250 lines
7.3 KiB
Rust
250 lines
7.3 KiB
Rust
use core::convert::Infallible;
|
|
|
|
use arbitrary_int::Number;
|
|
use zynq7000::uart::{InterruptControl, InterruptStatus, MmioUart};
|
|
|
|
use super::FIFO_DEPTH;
|
|
|
|
pub struct Rx {
|
|
pub(crate) regs: MmioUart<'static>,
|
|
}
|
|
// TODO: Remove once this is impelemnted for MmioUart
|
|
unsafe impl Send for Rx {}
|
|
|
|
#[derive(Debug, Default, Clone, Copy)]
|
|
pub struct RxErrors {
|
|
framing: bool,
|
|
overrun: bool,
|
|
parity: bool,
|
|
}
|
|
|
|
impl RxErrors {
|
|
#[inline]
|
|
pub const fn framing(&self) -> bool {
|
|
self.framing
|
|
}
|
|
#[inline]
|
|
pub const fn overrun(&self) -> bool {
|
|
self.overrun
|
|
}
|
|
#[inline]
|
|
pub const fn parity(&self) -> bool {
|
|
self.parity
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default)]
|
|
pub struct RxInterruptResult {
|
|
read_bytes: usize,
|
|
errors: Option<RxErrors>,
|
|
}
|
|
|
|
impl RxInterruptResult {
|
|
pub fn read_bytes(&self) -> usize {
|
|
self.read_bytes
|
|
}
|
|
|
|
pub fn errors(&self) -> Option<RxErrors> {
|
|
self.errors
|
|
}
|
|
}
|
|
|
|
impl Rx {
|
|
#[inline]
|
|
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
|
|
if self.regs.read_sr().rx_empty() {
|
|
return Err(nb::Error::WouldBlock);
|
|
}
|
|
Ok(self.regs.read_fifo().fifo())
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn read_fifo_unchecked(&mut self) -> u8 {
|
|
self.regs.read_fifo().fifo()
|
|
}
|
|
|
|
/// Write the receiver timeout value.
|
|
///
|
|
/// A value of 0 will disable the receiver timeout.
|
|
/// Otherwise, the 10-bit counter used by the receiver timeout mechanism of the UART will
|
|
/// load this value for the upper 8 bits on a reload. The counter is clocked by the UART
|
|
/// bit clock, so this value times 4 is the number of UART clock ticks until a timeout occurs.
|
|
#[inline]
|
|
pub fn set_rx_timeout_value(&mut self, rto: u8) {
|
|
self.regs.write_rx_tout(rto as u32);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn soft_reset(&mut self) {
|
|
self.regs.modify_cr(|mut cr| {
|
|
cr.set_rx_rst(true);
|
|
cr
|
|
});
|
|
while self.regs.read_cr().rx_rst() {}
|
|
}
|
|
|
|
/// Helper function to start the interrupt driven reception of data.
|
|
///
|
|
/// This function will perform a soft-reset, clear RX related interrupts and then enable
|
|
/// all relevant interrupts for the RX side of the UART. These steps are recommended to have
|
|
/// a glitch-free start of the interrupt driven reception.
|
|
///
|
|
/// This should be called once at system start-up. After that, you only need to call
|
|
/// [Self::on_interrupt] in the interrupt handler for the UART peripheral.
|
|
pub fn start_interrupt_driven_reception(&mut self) {
|
|
self.soft_reset();
|
|
self.clear_interrupts();
|
|
self.enable_interrupts();
|
|
}
|
|
|
|
/// Enables all interrupts relevant for the RX side of the UART.
|
|
///
|
|
/// It is recommended to also clear all interrupts immediately after enabling them.
|
|
#[inline]
|
|
pub fn enable_interrupts(&mut self) {
|
|
self.regs.write_ier(
|
|
InterruptControl::builder()
|
|
.with_tx_over(false)
|
|
.with_tx_near_full(false)
|
|
.with_tx_trig(false)
|
|
.with_rx_dms(false)
|
|
.with_rx_timeout(true)
|
|
.with_rx_parity(true)
|
|
.with_rx_framing(true)
|
|
.with_rx_over(true)
|
|
.with_tx_full(false)
|
|
.with_tx_empty(false)
|
|
.with_rx_full(true)
|
|
.with_rx_empty(false)
|
|
.with_rx_trg(true)
|
|
.build(),
|
|
);
|
|
}
|
|
|
|
pub fn on_interrupt(
|
|
&mut self,
|
|
buf: &mut [u8; FIFO_DEPTH],
|
|
reset_rx_timeout: bool,
|
|
) -> RxInterruptResult {
|
|
let mut result = RxInterruptResult::default();
|
|
let imr = self.regs.read_imr();
|
|
if !imr.rx_full()
|
|
&& !imr.rx_trg()
|
|
&& !imr.rx_parity()
|
|
&& !imr.rx_framing()
|
|
&& !imr.rx_over()
|
|
&& !imr.rx_timeout()
|
|
{
|
|
return result;
|
|
}
|
|
let isr = self.regs.read_isr();
|
|
if isr.rx_full() {
|
|
// Read all bytes in the full RX fifo.
|
|
for byte in buf.iter_mut() {
|
|
*byte = self.read_fifo_unchecked();
|
|
}
|
|
result.read_bytes = FIFO_DEPTH;
|
|
} else if isr.rx_trg() {
|
|
// It is guaranteed that we can read the FIFO level amount of data
|
|
let fifo_trigger = self.regs.read_rx_fifo_trigger().trig().as_usize();
|
|
(0..fifo_trigger).for_each(|i| {
|
|
buf[i] = self.read_fifo_unchecked();
|
|
});
|
|
result.read_bytes = fifo_trigger;
|
|
}
|
|
// Read everything else that is available, as long as there is space left.
|
|
while result.read_bytes < buf.len() {
|
|
if let Ok(byte) = self.read_fifo() {
|
|
buf[result.read_bytes] = byte;
|
|
result.read_bytes += 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
// Handle error events.
|
|
if isr.rx_parity() || isr.rx_framing() || isr.rx_over() {
|
|
result.errors = Some(RxErrors {
|
|
framing: isr.rx_framing(),
|
|
overrun: isr.rx_over(),
|
|
parity: isr.rx_parity(),
|
|
});
|
|
}
|
|
// Handle timeout event.
|
|
if isr.rx_timeout() && reset_rx_timeout {
|
|
self.regs.modify_cr(|mut cr| {
|
|
cr.set_rstto(true);
|
|
cr
|
|
});
|
|
}
|
|
self.clear_interrupts();
|
|
result
|
|
}
|
|
|
|
// This clears all RX related interrupts.
|
|
#[inline]
|
|
pub fn clear_interrupts(&mut self) {
|
|
self.regs.write_isr(
|
|
InterruptStatus::builder()
|
|
.with_tx_over(false)
|
|
.with_tx_near_full(false)
|
|
.with_tx_trig(false)
|
|
.with_rx_dms(true)
|
|
.with_rx_timeout(true)
|
|
.with_rx_parity(true)
|
|
.with_rx_framing(true)
|
|
.with_rx_over(true)
|
|
.with_tx_full(false)
|
|
.with_tx_empty(false)
|
|
.with_rx_full(true)
|
|
.with_rx_empty(true)
|
|
.with_rx_trg(true)
|
|
.build(),
|
|
);
|
|
}
|
|
}
|
|
|
|
impl embedded_hal_nb::serial::ErrorType for Rx {
|
|
type Error = Infallible;
|
|
}
|
|
|
|
impl embedded_hal_nb::serial::Read for Rx {
|
|
/// Read one byte from the FIFO.
|
|
///
|
|
/// This operation is infallible because pulling an available byte from the FIFO
|
|
/// always succeeds. If you want to be informed about RX errors, you should look at the
|
|
/// non-blocking API using interrupts, which also tracks the RX error bits.
|
|
#[inline]
|
|
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
|
self.read_fifo()
|
|
}
|
|
}
|
|
|
|
impl embedded_io::ErrorType for Rx {
|
|
type Error = Infallible;
|
|
}
|
|
|
|
impl embedded_io::Read for Rx {
|
|
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
|
if buf.is_empty() {
|
|
return Ok(0);
|
|
}
|
|
let mut read = 0;
|
|
loop {
|
|
if !self.regs.read_sr().rx_empty() {
|
|
break;
|
|
}
|
|
}
|
|
for byte in buf.iter_mut() {
|
|
match <Self as embedded_hal_nb::serial::Read<u8>>::read(self) {
|
|
Ok(w) => {
|
|
*byte = w;
|
|
read += 1;
|
|
}
|
|
Err(nb::Error::WouldBlock) => break,
|
|
}
|
|
}
|
|
|
|
Ok(read)
|
|
}
|
|
}
|