Ethernet and smoltcp/embassy-net support
Some checks failed
ci / Check build (push) Has been cancelled
ci / Check formatting (push) Has been cancelled
ci / Check Documentation Build (push) Has been cancelled
ci / Clippy (push) Has been cancelled
ci / Check build (pull_request) Has been cancelled
ci / Check formatting (pull_request) Has been cancelled
ci / Check Documentation Build (pull_request) Has been cancelled
ci / Clippy (pull_request) Has been cancelled

This commit is contained in:
2025-05-27 12:02:57 +02:00
committed by Robin Mueller
parent 037668e5a9
commit 602b8915e4
39 changed files with 8531 additions and 4239 deletions

View File

@@ -11,13 +11,16 @@ keywords = ["no-std", "arm", "cortex-a", "amd", "zynq7000"]
categories = ["embedded", "no-std", "hardware-support"]
[dependencies]
cortex-ar = "0.2"
# cortex-ar = "0.2"
# cortex-ar = { git = "https://github.com/rust-embedded/cortex-ar", branch = "main", features = ["critical-section-single-core"] }
cortex-ar = { version = "0.2", path = "../../../../Rust/cortex-ar/cortex-ar", features = ["critical-section-single-core"] }
zynq7000-rt = { path = "../../zynq7000-rt" }
zynq7000 = { path = "../../zynq7000" }
zynq7000-hal = { path = "../../zynq7000-hal" }
zynq7000-embassy = { path = "../../zynq7000-embassy" }
l3gd20 = { git = "https://github.com/us-irs/l3gd20.git", branch = "add-async-if" }
embedded-io = "0.6"
bitbybit = "1.3"
arbitrary-int = "1.3"
embedded-io-async = "0.6"
critical-section = "1"
@@ -27,12 +30,20 @@ embedded-hal = "1"
embedded-hal-async = "1"
fugit = "0.3"
log = "0.4"
rand = { version = "0.9", default-features = false, features = ["small_rng"] }
embassy-executor = { git = "https://github.com/embassy-rs/embassy.git", branch = "main", features = [
# embassy-executor = { git = "https://github.com/us-irs/embassy", path = "../embassy/embassy-executor", branch = "local-cortex-ar", features = [
# "arch-cortex-ar",
# "executor-thread",
# ]}
embassy-executor = { path = "../../../../Rust/embassy/embassy-executor", features = [
"arch-cortex-ar",
"executor-thread",
]}
embassy-time = { git = "https://github.com/embassy-rs/embassy.git", branch = "main", version = "0.4", features = ["tick-hz-1_000_000"] }
# embassy-time = { git = "https://github.com/us-irs/embassy", branch = "local-cortex-ar", version = "0.4", features = ["tick-hz-1_000_000"] }
embassy-time = { path = "../../../../Rust/embassy/embassy-time", version = "0.4", features = ["tick-hz-1_000_000"] }
embassy-net = { path = "../../../../Rust/embassy/embassy-net", version = "0.7", features = ["dhcpv4", "packet-trace", "medium-ethernet", "icmp", "tcp", "udp"] }
embassy-sync = { path = "../../../../Rust/embassy/embassy-sync", version = "0.7" }
heapless = "0.8"
axi-uartlite = { git = "https://egit.irs.uni-stuttgart.de/rust/axi-uartlite.git" }
axi-uart16550 = { git = "https://egit.irs.uni-stuttgart.de/rust/axi-uart16550.git" }

View File

@@ -0,0 +1,521 @@
//! Zedboard ethernet example code.
//!
//! This code uses embassy-net, a smoltcp based networking stack, as the IP stack.
//! It uses DHCP by default to assign the IP address. The assigned address will be displayed on
//! the console.
//!
//! Alternatively, you can also set a static IPv4 configuration via the `STATIC_IPV4_CONFIG`
//! constant and by setting `USE_DHCP` to `false`.
//!
//! It also exposes simple UDP and TCP echo servers. You can use the following sample commands
//! to send UDP or TCP data to the Zedboard using the Unix `netcat` application:
//!
//! ## UDP
//!
//! ```sh
//! echo "Hello Zedboard" | nc -uN <ip-address> 8000
//! ```
//!
//! ## TCP
//!
//! ```sh
//! echo "Hello Zedboard" | nc -N <ip-address> 8000
//! ```
#![no_std]
#![no_main]
use core::{net::Ipv4Addr, panic::PanicInfo};
use cortex_ar::asm::nop;
use embassy_executor::Spawner;
use embassy_net::{Ipv4Cidr, StaticConfigV4, tcp::TcpSocket, udp::UdpSocket};
use embassy_time::{Duration, Timer};
use embedded_io::Write;
use embedded_io_async::Write as _;
use log::{LevelFilter, debug, error, info, warn};
use rand::{RngCore, SeedableRng};
use zedboard::{
PS_CLOCK_FREQUENCY,
phy_marvell::{LatchingLinkStatus, MARVELL_88E1518_OUI},
};
use zynq7000_hal::{
BootMode,
clocks::Clocks,
configure_level_shifter,
eth::{
AlignedBuffer, ClkDivCollection, EthernetConfig, EthernetLowLevel,
embassy_net::InterruptResult,
},
gic::{GicConfigurator, GicInterruptHelper, Interrupt},
gpio::{GpioPins, Output, PinState},
gtc::Gtc,
uart::{ClkConfigRaw, Uart, UartConfig},
};
use zynq7000::{PsPeripherals, slcr::LevelShifterConfig};
use zynq7000_rt::{self as _, mmu::section_attrs::SHAREABLE_DEVICE, mmu_l1_table_mut};
const USE_DHCP: bool = true;
const UDP_AND_TCP_PORT: u16 = 8000;
const PRINT_PACKET_STATS: bool = false;
const LOG_LEVEL: LevelFilter = LevelFilter::Info;
const NUM_RX_SLOTS: usize = 16;
const NUM_TX_SLOTS: usize = 16;
const STATIC_IPV4_CONFIG: StaticConfigV4 = StaticConfigV4 {
address: Ipv4Cidr::new(Ipv4Addr::new(192, 168, 179, 25), 24),
gateway: None,
dns_servers: heapless::Vec::new(),
};
const INIT_STRING: &str = "-- Zynq 7000 Zedboard Ethernet Example --\n\r";
// Unicast address with OUI of the Marvell 88E1518 PHY.
const MAC_ADDRESS: [u8; 6] = [
0x00,
((MARVELL_88E1518_OUI >> 8) & 0xff) as u8,
(MARVELL_88E1518_OUI & 0xff) as u8,
0x00,
0x00,
0x01,
];
/// See memory.x file. 1 MB starting at this address will be configured as uncached memory using the
/// MMU.
const UNCACHED_ADDR: u32 = 0x4000000;
// These descriptors must be placed in uncached memory. The MMU will be used to configure the
// .uncached memory segment as device memory.
#[unsafe(link_section = ".uncached")]
static RX_DESCRIPTORS: zynq7000_hal::eth::rx_descr::DescriptorList<NUM_RX_SLOTS> =
zynq7000_hal::eth::rx_descr::DescriptorList::new();
#[unsafe(link_section = ".uncached")]
static TX_DESCRIPTORS: zynq7000_hal::eth::tx_descr::DescriptorList<NUM_TX_SLOTS> =
zynq7000_hal::eth::tx_descr::DescriptorList::new();
static ETH_ERR_QUEUE: embassy_sync::channel::Channel<
embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex,
InterruptResult,
8,
> = embassy_sync::channel::Channel::new();
#[derive(Debug, PartialEq, Eq)]
pub enum IpMode {
LinkDown,
AutoNegotiating,
AwaitingIpConfig,
StackReady,
}
/// Entry point (not called like a normal main function)
#[unsafe(no_mangle)]
pub extern "C" fn boot_core(cpu_id: u32) -> ! {
if cpu_id != 0 {
panic!("unexpected CPU ID {}", cpu_id);
}
main();
}
#[embassy_executor::task]
async fn embassy_net_task(
mut runner: embassy_net::Runner<'static, zynq7000_hal::eth::embassy_net::Driver>,
) -> ! {
runner.run().await
}
/// Simple UDP echo task.
#[embassy_executor::task]
async fn udp_task(mut udp: UdpSocket<'static>) -> ! {
let mut rx_buf = [0; zynq7000_hal::eth::MTU];
udp.bind(UDP_AND_TCP_PORT)
.expect("failed to bind UDP socket to port 8000");
loop {
match udp.recv_from(&mut rx_buf).await {
Ok((data, meta)) => {
log::info!("udp rx {data} bytes from {meta:?}");
match udp.send_to(&rx_buf[0..data], meta).await {
Ok(_) => (),
Err(e) => {
log::warn!("udp send error: {e:?}");
Timer::after_millis(100).await;
}
}
}
Err(e) => {
log::warn!("udp receive error: {e:?}");
Timer::after_millis(100).await;
}
}
}
}
/// Simple TCP echo task.
#[embassy_executor::task]
async fn tcp_task(mut tcp: TcpSocket<'static>) -> ! {
let mut rx_buf = [0; zynq7000_hal::eth::MTU];
tcp.set_timeout(Some(Duration::from_secs(2)));
loop {
match tcp.accept(UDP_AND_TCP_PORT).await {
Ok(_) => {
log::info!("tcp connection to {:?} accepted", tcp.remote_endpoint());
loop {
if tcp.may_recv() {
match tcp.read(&mut rx_buf).await {
Ok(0) => {
log::info!("tcp EOF received");
tcp.close();
}
Ok(read_bytes) => {
log::info!("tcp rx {read_bytes} bytes");
if tcp.may_send() {
match tcp.write_all(&rx_buf[0..read_bytes]).await {
Ok(_) => continue,
Err(e) => {
log::warn!("tcp error when writing: {e:?}");
Timer::after_millis(100).await;
}
}
} else {
log::warn!("tcp remote endpoint not writeable");
continue;
}
}
Err(_) => {
log::warn!("tcp connection reset by remote endpoint.");
tcp.close();
}
}
}
if !tcp.may_send() && !tcp.may_recv() {
log::info!("tcp send and receive side closed");
tcp.close();
}
if tcp.state() == embassy_net::tcp::State::Closed {
log::info!("tcp socket closed, exiting loop");
break;
}
Timer::after_millis(100).await;
}
}
Err(e) => {
log::warn!("tcp error accepting connection: {e:?}");
Timer::after_millis(100).await;
continue;
}
}
}
}
#[embassy_executor::main]
#[unsafe(export_name = "main")]
async fn main(spawner: Spawner) -> ! {
// Configure the uncached memory region using the MMU.
mmu_l1_table_mut()
.update(UNCACHED_ADDR, SHAREABLE_DEVICE)
.expect("configuring uncached memory section failed");
// Enable PS-PL level shifters.
configure_level_shifter(LevelShifterConfig::EnableAll);
let dp = PsPeripherals::take().unwrap();
// Clock was already initialized by PS7 Init TCL script or FSBL, we just read it.
let clocks = Clocks::new_from_regs(PS_CLOCK_FREQUENCY).unwrap();
// Set up the global interrupt controller.
let mut gic = GicConfigurator::new_with_init(dp.gicc, dp.gicd);
gic.enable_all_interrupts();
gic.set_all_spi_interrupt_targets_cpu0();
gic.enable();
unsafe {
gic.enable_interrupts();
}
let gpio_pins = GpioPins::new(dp.gpio);
// Set up global timer counter and embassy time driver.
let gtc = Gtc::new(dp.gtc, clocks.arm_clocks());
zynq7000_embassy::init(clocks.arm_clocks(), gtc);
// Set up the UART, we are logging with it.
let uart_clk_config = ClkConfigRaw::new_autocalc_with_error(clocks.io_clocks(), 115200)
.unwrap()
.0;
let mut uart = Uart::new_with_mio(
dp.uart_1,
UartConfig::new_with_clk_config(uart_clk_config),
(gpio_pins.mio.mio48, gpio_pins.mio.mio49),
)
.unwrap();
uart.write_all(INIT_STRING.as_bytes()).unwrap();
// Safety: We are not multi-threaded yet.
unsafe { zynq7000_hal::log::uart_blocking::init_unsafe_single_core(uart, LOG_LEVEL, false) };
let boot_mode = BootMode::new();
info!("Boot mode: {:?}", boot_mode);
static ETH_RX_BUFS: static_cell::ConstStaticCell<[AlignedBuffer; NUM_RX_SLOTS]> =
static_cell::ConstStaticCell::new(
[AlignedBuffer([0; zynq7000_hal::eth::MTU]); NUM_RX_SLOTS],
);
static ETH_TX_BUFS: static_cell::ConstStaticCell<[AlignedBuffer; NUM_TX_SLOTS]> =
static_cell::ConstStaticCell::new(
[AlignedBuffer([0; zynq7000_hal::eth::MTU]); NUM_TX_SLOTS],
);
let rx_bufs = ETH_RX_BUFS.take();
let tx_bufs = ETH_TX_BUFS.take();
let rx_descr = RX_DESCRIPTORS.take().unwrap();
let tx_descr = TX_DESCRIPTORS.take().unwrap();
// Unwraps okay, list length is not 0
let mut rx_descr_ref =
zynq7000_hal::eth::rx_descr::DescriptorListWrapper::new(rx_descr.as_mut_slice());
let mut tx_descr_ref =
zynq7000_hal::eth::tx_descr::DescriptorListWrapper::new(tx_descr.as_mut_slice());
rx_descr_ref.init_with_aligned_bufs(rx_bufs.as_slice());
tx_descr_ref.init_or_reset();
// Unwrap okay, this is a valid peripheral.
let eth_ll = EthernetLowLevel::new(dp.eth_0).unwrap();
let mod_id = eth_ll.regs.read_module_id();
info!("Ethernet Module ID: {mod_id:?}");
assert_eq!(mod_id, 0x20118);
let (clk_divs, clk_errors) =
ClkDivCollection::calculate_for_rgmii_and_io_clock(clocks.io_clocks());
debug!(
"Calculated RGMII clock configuration: {:?}, errors (missmatch from ideal rate in hertz): {:?}",
clk_divs, clk_errors
);
// Unwrap okay, we use a standard clock config, and the clock config should never fail.
let eth_cfg = EthernetConfig::new(
zynq7000_hal::eth::ClkConfig::new(clk_divs.cfg_1000_mbps),
zynq7000_hal::eth::calculate_mdc_clk_div(clocks.arm_clocks()).unwrap(),
MAC_ADDRESS,
);
// Configures all the physical pins for ethernet operation and sets up the
// ethernet peripheral.
let mut eth = zynq7000_hal::eth::Ethernet::new_with_mio(
eth_ll,
eth_cfg,
gpio_pins.mio.mio16,
gpio_pins.mio.mio21,
(
gpio_pins.mio.mio17,
gpio_pins.mio.mio18,
gpio_pins.mio.mio19,
gpio_pins.mio.mio20,
),
gpio_pins.mio.mio22,
gpio_pins.mio.mio27,
(
gpio_pins.mio.mio23,
gpio_pins.mio.mio24,
gpio_pins.mio.mio25,
gpio_pins.mio.mio26,
),
Some((gpio_pins.mio.mio52, gpio_pins.mio.mio53)),
);
eth.set_rx_buf_descriptor_base_address(rx_descr_ref.base_addr());
eth.set_tx_buf_descriptor_base_address(tx_descr_ref.base_addr());
eth.start();
let (mut phy, phy_rev) =
zedboard::phy_marvell::Marvell88E1518Phy::new_autoprobe_addr(eth.mdio_mut())
.expect("could not auto-detect phy");
info!(
"Detected Marvell 88E1518 PHY with revision number: {:?}",
phy_rev
);
phy.reset();
phy.restart_auto_negotiation();
let driver = zynq7000_hal::eth::embassy_net::Driver::new(
&eth,
MAC_ADDRESS,
zynq7000_hal::eth::embassy_net::DescriptorsAndBuffers::new(
rx_descr_ref,
rx_bufs,
tx_descr_ref,
tx_bufs,
)
.unwrap(),
);
let config = if USE_DHCP {
embassy_net::Config::dhcpv4(Default::default())
} else {
embassy_net::Config::ipv4_static(STATIC_IPV4_CONFIG)
};
static RESOURCES: static_cell::StaticCell<embassy_net::StackResources<3>> =
static_cell::StaticCell::new();
let mut rng = rand::rngs::SmallRng::seed_from_u64(1);
let (stack, runner) = embassy_net::new(
driver,
config,
RESOURCES.init(embassy_net::StackResources::new()),
rng.next_u64(),
);
static RX_UDP_META: static_cell::ConstStaticCell<[embassy_net::udp::PacketMetadata; 8]> =
static_cell::ConstStaticCell::new([embassy_net::udp::PacketMetadata::EMPTY; 8]);
static TX_UDP_META: static_cell::ConstStaticCell<[embassy_net::udp::PacketMetadata; 8]> =
static_cell::ConstStaticCell::new([embassy_net::udp::PacketMetadata::EMPTY; 8]);
// Ensure those are in the data section by making them static.
static TX_UDP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> =
static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]);
static RX_UDP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> =
static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]);
let udp_socket = UdpSocket::new(
stack,
RX_UDP_META.take(),
RX_UDP_BUFS.take(),
TX_UDP_META.take(),
TX_UDP_BUFS.take(),
);
// Ensure those are in the data section by making them static.
static TX_TCP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> =
static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]);
static RX_TCP_BUFS: static_cell::ConstStaticCell<[u8; zynq7000_hal::eth::MTU]> =
static_cell::ConstStaticCell::new([0; zynq7000_hal::eth::MTU]);
let tcp_socket = TcpSocket::new(stack, RX_TCP_BUFS.take(), TX_TCP_BUFS.take());
spawner.spawn(embassy_net_task(runner)).unwrap();
spawner.spawn(udp_task(udp_socket)).unwrap();
spawner.spawn(tcp_task(tcp_socket)).unwrap();
let mut mio_led = Output::new_for_mio(gpio_pins.mio.mio7, PinState::Low);
let mut ip_mode = IpMode::LinkDown;
let mut transmitted_frames = 0;
let mut received_frames = 0;
let receiver = ETH_ERR_QUEUE.receiver();
loop {
// Handle error messages from ethernet interrupt.
while let Ok(msg) = receiver.try_receive() {
info!("Received interrupt result: {msg:?}");
}
if PRINT_PACKET_STATS {
let sent_frames_since_last = eth.ll().regs.statistics().read_tx_count();
if sent_frames_since_last > 0 {
transmitted_frames += sent_frames_since_last;
info!("Frame sent count: {transmitted_frames}");
}
let received_frames_since_last = eth.ll().regs.statistics().read_rx_count();
if received_frames_since_last > 0 {
received_frames += received_frames_since_last;
info!("Frame received count: {received_frames}");
}
}
// This is basically a linker checker task. It also takes care of notifying the
// embassy stack of link state changes.
match ip_mode {
// Assuming that auto-negotiation is performed automatically.
IpMode::LinkDown => {
mio_led.set_low();
zynq7000_hal::eth::embassy_net::update_link_state(
embassy_net::driver::LinkState::Down,
);
ip_mode = IpMode::AutoNegotiating;
}
IpMode::AutoNegotiating => {
let status = phy.read_copper_status();
if status.auto_negotiation_complete() {
let extended_status = phy.read_copper_specific_status_register_1();
info!(
"link is up and auto-negotiation complete. Setting speed {:?} and duplex {:?}",
extended_status.speed().as_zynq7000_eth_speed().unwrap(),
extended_status.duplex().as_zynq7000_eth_duplex()
);
eth.configure_clock_and_speed_duplex(
// If this has the reserved bits, what do we even do? For this example app,
// I am going to assume this never happens..
extended_status.speed().as_zynq7000_eth_speed().unwrap(),
extended_status.duplex().as_zynq7000_eth_duplex(),
&clk_divs,
);
zynq7000_hal::eth::embassy_net::update_link_state(
embassy_net::driver::LinkState::Up,
);
ip_mode = IpMode::AwaitingIpConfig;
} else {
Timer::after_millis(100).await;
}
}
IpMode::AwaitingIpConfig => {
if stack.is_config_up() {
let network_config = stack.config_v4();
info!("Network configuration is up. config: {network_config:?}!",);
ip_mode = IpMode::StackReady;
mio_led.set_high();
} else {
Timer::after_millis(100).await;
}
}
IpMode::StackReady => {
let status = phy.read_copper_status();
// Periodically check for link changes.
if status.copper_link_status() == LatchingLinkStatus::DownSinceLastRead {
warn!("ethernet link is down.");
ip_mode = IpMode::LinkDown;
continue;
}
Timer::after_millis(100).await;
}
}
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _irq_handler() {
let mut gic_helper = GicInterruptHelper::new();
let irq_info = gic_helper.acknowledge_interrupt();
match irq_info.interrupt() {
Interrupt::Sgi(_) => (),
Interrupt::Ppi(ppi_interrupt) => {
if ppi_interrupt == zynq7000_hal::gic::PpiInterrupt::GlobalTimer {
unsafe {
zynq7000_embassy::on_interrupt();
}
}
}
Interrupt::Spi(spi_interrupt) => {
if spi_interrupt == zynq7000_hal::gic::SpiInterrupt::Eth0 {
let result = zynq7000_hal::eth::embassy_net::on_interrupt(
zynq7000_hal::eth::EthernetId::Eth0,
);
if result.has_errors() {
ETH_ERR_QUEUE.try_send(result).ok();
}
}
}
Interrupt::Invalid(_) => (),
Interrupt::Spurious => (),
}
gic_helper.end_of_interrupt(irq_info);
}
#[unsafe(no_mangle)]
pub extern "C" fn _abort_handler() {
loop {
nop();
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _undefined_handler() {
loop {
nop();
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _prefetch_handler() {
loop {
nop();
}
}
/// Panic handler
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
error!("Panic: {info:?}");
loop {}
}

View File

@@ -1,5 +1,6 @@
#![no_std]
use zynq7000_hal::time::Hertz;
pub mod phy_marvell;
// Define the clock frequency as a constant
pub const PS_CLOCK_FREQUENCY: Hertz = Hertz::from_raw(33_333_300);
pub const PS_CLOCK_FREQUENCY: Hertz = Hertz::from_raw(33_333_333);

View File

@@ -0,0 +1,246 @@
use arbitrary_int::{u2, u4, u5};
#[derive(Clone, Debug)]
pub struct PhyIdentifier {
pub oui: u32,
pub model: u8,
pub rev: u8,
}
// Organizational Unique Identifier for Marvell 88E1518 PHY
pub const MARVELL_88E1518_OUI: u32 = 0x005043;
pub const MARVELL_88E1518_MODELL_NUMBER: u8 = 0b011101;
#[bitbybit::bitenum(u5, exhaustive = false)]
pub enum MarvellRegistersPage0 {
CopperControl = 0,
CopperStatus = 1,
IdReg1 = 2,
IdReg2 = 3,
CopperSpecificStatus = 17,
PageSel = 22,
}
#[bitbybit::bitfield(u16)]
pub struct CopperControlRegister {
#[bit(15, rw)]
copper_reset: bool,
#[bit(14, rw)]
loopback: bool,
#[bit(12, rw)]
auto_negotiation_enable: bool,
#[bit(11, rw)]
power_down: bool,
#[bit(10, rw)]
isolate: bool,
#[bit(9, rw)]
restart_auto_negotiation: bool,
/// 1: Full-duplex, 0: Half-duplex
#[bit(8, rw)]
copper_duplex_mode: bool,
#[bits([13, 6], rw)]
speed_selection: u2,
}
#[bitbybit::bitenum(u1, exhaustive = true)]
#[derive(Debug, PartialEq, Eq)]
pub enum LatchingLinkStatus {
Up = 1,
DownSinceLastRead = 0,
}
#[bitbybit::bitfield(u16)]
pub struct CopperStatusRegister {
/// Always 0, the 100BASE-T4 protocol is not available on Marvell 88E15XX.
#[bit(15, r)]
p_100_base_t4: bool,
/// Always 1 for Marvell 88E15XX
#[bit(14, r)]
p_100_base_x_full_duplex: bool,
/// Always 1 for Marvell 88E15XX
#[bit(13, r)]
p_100_base_x_half_duplex: bool,
/// Always 1 for Marvell 88E15XX
#[bit(12, r)]
p_10_base_t_full_duplex: bool,
/// Always 1 for Marvell 88E15XX
#[bit(11, r)]
p_10_base_t_half_duplex: bool,
/// Always 0 for Marvell 88E15XX
#[bit(10, r)]
p_100_base_t2_full_duplex: bool,
/// Always 0 for Marvell 88E15XX
#[bit(9, r)]
p_100_base_t2_half_duplex: bool,
/// Always 1 for Marvell 88E15XX
#[bit(8, r)]
extended_status: bool,
/// Always 1 for Marvell 88E15XX
#[bit(6, r)]
mf_preamble_suppression: bool,
#[bit(5, r)]
auto_negotiation_complete: bool,
// Latching high register bit.
#[bit(4, r)]
copper_remote_fault: bool,
/// Always 1 for Marvell 88E15XX
#[bit(3, r)]
auto_negotation_ability: bool,
// Latching low register bit. For the current link status, this register should be read back
// to back, or the link real time register (17_0.10) should be read
#[bit(2, r)]
copper_link_status: LatchingLinkStatus,
// Latching high register bit.
#[bit(1, r)]
jabber_detect: bool,
/// Always 1 for Marvell 88E15XX
#[bit(0, r)]
extended_capabilities: bool,
}
#[bitbybit::bitenum(u2, exhaustive = true)]
#[derive(Debug, PartialEq, Eq)]
pub enum PhySpeedBits {
Reserved = 0b11,
Mbps1000 = 0b10,
Mbps100 = 0b01,
Mbps10 = 0b00,
}
impl PhySpeedBits {
#[inline]
pub fn as_zynq7000_eth_speed(&self) -> Option<zynq7000_hal::eth::Speed> {
match self {
PhySpeedBits::Reserved => None,
PhySpeedBits::Mbps1000 => Some(zynq7000_hal::eth::Speed::Mbps1000),
PhySpeedBits::Mbps100 => Some(zynq7000_hal::eth::Speed::Mbps100),
PhySpeedBits::Mbps10 => Some(zynq7000_hal::eth::Speed::Mbps10),
}
}
}
#[bitbybit::bitenum(u1, exhaustive = true)]
#[derive(Debug, PartialEq, Eq)]
pub enum PhyDuplexBit {
Full = 1,
Half = 0,
}
impl PhyDuplexBit {
#[inline]
pub fn as_zynq7000_eth_duplex(&self) -> zynq7000_hal::eth::Duplex {
match self {
PhyDuplexBit::Full => zynq7000_hal::eth::Duplex::Full,
PhyDuplexBit::Half => zynq7000_hal::eth::Duplex::Half,
}
}
}
#[bitbybit::bitfield(u16)]
pub struct CopperSpecificStatusRegister {
#[bits(14..=15, r)]
speed: PhySpeedBits,
#[bit(13, r)]
duplex: PhyDuplexBit,
/// Latching high register bit.
#[bit(12, r)]
page_received: bool,
/// This is 1 when auto-negotiation is not enabled.
#[bit(11, r)]
speed_and_duplex_resolved: bool,
/// This is the real-time link status.
#[bit(10, r)]
copper_link: bool,
#[bit(9, r)]
transmit_pause_enabled: bool,
#[bit(8, r)]
received_pause_enabled: bool,
#[bit(6, r)]
mdi_crossover_status: bool,
#[bit(4, r)]
copper_energy_detect_status: bool,
#[bit(3, r)]
global_link_status: bool,
#[bit(1, r)]
polarity: bool,
#[bit(0, r)]
jabber: bool,
}
pub struct Marvell88E1518Phy {
mdio: zynq7000_hal::eth::mdio::Mdio,
addr: u5,
}
impl Marvell88E1518Phy {
pub fn new_autoprobe_addr(mdio: &mut zynq7000_hal::eth::mdio::Mdio) -> Option<(Self, u4)> {
for addr in 0..32 {
let phy_id_1 =
mdio.read_blocking(u5::new(addr), MarvellRegistersPage0::IdReg1.raw_value());
let phy_id_2 =
mdio.read_blocking(u5::new(addr), MarvellRegistersPage0::IdReg2.raw_value());
// PHY ID 1 contains bits 3 to 18 of the OUI in the goofy IEEE ordering scheme,
// which corresponds to bit \[21:6\] of the OUI.
// PHY ID 2 contains bits 19 to 24 which correspond to bits \[5:0\] of the OUI.
let oui = ((phy_id_1 as u32) << 6) | ((phy_id_2 >> 10) & 0b111111) as u32;
let model_number = ((phy_id_2 >> 4) & 0b111111) as u8;
let revision_number = u4::new((phy_id_2 & 0b1111) as u8);
if oui == MARVELL_88E1518_OUI && model_number == MARVELL_88E1518_MODELL_NUMBER {
return Some((
Self {
mdio: unsafe { mdio.clone() },
addr: u5::new(addr),
},
revision_number,
));
}
}
None
}
pub fn new(mdio: zynq7000_hal::eth::mdio::Mdio, addr: u5) -> Self {
Self { mdio, addr }
}
pub fn reset(&mut self) {
let mut ctrl = CopperControlRegister::new_with_raw_value(
self.mdio
.read_blocking(self.addr, MarvellRegistersPage0::CopperControl.raw_value()),
);
ctrl.set_copper_reset(true);
self.mdio.write_blocking(
self.addr,
MarvellRegistersPage0::CopperControl.raw_value(),
ctrl.raw_value(),
);
}
pub fn restart_auto_negotiation(&mut self) {
let mut ctrl = CopperControlRegister::new_with_raw_value(
self.mdio
.read_blocking(self.addr, MarvellRegistersPage0::CopperControl.raw_value()),
);
ctrl.set_auto_negotiation_enable(true);
ctrl.set_restart_auto_negotiation(true);
self.mdio.write_blocking(
self.addr,
MarvellRegistersPage0::CopperControl.raw_value(),
ctrl.raw_value(),
);
}
pub fn read_copper_status(&mut self) -> CopperStatusRegister {
let raw_value = self
.mdio
.read_blocking(self.addr, MarvellRegistersPage0::CopperStatus.raw_value());
CopperStatusRegister::new_with_raw_value(raw_value)
}
pub fn read_copper_specific_status_register_1(&mut self) -> CopperSpecificStatusRegister {
let raw_value = self.mdio.read_blocking(
self.addr,
MarvellRegistersPage0::CopperSpecificStatus.raw_value(),
);
CopperSpecificStatusRegister::new_with_raw_value(raw_value)
}
}