -1,172 +0,0 @@
|
||||
use core::convert::Infallible;
|
||||
|
||||
use crate::registers::{self, AxiUartlite, Status};
|
||||
|
||||
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
||||
pub struct RxErrors {
|
||||
parity: bool,
|
||||
frame: bool,
|
||||
overrun: bool,
|
||||
}
|
||||
|
||||
impl RxErrors {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
parity: false,
|
||||
frame: false,
|
||||
overrun: false,
|
||||
}
|
||||
}
|
||||
|
||||
pub const fn parity(&self) -> bool {
|
||||
self.parity
|
||||
}
|
||||
|
||||
pub const fn frame(&self) -> bool {
|
||||
self.frame
|
||||
}
|
||||
|
||||
pub const fn overrun(&self) -> bool {
|
||||
self.overrun
|
||||
}
|
||||
|
||||
pub const fn has_errors(&self) -> bool {
|
||||
self.parity || self.frame || self.overrun
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Rx {
|
||||
pub(crate) regs: registers::MmioAxiUartlite<'static>,
|
||||
pub(crate) errors: Option<RxErrors>,
|
||||
}
|
||||
|
||||
impl Rx {
|
||||
/// Steal the RX part of the UART Lite.
|
||||
///
|
||||
/// You should only use this if you can not use the regular [super::AxiUartlite] constructor
|
||||
/// and the [super::AxiUartlite::split] method.
|
||||
///
|
||||
/// This function assumes that the setup of the UART was already done.
|
||||
/// It can be used to create an RX handle inside an interrupt handler without having to use
|
||||
/// a [critical_section::Mutex] if the user can guarantee that the RX handle will only be
|
||||
/// used by the interrupt handler or only interrupt specific API will be used.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The same safey rules specified in [super::AxiUartlite] apply.
|
||||
#[inline]
|
||||
pub const unsafe fn steal(base_addr: usize) -> Self {
|
||||
Self {
|
||||
regs: unsafe { AxiUartlite::new_mmio_at(base_addr) },
|
||||
errors: None,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
|
||||
let status_reg = self.regs.read_stat_reg();
|
||||
if !status_reg.rx_fifo_valid_data() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
let val = self.read_fifo_unchecked();
|
||||
if let Some(errors) = handle_status_reg_errors(&status_reg) {
|
||||
self.errors = Some(errors);
|
||||
}
|
||||
Ok(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn read_fifo_unchecked(&mut self) -> u8 {
|
||||
self.regs.read_rx_fifo().data()
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn has_data(&mut self) -> bool {
|
||||
self.regs.read_stat_reg().rx_fifo_valid_data()
|
||||
}
|
||||
|
||||
/// This simply reads all available bytes in the RX FIFO.
|
||||
///
|
||||
/// It returns the number of read bytes.
|
||||
#[inline]
|
||||
pub fn read_whole_fifo(&mut self, buf: &mut [u8; 16]) -> usize {
|
||||
let mut read = 0;
|
||||
while read < buf.len() {
|
||||
match self.read_fifo() {
|
||||
Ok(byte) => {
|
||||
buf[read] = byte;
|
||||
read += 1;
|
||||
}
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
read
|
||||
}
|
||||
|
||||
/// Can be called in the interrupt handler for the UART Lite to handle RX reception.
|
||||
///
|
||||
/// Simply calls [Rx::read_whole_fifo].
|
||||
#[inline]
|
||||
pub fn on_interrupt_rx(&mut self, buf: &mut [u8; 16]) -> usize {
|
||||
self.read_whole_fifo(buf)
|
||||
}
|
||||
|
||||
pub fn read_and_clear_last_error(&mut self) -> Option<RxErrors> {
|
||||
let errors = self.errors?;
|
||||
self.errors = None;
|
||||
Some(errors)
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for Rx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Read for Rx {
|
||||
#[inline]
|
||||
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
||||
self.read_fifo()
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for Rx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Read for Rx {
|
||||
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||||
if buf.is_empty() {
|
||||
return Ok(0);
|
||||
}
|
||||
while !self.has_data() {}
|
||||
let mut read = 0;
|
||||
for byte in buf.iter_mut() {
|
||||
match self.read_fifo() {
|
||||
Ok(data) => {
|
||||
*byte = data;
|
||||
read += 1;
|
||||
}
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
Ok(read)
|
||||
}
|
||||
}
|
||||
|
||||
pub const fn handle_status_reg_errors(status_reg: &Status) -> Option<RxErrors> {
|
||||
let mut errors = RxErrors::new();
|
||||
if status_reg.frame_error() {
|
||||
errors.frame = true;
|
||||
}
|
||||
if status_reg.parity_error() {
|
||||
errors.parity = true;
|
||||
}
|
||||
if status_reg.overrun_error() {
|
||||
errors.overrun = true;
|
||||
}
|
||||
if !errors.has_errors() {
|
||||
return None;
|
||||
}
|
||||
Some(errors)
|
||||
}
|
@ -1,142 +0,0 @@
|
||||
use core::convert::Infallible;
|
||||
|
||||
use crate::{
|
||||
RxErrors, handle_status_reg_errors,
|
||||
registers::{self, Control, TxFifo},
|
||||
};
|
||||
|
||||
pub struct Tx {
|
||||
pub(crate) regs: registers::MmioAxiUartlite<'static>,
|
||||
pub(crate) errors: Option<RxErrors>,
|
||||
}
|
||||
|
||||
impl Tx {
|
||||
/// Steal the TX part of the UART Lite.
|
||||
///
|
||||
/// You should only use this if you can not use the regular [super::AxiUartlite] constructor
|
||||
/// and the [super::AxiUartlite::split] method.
|
||||
///
|
||||
/// This function assumes that the setup of the UART was already done.
|
||||
/// It can be used to create a TX handle inside an interrupt handler without having to use
|
||||
/// a [critical_section::Mutex] if the user can guarantee that the TX handle will only be
|
||||
/// used by the interrupt handler, or only interrupt specific API will be used.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The same safey rules specified in [super::AxiUartlite] apply.
|
||||
pub unsafe fn steal(base_addr: usize) -> Self {
|
||||
let regs = unsafe { registers::AxiUartlite::new_mmio_at(base_addr) };
|
||||
Self { regs, errors: None }
|
||||
}
|
||||
|
||||
/// Write into the UART Lite.
|
||||
///
|
||||
/// Returns [nb::Error::WouldBlock] if the TX FIFO is full.
|
||||
#[inline]
|
||||
pub fn write_fifo(&mut self, data: u8) -> nb::Result<(), Infallible> {
|
||||
let status_reg = self.regs.read_stat_reg();
|
||||
if status_reg.tx_fifo_full() {
|
||||
return Err(nb::Error::WouldBlock);
|
||||
}
|
||||
self.write_fifo_unchecked(data);
|
||||
if let Some(errors) = handle_status_reg_errors(&status_reg) {
|
||||
self.errors = Some(errors);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset_fifo(&mut self) {
|
||||
let status = self.regs.read_stat_reg();
|
||||
self.regs.write_ctrl_reg(
|
||||
Control::builder()
|
||||
.with_enable_interrupt(status.intr_enabled())
|
||||
.with_reset_rx_fifo(false)
|
||||
.with_reset_tx_fifo(true)
|
||||
.build(),
|
||||
);
|
||||
}
|
||||
|
||||
/// Write into the FIFO without checking the FIFO fill status.
|
||||
///
|
||||
/// This can be useful to completely fill the FIFO if it is known to be empty.
|
||||
#[inline(always)]
|
||||
pub fn write_fifo_unchecked(&mut self, data: u8) {
|
||||
self.regs
|
||||
.write_tx_fifo(TxFifo::new_with_raw_value(data as u32));
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn fifo_empty(&mut self) -> bool {
|
||||
self.regs.read_stat_reg().tx_fifo_empty()
|
||||
}
|
||||
|
||||
// TODO: Make this non-mut as soon as pure reads are available
|
||||
#[inline(always)]
|
||||
pub fn fifo_full(&mut self) -> bool {
|
||||
self.regs.read_stat_reg().tx_fifo_full()
|
||||
}
|
||||
|
||||
/// Fills the FIFO with user provided data until the user data
|
||||
/// is consumed or the FIFO is full.
|
||||
///
|
||||
/// Returns the amount of written data, which might be smaller than the buffer size.
|
||||
pub fn fill_fifo(&mut self, buf: &[u8]) -> usize {
|
||||
let mut written = 0;
|
||||
while written < buf.len() {
|
||||
match self.write_fifo(buf[written]) {
|
||||
Ok(_) => written += 1,
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
written
|
||||
}
|
||||
|
||||
pub fn read_and_clear_last_error(&mut self) -> Option<RxErrors> {
|
||||
let errors = self.errors?;
|
||||
self.errors = None;
|
||||
Some(errors)
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::ErrorType for Tx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_hal_nb::serial::Write for Tx {
|
||||
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
|
||||
self.write_fifo(word)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
||||
while !self.fifo_empty() {}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for Tx {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io::Write for Tx {
|
||||
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
if buf.is_empty() {
|
||||
return Ok(0);
|
||||
}
|
||||
while self.fifo_full() {}
|
||||
let mut written = 0;
|
||||
for &byte in buf.iter() {
|
||||
match self.write_fifo(byte) {
|
||||
Ok(_) => written += 1,
|
||||
Err(nb::Error::WouldBlock) => break,
|
||||
}
|
||||
}
|
||||
Ok(written)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> Result<(), Self::Error> {
|
||||
while !self.fifo_empty() {}
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -1,221 +0,0 @@
|
||||
//! # Asynchronous TX support.
|
||||
//!
|
||||
//! This module provides support for asynchronous non-blocking TX transfers.
|
||||
//!
|
||||
//! It provides a static number of async wakers to allow a configurable amount of pollable
|
||||
//! [TxFuture]s. Each UARTLite [Tx] instance which performs asynchronous TX operations needs
|
||||
//! to be to explicitely assigned a waker when creating an awaitable [TxAsync] structure
|
||||
//! as well as when calling the [on_interrupt_tx] handler.
|
||||
//!
|
||||
//! The maximum number of available wakers is configured via the waker feature flags:
|
||||
//!
|
||||
//! - `1-waker`
|
||||
//! - `2-wakers`
|
||||
//! - `4-wakers`
|
||||
//! - `8-wakers`
|
||||
//! - `16-wakers`
|
||||
//! - `32-wakers`
|
||||
use core::{cell::RefCell, convert::Infallible, sync::atomic::AtomicBool};
|
||||
|
||||
use critical_section::Mutex;
|
||||
use embassy_sync::waitqueue::AtomicWaker;
|
||||
use raw_slice::RawBufSlice;
|
||||
|
||||
use crate::{FIFO_DEPTH, Tx};
|
||||
|
||||
#[cfg(feature = "1-waker")]
|
||||
pub const NUM_WAKERS: usize = 1;
|
||||
#[cfg(feature = "2-wakers")]
|
||||
pub const NUM_WAKERS: usize = 2;
|
||||
#[cfg(feature = "4-wakers")]
|
||||
pub const NUM_WAKERS: usize = 4;
|
||||
#[cfg(feature = "8-wakers")]
|
||||
pub const NUM_WAKERS: usize = 8;
|
||||
#[cfg(feature = "16-wakers")]
|
||||
pub const NUM_WAKERS: usize = 16;
|
||||
#[cfg(feature = "32-wakers")]
|
||||
pub const NUM_WAKERS: usize = 32;
|
||||
static UART_TX_WAKERS: [AtomicWaker; NUM_WAKERS] = [const { AtomicWaker::new() }; NUM_WAKERS];
|
||||
static TX_CONTEXTS: [Mutex<RefCell<TxContext>>; NUM_WAKERS] =
|
||||
[const { Mutex::new(RefCell::new(TxContext::new())) }; NUM_WAKERS];
|
||||
// Completion flag. Kept outside of the context structure as an atomic to avoid
|
||||
// critical section.
|
||||
static TX_DONE: [AtomicBool; NUM_WAKERS] = [const { AtomicBool::new(false) }; NUM_WAKERS];
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("invalid waker slot index: {0}")]
|
||||
pub struct InvalidWakerIndex(pub usize);
|
||||
|
||||
/// This is a generic interrupt handler to handle asynchronous UART TX operations for a given
|
||||
/// UART peripheral.
|
||||
///
|
||||
/// The user has to call this once in the interrupt handler responsible if the interrupt was
|
||||
/// triggered by the UARTLite. The relevant [Tx] handle of the UARTLite and the waker slot used
|
||||
/// for it must be passed as well. [Tx::steal] can be used to create the required handle.
|
||||
pub fn on_interrupt_tx(uartlite_tx: &mut Tx, waker_slot: usize) {
|
||||
if waker_slot >= NUM_WAKERS {
|
||||
return;
|
||||
}
|
||||
let status = uartlite_tx.regs.read_stat_reg();
|
||||
// Interrupt are not even enabled.
|
||||
if !status.intr_enabled() {
|
||||
return;
|
||||
}
|
||||
let mut context = critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow()
|
||||
});
|
||||
// No transfer active.
|
||||
if context.slice.is_null() {
|
||||
return;
|
||||
}
|
||||
let slice_len = context.slice.len().unwrap();
|
||||
if (context.progress >= slice_len && status.tx_fifo_empty()) || slice_len == 0 {
|
||||
// Write back updated context structure.
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow_mut() = context;
|
||||
});
|
||||
// Transfer is done.
|
||||
TX_DONE[waker_slot].store(true, core::sync::atomic::Ordering::Relaxed);
|
||||
UART_TX_WAKERS[waker_slot].wake();
|
||||
return;
|
||||
}
|
||||
// Safety: We documented that the user provided slice must outlive the future, so we convert
|
||||
// the raw pointer back to the slice here.
|
||||
let slice = unsafe { context.slice.get() }.expect("slice is invalid");
|
||||
while context.progress < slice_len {
|
||||
if uartlite_tx.regs.read_stat_reg().tx_fifo_full() {
|
||||
break;
|
||||
}
|
||||
// Safety: TX structure is owned by the future which does not write into the the data
|
||||
// register, so we can assume we are the only one writing to the data register.
|
||||
uartlite_tx.write_fifo_unchecked(slice[context.progress]);
|
||||
context.progress += 1;
|
||||
}
|
||||
// Write back updated context structure.
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_slot].borrow(cs);
|
||||
*context_ref.borrow_mut() = context;
|
||||
});
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct TxContext {
|
||||
progress: usize,
|
||||
slice: RawBufSlice,
|
||||
}
|
||||
|
||||
#[allow(clippy::new_without_default)]
|
||||
impl TxContext {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
progress: 0,
|
||||
slice: RawBufSlice::new_nulled(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TxFuture {
|
||||
waker_idx: usize,
|
||||
}
|
||||
|
||||
impl TxFuture {
|
||||
/// Create a new TX future which can be used for asynchronous TX operations.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// This function stores the raw pointer of the passed data slice. The user MUST ensure
|
||||
/// that the slice outlives the data structure.
|
||||
pub unsafe fn new(
|
||||
tx: &mut Tx,
|
||||
waker_idx: usize,
|
||||
data: &[u8],
|
||||
) -> Result<Self, InvalidWakerIndex> {
|
||||
TX_DONE[waker_idx].store(false, core::sync::atomic::Ordering::Relaxed);
|
||||
tx.reset_fifo();
|
||||
|
||||
let init_fill_count = core::cmp::min(data.len(), FIFO_DEPTH);
|
||||
// We fill the FIFO with initial data.
|
||||
for data in data.iter().take(init_fill_count) {
|
||||
tx.write_fifo_unchecked(*data);
|
||||
}
|
||||
critical_section::with(|cs| {
|
||||
let context_ref = TX_CONTEXTS[waker_idx].borrow(cs);
|
||||
let mut context = context_ref.borrow_mut();
|
||||
unsafe {
|
||||
context.slice.set(data);
|
||||
}
|
||||
context.progress = init_fill_count;
|
||||
});
|
||||
Ok(Self { waker_idx })
|
||||
}
|
||||
}
|
||||
|
||||
impl Future for TxFuture {
|
||||
type Output = usize;
|
||||
|
||||
fn poll(
|
||||
self: core::pin::Pin<&mut Self>,
|
||||
cx: &mut core::task::Context<'_>,
|
||||
) -> core::task::Poll<Self::Output> {
|
||||
UART_TX_WAKERS[self.waker_idx].register(cx.waker());
|
||||
if TX_DONE[self.waker_idx].swap(false, core::sync::atomic::Ordering::Relaxed) {
|
||||
let progress = critical_section::with(|cs| {
|
||||
let mut ctx = TX_CONTEXTS[self.waker_idx].borrow(cs).borrow_mut();
|
||||
ctx.slice.set_null();
|
||||
ctx.progress
|
||||
});
|
||||
return core::task::Poll::Ready(progress);
|
||||
}
|
||||
core::task::Poll::Pending
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for TxFuture {
|
||||
fn drop(&mut self) {}
|
||||
}
|
||||
|
||||
pub struct TxAsync {
|
||||
tx: Tx,
|
||||
waker_idx: usize,
|
||||
}
|
||||
|
||||
impl TxAsync {
|
||||
pub fn new(tx: Tx, waker_idx: usize) -> Result<Self, InvalidWakerIndex> {
|
||||
if waker_idx >= NUM_WAKERS {
|
||||
return Err(InvalidWakerIndex(waker_idx));
|
||||
}
|
||||
Ok(Self { tx, waker_idx })
|
||||
}
|
||||
|
||||
/// Write a buffer asynchronously.
|
||||
///
|
||||
/// This implementation is not side effect free, and a started future might have already
|
||||
/// written part of the passed buffer.
|
||||
pub async fn write(&mut self, buf: &[u8]) -> usize {
|
||||
if buf.is_empty() {
|
||||
return 0;
|
||||
}
|
||||
let fut = unsafe { TxFuture::new(&mut self.tx, self.waker_idx, buf).unwrap() };
|
||||
fut.await
|
||||
}
|
||||
|
||||
pub fn release(self) -> Tx {
|
||||
self.tx
|
||||
}
|
||||
}
|
||||
|
||||
impl embedded_io::ErrorType for TxAsync {
|
||||
type Error = Infallible;
|
||||
}
|
||||
|
||||
impl embedded_io_async::Write for TxAsync {
|
||||
/// Write a buffer asynchronously.
|
||||
///
|
||||
/// This implementation is not side effect free, and a started future might have already
|
||||
/// written part of the passed buffer.
|
||||
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||||
Ok(self.write(buf).await)
|
||||
}
|
||||
}
|
@ -34,5 +34,5 @@ embassy-executor = { path = "/home/rmueller/Rust/embassy/embassy-executor", feat
|
||||
]}
|
||||
embassy-time = { path = "/home/rmueller/Rust/embassy/embassy-time", version = "0.4" }
|
||||
heapless = "0.8"
|
||||
axi-uartlite = { path = "../../axi-uartlite-rs" }
|
||||
axi-uart16550 = { path = "../../axi-uart16550-rs" }
|
||||
axi-uartlite = { path = "/home/rmueller/Rust/axi-uartlite-rs" }
|
||||
axi-uart16550 = { path = "/home/rmueller/Rust/axi-uart16550-rs" }
|
||||
|
Loading…
x
Reference in New Issue
Block a user