Files
zynq7000-rs/examples/zedboard/src/bin/l3gd20h-spi-mio.rs

293 lines
9.0 KiB
Rust

//! PS SPI example using a L3GD20H sensor.
//!
//! External HW connections:
//!
//! - SCK pin to JE4 (MIO 12)
//! - MOSI pin to JE2 (MIO 10)
//! - MISO pin to JE3 (MIO 11)
//! - SS pin to JE1 (MIO 13)
#![no_std]
#![no_main]
use core::panic::PanicInfo;
use cortex_ar::asm::nop;
use embassy_executor::Spawner;
use embassy_time::{Delay, Duration, Ticker};
use embedded_hal::digital::StatefulOutputPin;
use embedded_hal_async::delay::DelayNs;
use embedded_io::Write;
use log::{error, info};
use zynq7000_hal::{
BootMode,
clocks::Clocks,
configure_level_shifter,
gic::{GicConfigurator, GicInterruptHelper, Interrupt},
gpio::{GpioPins, Output, PinState},
gtc::Gtc,
spi::{self, SpiAsync, SpiId, SpiWithHwCs, SpiWithHwCsAsync, on_interrupt},
time::Hertz,
uart::{self, TxAsync, on_interrupt_tx},
};
use zynq7000::{PsPeripherals, slcr::LevelShifterConfig, spi::DelayControl};
use zynq7000_rt as _;
// Define the clock frequency as a constant
const PS_CLOCK_FREQUENCY: Hertz = Hertz::from_raw(33_333_300);
const DEBUG_SPI_CLK_CONFIG: bool = false;
const BLOCKING: bool = false;
/// Entry point (not called like a normal main function)
#[unsafe(no_mangle)]
pub extern "C" fn boot_core(cpu_id: u32) -> ! {
if cpu_id != 0 {
panic!("unexpected CPU ID {}", cpu_id);
}
main();
}
#[embassy_executor::main]
#[unsafe(export_name = "main")]
async fn main(spawner: Spawner) -> ! {
// Enable PS-PL level shifters.
configure_level_shifter(LevelShifterConfig::EnableAll);
let dp = PsPeripherals::take().unwrap();
// Clock was already initialized by PS7 Init TCL script or FSBL, we just read it.
let mut clocks = Clocks::new_from_regs(PS_CLOCK_FREQUENCY).unwrap();
// SPI reference clock must be larger than the CPU 1x clock.
let spi_ref_clk_div = spi::calculate_largest_allowed_spi_ref_clk_divisor(&clocks)
.unwrap()
.value()
- 1;
spi::configure_spi_ref_clk(&mut clocks, arbitrary_int::u6::new(spi_ref_clk_div as u8));
// Set up the global interrupt controller.
let mut gic = GicConfigurator::new_with_init(dp.gicc, dp.gicd);
gic.enable_all_interrupts();
gic.set_all_spi_interrupt_targets_cpu0();
gic.enable();
unsafe {
gic.enable_interrupts();
}
let mut gpio_pins = GpioPins::new(dp.gpio);
// Set up global timer counter and embassy time driver.
let gtc = Gtc::new(dp.gtc, clocks.arm_clocks());
zynq7000_embassy::init(clocks.arm_clocks(), gtc);
// Set up the UART, we are logging with it.
let uart_clk_config = uart::ClkConfigRaw::new_autocalc_with_error(clocks.io_clocks(), 115200)
.unwrap()
.0;
let mut uart = uart::Uart::new_with_mio(
dp.uart_1,
uart::UartConfig::new_with_clk_config(uart_clk_config),
(gpio_pins.mio.mio48, gpio_pins.mio.mio49),
)
.unwrap();
uart.write_all(b"-- Zynq 7000 Zedboard SPI L3GD20H example --\n\r")
.unwrap();
zynq7000_hal::log::rb::init(log::LevelFilter::Trace);
let boot_mode = BootMode::new();
info!("Boot mode: {:?}", boot_mode);
if DEBUG_SPI_CLK_CONFIG {
info!(
"SPI Clock Information: CPU 1x: {:?}, IO Ref Clk: {:?}, SPI Ref Clk: {:?}, DIV: {:?}",
clocks.arm_clocks().cpu_1x_clk(),
clocks.io_clocks().ref_clk(),
clocks.io_clocks().spi_clk(),
spi_ref_clk_div
);
}
let mut spi = spi::Spi::new_one_hw_cs(
dp.spi_1,
clocks.io_clocks(),
spi::Config::new(
// 10 MHz maximum rating of the sensor.
zynq7000::spi::BaudDivSelect::By64,
//l3gd20::MODE,
embedded_hal::spi::MODE_3,
spi::SlaveSelectConfig::AutoWithAutoStart,
),
(
gpio_pins.mio.mio12,
gpio_pins.mio.mio10,
gpio_pins.mio.mio11,
),
gpio_pins.mio.mio13,
)
.unwrap();
let mod_id = spi.regs().read_mod_id();
assert_eq!(mod_id, spi::MODULE_ID);
assert!(spi.sclk() <= Hertz::from_raw(10_000_000));
let min_delay = (spi.sclk().raw() * 5) / 1_000_000_000;
spi.inner().configure_delays(
DelayControl::builder()
.with_inter_word_cs_deassert(0)
.with_between_cs_assertion(0)
.with_inter_word(0)
.with_cs_to_first_bit(min_delay as u8)
.build(),
);
let mio_led = Output::new_for_mio(gpio_pins.mio.mio7, PinState::Low);
let mut emio_leds: [Output; 8] = [
Output::new_for_emio(gpio_pins.emio.take(0).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(1).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(2).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(3).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(4).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(5).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(6).unwrap(), PinState::Low),
Output::new_for_emio(gpio_pins.emio.take(7).unwrap(), PinState::Low),
];
for (idx, led) in emio_leds.iter_mut().enumerate() {
if idx % 2 == 0 {
led.set_high();
} else {
led.set_low();
}
}
spawner.spawn(logger_task(uart)).unwrap();
if BLOCKING {
blocking_application(mio_led, emio_leds, spi).await;
} else {
non_blocking_application(mio_led, emio_leds, spi).await;
}
}
#[embassy_executor::task]
pub async fn logger_task(uart: uart::Uart) {
let (tx, _) = uart.split();
let mut tx_async = TxAsync::new(tx);
let frame_queue = zynq7000_hal::log::rb::get_frame_queue();
let mut log_buf: [u8; 2048] = [0; 2048];
loop {
let next_frame_len = frame_queue.receive().await;
zynq7000_hal::log::rb::read_next_frame(next_frame_len, &mut log_buf);
tx_async.write(&log_buf[0..next_frame_len]).await;
}
}
pub async fn blocking_application(
mut mio_led: Output,
mut emio_leds: [Output; 8],
spi: spi::Spi,
) -> ! {
let mut delay = Delay;
let spi_dev = SpiWithHwCs::new(spi, spi::ChipSelect::Slave0, delay.clone());
let mut l3gd20 = l3gd20::spi::L3gd20::new(spi_dev).unwrap();
let who_am_i = l3gd20.who_am_i().unwrap();
info!("L3GD20 WHO_AM_I: 0x{who_am_i:02X}");
let mut ticker = Ticker::every(Duration::from_millis(400));
// Power up time for the sensor to get good readings.
delay.delay_ms(50).await;
loop {
mio_led.toggle().unwrap();
let measurements = l3gd20.all().unwrap();
info!("L3GD20: {measurements:?}");
info!("L3GD20 Temp: {:?}", measurements.temp_celcius());
for led in emio_leds.iter_mut() {
led.toggle().unwrap();
}
ticker.next().await; // Wait for the next cycle of the ticker
}
}
pub async fn non_blocking_application(
mut mio_led: Output,
mut emio_leds: [Output; 8],
spi: spi::Spi,
) -> ! {
let mut delay = Delay;
let spi_async = SpiAsync::new(spi);
let spi_dev = SpiWithHwCsAsync::new(spi_async, spi::ChipSelect::Slave0, delay.clone());
let mut l3gd20 = l3gd20::asynchronous::spi::L3gd20::new(spi_dev)
.await
.unwrap();
let who_am_i = l3gd20.who_am_i().await.unwrap();
info!("L3GD20 WHO_AM_I: 0x{who_am_i:02X}");
let mut ticker = Ticker::every(Duration::from_millis(400));
// Power up time for the sensor to get good readings.
delay.delay_ms(50).await;
loop {
mio_led.toggle().unwrap();
let measurements = l3gd20.all().await.unwrap();
info!("L3GD20: {measurements:?}");
info!("L3GD20 Temp: {:?}", measurements.temp_celcius());
for led in emio_leds.iter_mut() {
led.toggle().unwrap();
}
ticker.next().await; // Wait for the next cycle of the ticker
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _irq_handler() {
let mut gic_helper = GicInterruptHelper::new();
let irq_info = gic_helper.acknowledge_interrupt();
match irq_info.interrupt() {
Interrupt::Sgi(_) => (),
Interrupt::Ppi(ppi_interrupt) => {
if ppi_interrupt == zynq7000_hal::gic::PpiInterrupt::GlobalTimer {
unsafe {
zynq7000_embassy::on_interrupt();
}
}
}
Interrupt::Spi(spi_interrupt) => {
if spi_interrupt == zynq7000_hal::gic::SpiInterrupt::Spi1 {
on_interrupt(SpiId::Spi1);
} else if spi_interrupt == zynq7000_hal::gic::SpiInterrupt::Uart1 {
on_interrupt_tx(zynq7000_hal::uart::UartId::Uart1);
}
}
Interrupt::Invalid(_) => (),
Interrupt::Spurious => (),
}
gic_helper.end_of_interrupt(irq_info);
}
#[unsafe(no_mangle)]
pub extern "C" fn _abort_handler() {
loop {
nop();
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _undefined_handler() {
loop {
nop();
}
}
#[unsafe(no_mangle)]
pub extern "C" fn _prefetch_handler() {
loop {
nop();
}
}
/// Panic handler
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
error!("Panic: {info:?}");
loop {}
}