Files
zynq7000-rs/zynq7000-rt/src/rt.rs

349 lines
13 KiB
Rust

//! Start-up code for Zynq 7000
//!
//! The bootup routine was kepts as similar to the one
//! [provided by Xilinx](https://github.com/Xilinx/embeddedsw/blob/master/lib/bsp/standalone/src/arm/cortexa9/gcc/boot.S)
//! as possible. The boot routine includes stack, MMU, cache and .bss/.data section initialization.
use cortex_a_rt as _;
use cortex_r_a::register::{Cpsr, cpsr::ProcessorMode};
// Start-up code for Armv7-A
//
// We set up our stacks and `kmain` in system mode.
core::arch::global_asm!(
r#"
.set PSS_L2CC_BASE_ADDR, 0xF8F02000
.set PSS_SLCR_BASE_ADDR, 0xF8000000
.set RESERVED, 0x0fffff00
.set LRemap, 0xFE00000F /* set the base address of the peripheral block as not shared */
.set L2CCWay, (PSS_L2CC_BASE_ADDR + 0x077C) /*(PSS_L2CC_BASE_ADDR + PSS_L2CC_CACHE_INVLD_WAY_OFFSET)*/
.set L2CCSync, (PSS_L2CC_BASE_ADDR + 0x0730) /*(PSS_L2CC_BASE_ADDR + PSS_L2CC_CACHE_SYNC_OFFSET)*/
.set L2CCCrtl, (PSS_L2CC_BASE_ADDR + 0x0100) /*(PSS_L2CC_BASE_ADDR + PSS_L2CC_CNTRL_OFFSET)*/
.set L2CCAuxCrtl, (PSS_L2CC_BASE_ADDR + 0x0104) /*(PSS_L2CC_BASE_ADDR + XPSS_L2CC_AUX_CNTRL_OFFSET)*/
.set L2CCTAGLatReg, (PSS_L2CC_BASE_ADDR + 0x0108) /*(PSS_L2CC_BASE_ADDR + XPSS_L2CC_TAG_RAM_CNTRL_OFFSET)*/
.set L2CCDataLatReg, (PSS_L2CC_BASE_ADDR + 0x010C) /*(PSS_L2CC_BASE_ADDR + XPSS_L2CC_DATA_RAM_CNTRL_OFFSET)*/
.set L2CCIntClear, (PSS_L2CC_BASE_ADDR + 0x0220) /*(PSS_L2CC_BASE_ADDR + XPSS_L2CC_IAR_OFFSET)*/
.set L2CCIntRaw, (PSS_L2CC_BASE_ADDR + 0x021C) /*(PSS_L2CC_BASE_ADDR + XPSS_L2CC_ISR_OFFSET)*/
.set SLCRlockReg, (PSS_SLCR_BASE_ADDR + 0x04) /*(PSS_SLCR_BASE_ADDR + XPSS_SLCR_LOCK_OFFSET)*/
.set SLCRUnlockReg, (PSS_SLCR_BASE_ADDR + 0x08) /*(PSS_SLCR_BASE_ADDR + XPSS_SLCR_UNLOCK_OFFSET)*/
.set SLCRL2cRamReg, (PSS_SLCR_BASE_ADDR + 0xA1C) /*(PSS_SLCR_BASE_ADDR + XPSS_SLCR_L2C_RAM_OFFSET)*/
.set SLCRCPURSTReg, (0xF8000000 + 0x244) /*(XPS_SYS_CTRL_BASEADDR + A9_CPU_RST_CTRL_OFFSET)*/
.set EFUSEStatus, (0xF800D000 + 0x10) /*(XPS_EFUSE_BASEADDR + EFUSE_STATUS_OFFSET)*/
.set CRValMmuCac, 0b01000000000101 /* Enable IDC, and MMU */
.set CRValHiVectorAddr, 0b10000000000000 /* Set the Vector address to high, 0xFFFF0000 */
.set L2CCAuxControl, 0x72360000 /* Enable all prefetching, Cache replacement policy, Parity enable,
Event monitor bus enable and Way Size (64 KB) */
.set L2CCControl, 0x01 /* Enable L2CC */
.set L2CCTAGLatency, 0x0111 /* latency for TAG RAM */
.set L2CCDataLatency, 0x0121 /* latency for DATA RAM */
.set SLCRlockKey, 0x767B /* SLCR lock key */
.set SLCRUnlockKey, 0xDF0D /* SLCR unlock key */
.set SLCRL2cRamConfig, 0x00020202 /* SLCR L2C ram configuration */
.set FPEXC_EN, 0x40000000 /* FPU enable bit, (1 << 30) */
.section .text.startup
.align 0
.global _start
.type _start, %function
_start:
/* only allow cpu0 through */
/* Read MPIDR */
mrc p15,0,r1,c0,c0,5
/* Extract CPU ID bits. For single-core systems, this should always be 0 */
and r1, r1, #0x3
cmp r1, #0
beq check_efuse
b initialize
// Zynq specific code. It is recommended to reset CPU1 according to page 160 of the datasheet
check_efuse:
ldr r0,=EFUSEStatus
ldr r1,[r0] /* Read eFuse setting */
ands r1,r1,#0x80 /* Check whether device is having single core */
beq initialize
/* single core device, reset cpu1 */
ldr r0,=SLCRUnlockReg /* Load SLCR base address base + unlock register */
ldr r1,=SLCRUnlockKey /* set unlock key */
str r1, [r0] /* Unlock SLCR */
ldr r0,=SLCRCPURSTReg
ldr r1,[r0] /* Read CPU Software Reset Control register */
orr r1,r1,#0x22
str r1,[r0] /* Reset CPU1 */
ldr r0,=SLCRlockReg /* Load SLCR base address base + lock register */
ldr r1,=SLCRlockKey /* set lock key */
str r1, [r0] /* lock SLCR */
initialize:
mrc p15, 0, r0, c0, c0, 0 /* Get the revision */
and r5, r0, #0x00f00000
and r6, r0, #0x0000000f
orr r6, r6, r5, lsr #20-4
/* set VBAR to the _vector_table address in linker script */
ldr r0, =_vector_table
mcr p15, 0, r0, c12, c0, 0
/* Invalidate scu */
ldr r7, =0xf8f0000c
ldr r6, =0xffff
str r6, [r7]
/* Invalidate caches and TLBs */
mov r0,#0 /* r0 = 0 */
mcr p15, 0, r0, c8, c7, 0 /* invalidate TLBs */
mcr p15, 0, r0, c7, c5, 0 /* invalidate icache */
mcr p15, 0, r0, c7, c5, 6 /* Invalidate branch predictor array */
bl invalidate_dcache /* invalidate dcache */
/* Disable MMU, if enabled */
mrc p15, 0, r0, c1, c0, 0 /* read CP15 register 1 */
bic r0, r0, #0x1 /* clear bit 0 */
mcr p15, 0, r0, c1, c0, 0 /* write value back */
/* Set up stacks first, might be required for MMU loader function */
// Set stack pointer (as the top) and mask interrupts for for FIQ mode (Mode 0x11)
ldr r0, =_stack_top
msr cpsr, {fiq_mode}
mov sp, r0
ldr r1, =_fiq_stack_size
sub r0, r0, r1
// Set stack pointer (right after) and mask interrupts for for IRQ mode (Mode 0x12)
msr cpsr, {irq_mode}
mov sp, r0
ldr r1, =_irq_stack_size
sub r0, r0, r1
// Set stack pointer (right after) and mask interrupts for for SVC mode (Mode 0x13)
msr cpsr, {svc_mode}
mov sp, r0
ldr r1, =_svc_stack_size
sub r0, r0, r1
// Set stack pointer (right after) and mask interrupts for for System mode (Mode 0x1F)
msr cpsr, {sys_mode}
mov sp, r0
// Clear the Thumb Exception bit because we're in Arm mode
mrc p15, 0, r0, c1, c0, 0
bic r0, #{te_bit}
mcr p15, 0, r0, c1, c0, 0
/* Zero BSS and initialize data before calling any function which might require them. */
// Initialise .bss
ldr r0, =__sbss
ldr r1, =__ebss
mov r2, 0
0:
cmp r1, r0
beq 1f
stm r0!, {{r2}}
b 0b
1:
// Initialise .data
ldr r0, =__sdata
ldr r1, =__edata
ldr r2, =__sidata
0:
cmp r1, r0
beq 1f
ldm r2!, {{r3}}
stm r0!, {{r3}}
b 0b
1:
/* set scu enable bit in scu */
ldr r7, =0xf8f00000
ldr r0, [r7]
orr r0, r0, #0x1
str r0, [r7]
/* enable MMU and cache */
bl load_mmu_table
mvn r0,#0 /* Load MMU domains -- all ones=manager */
mcr p15,0,r0,c3,c0,0
/* Enable mmu, icahce and dcache */
ldr r0,=CRValMmuCac
mcr p15,0,r0,c1,c0,0 /* Enable cache and MMU */
dsb /* dsb allow the MMU to start up */
isb /* isb flush prefetch buffer */
/* Write to ACTLR */
mrc p15, 0, r0, c1, c0, 1 /* Read ACTLR*/
orr r0, r0, #(0x01 << 6) /* set SMP bit */
orr r0, r0, #(0x01 ) /* Cache/TLB maintenance broadcast */
mcr p15, 0, r0, c1, c0, 1 /* Write ACTLR*/
/* Invalidate L2 Cache and enable L2 Cache*/
/* For AMP, assume running on CPU1. Don't initialize L2 Cache (up to Linux) */
ldr r0,=L2CCCrtl /* Load L2CC base address base + control register */
mov r1, #0 /* force the disable bit */
str r1, [r0] /* disable the L2 Caches */
ldr r0,=L2CCAuxCrtl /* Load L2CC base address base + Aux control register */
ldr r1,[r0] /* read the register */
ldr r2,=L2CCAuxControl /* set the default bits */
orr r1,r1,r2
str r1, [r0] /* store the Aux Control Register */
ldr r0,=L2CCTAGLatReg /* Load L2CC base address base + TAG Latency address */
ldr r1,=L2CCTAGLatency /* set the latencies for the TAG*/
str r1, [r0] /* store the TAG Latency register Register */
ldr r0,=L2CCDataLatReg /* Load L2CC base address base + Data Latency address */
ldr r1,=L2CCDataLatency /* set the latencies for the Data*/
str r1, [r0] /* store the Data Latency register Register */
ldr r0,=L2CCWay /* Load L2CC base address base + way register*/
ldr r2, =0xFFFF
str r2, [r0] /* force invalidate */
ldr r0,=L2CCSync /* need to poll 0x730, PSS_L2CC_CACHE_SYNC_OFFSET */
/* Load L2CC base address base + sync register*/
/* poll for completion */
Sync:
ldr r1, [r0]
cmp r1, #0
bne Sync
ldr r0,=L2CCIntRaw /* clear pending interrupts */
ldr r1,[r0]
ldr r0,=L2CCIntClear
str r1,[r0]
ldr r0,=SLCRUnlockReg /* Load SLCR base address base + unlock register */
ldr r1,=SLCRUnlockKey /* set unlock key */
str r1, [r0] /* Unlock SLCR */
ldr r0,=SLCRL2cRamReg /* Load SLCR base address base + l2c Ram Control register */
ldr r1,=SLCRL2cRamConfig /* set the configuration value */
str r1, [r0] /* store the L2c Ram Control Register */
ldr r0,=SLCRlockReg /* Load SLCR base address base + lock register */
ldr r1,=SLCRlockKey /* set lock key */
str r1, [r0] /* lock SLCR */
ldr r0,=L2CCCrtl /* Load L2CC base address base + control register */
ldr r1,[r0] /* read the register */
mov r2, #L2CCControl /* set the enable bit */
orr r1,r1,r2
str r1, [r0] /* enable the L2 Caches */
mov r0, r0
mrc p15, 0, r1, c1, c0, 2 /* read cp access control register (CACR) into r1 */
orr r1, r1, #(0xf << 20) /* enable full access for p10 & p11 */
mcr p15, 0, r1, c1, c0, 2 /* write back into CACR */
/* enable vfp */
fmrx r1, FPEXC /* read the exception register */
orr r1,r1, #FPEXC_EN /* set VFP enable bit, leave the others in orig state */
fmxr FPEXC, r1 /* write back the exception register */
mrc p15,0,r0,c1,c0,0 /* flow prediction enable */
orr r0, r0, #(0x01 << 11) /* #0x8000 */
mcr p15,0,r0,c1,c0,0
mrc p15,0,r0,c1,c0,1 /* read Auxiliary Control Register */
orr r0, r0, #(0x1 << 2) /* enable Dside prefetch */
orr r0, r0, #(0x1 << 1) /* enable L2 Prefetch hint */
mcr p15,0,r0,c1,c0,1 /* write Auxiliary Control Register */
mrs r0, cpsr /* get the current PSR */
bic r0, r0, #0x100 /* enable asynchronous abort exception */
msr cpsr_xsf, r0
// Jump to application
// Load CPU ID 0, which will be used as a function argument to the boot_core function.
mov r0, #0x0
bl boot_core
// In case the application returns, loop forever
b .
.size _start, . - _start
invalidate_dcache:
mrc p15, 1, r0, c0, c0, 1 /* read CLIDR */
ands r3, r0, #0x7000000
mov r3, r3, lsr #23 /* cache level value (naturally aligned) */
beq finished
mov r10, #0 /* start with level 0 */
loop1:
add r2, r10, r10, lsr #1 /* work out 3xcachelevel */
mov r1, r0, lsr r2 /* bottom 3 bits are the Cache type for this level */
and r1, r1, #7 /* get those 3 bits alone */
cmp r1, #2
blt skip /* no cache or only instruction cache at this level */
mcr p15, 2, r10, c0, c0, 0 /* write the Cache Size selection register */
isb /* isb to sync the change to the CacheSizeID reg */
mrc p15, 1, r1, c0, c0, 0 /* reads current Cache Size ID register */
and r2, r1, #7 /* extract the line length field */
add r2, r2, #4 /* add 4 for the line length offset (log2 16 bytes) */
ldr r4, =0x3ff
ands r4, r4, r1, lsr #3 /* r4 is the max number on the way size (right aligned) */
clz r5, r4 /* r5 is the bit position of the way size increment */
ldr r7, =0x7fff
ands r7, r7, r1, lsr #13 /* r7 is the max number of the index size (right aligned) */
loop2:
mov r9, r4 /* r9 working copy of the max way size (right aligned) */
loop3:
orr r11, r10, r9, lsl r5 /* factor in the way number and cache number into r11 */
orr r11, r11, r7, lsl r2 /* factor in the index number */
mcr p15, 0, r11, c7, c6, 2 /* invalidate by set/way */
subs r9, r9, #1 /* decrement the way number */
bge loop3
subs r7, r7, #1 /* decrement the index */
bge loop2
skip:
add r10, r10, #2 /* increment the cache number */
cmp r3, r10
bgt loop1
finished:
mov r10, #0 /* switch back to cache level 0 */
mcr p15, 2, r10, c0, c0, 0 /* select current cache level in cssr */
dsb
isb
bx lr
"#,
fiq_mode = const {
Cpsr::new_with_raw_value(0)
.with_mode(ProcessorMode::Fiq)
.with_i(true)
.with_f(true)
.raw_value()
},
irq_mode = const {
Cpsr::new_with_raw_value(0)
.with_mode(ProcessorMode::Irq)
.with_i(true)
.with_f(true)
.raw_value()
},
svc_mode = const {
Cpsr::new_with_raw_value(0)
.with_mode(ProcessorMode::Svc)
.with_i(true)
.with_f(true)
.raw_value()
},
sys_mode = const {
Cpsr::new_with_raw_value(0)
.with_mode(ProcessorMode::Sys)
.with_i(true)
.with_f(true)
.raw_value()
},
te_bit = const {
cortex_r_a::register::Sctlr::new_with_raw_value(0)
.with_te(true)
.raw_value()
}
);