2025-04-11 20:39:36 +02:00

250 lines
7.3 KiB
Rust

use core::convert::Infallible;
use arbitrary_int::Number;
use zynq7000::uart::{InterruptControl, InterruptStatus, MmioUart};
use super::FIFO_DEPTH;
pub struct Rx {
pub(crate) regs: MmioUart<'static>,
}
// TODO: Remove once this is impelemnted for MmioUart
unsafe impl Send for Rx {}
#[derive(Debug, Default, Clone, Copy)]
pub struct RxErrors {
framing: bool,
overrun: bool,
parity: bool,
}
impl RxErrors {
#[inline]
pub const fn framing(&self) -> bool {
self.framing
}
#[inline]
pub const fn overrun(&self) -> bool {
self.overrun
}
#[inline]
pub const fn parity(&self) -> bool {
self.parity
}
}
#[derive(Debug, Default)]
pub struct RxInterruptResult {
read_bytes: usize,
errors: Option<RxErrors>,
}
impl RxInterruptResult {
pub fn read_bytes(&self) -> usize {
self.read_bytes
}
pub fn errors(&self) -> Option<RxErrors> {
self.errors
}
}
impl Rx {
#[inline]
pub fn read_fifo(&mut self) -> nb::Result<u8, Infallible> {
if self.regs.read_sr().rx_empty() {
return Err(nb::Error::WouldBlock);
}
Ok(self.regs.read_fifo().fifo())
}
#[inline(always)]
pub fn read_fifo_unchecked(&mut self) -> u8 {
self.regs.read_fifo().fifo()
}
/// Write the receiver timeout value.
///
/// A value of 0 will disable the receiver timeout.
/// Otherwise, the 10-bit counter used by the receiver timeout mechanism of the UART will
/// load this value for the upper 8 bits on a reload. The counter is clocked by the UART
/// bit clock, so this value times 4 is the number of UART clock ticks until a timeout occurs.
#[inline]
pub fn set_rx_timeout_value(&mut self, rto: u8) {
self.regs.write_rx_tout(rto as u32);
}
#[inline]
pub fn soft_reset(&mut self) {
self.regs.modify_cr(|mut cr| {
cr.set_rx_rst(true);
cr
});
while self.regs.read_cr().rx_rst() {}
}
/// Helper function to start the interrupt driven reception of data.
///
/// This function will perform a soft-reset, clear RX related interrupts and then enable
/// all relevant interrupts for the RX side of the UART. These steps are recommended to have
/// a glitch-free start of the interrupt driven reception.
///
/// This should be called once at system start-up. After that, you only need to call
/// [Self::on_interrupt] in the interrupt handler for the UART peripheral.
pub fn start_interrupt_driven_reception(&mut self) {
self.soft_reset();
self.clear_interrupts();
self.enable_interrupts();
}
/// Enables all interrupts relevant for the RX side of the UART.
///
/// It is recommended to also clear all interrupts immediately after enabling them.
#[inline]
pub fn enable_interrupts(&mut self) {
self.regs.write_ier(
InterruptControl::builder()
.with_tx_over(false)
.with_tx_near_full(false)
.with_tx_trig(false)
.with_rx_dms(false)
.with_rx_timeout(true)
.with_rx_parity(true)
.with_rx_framing(true)
.with_rx_over(true)
.with_tx_full(false)
.with_tx_empty(false)
.with_rx_full(true)
.with_rx_empty(false)
.with_rx_trg(true)
.build(),
);
}
pub fn on_interrupt(
&mut self,
buf: &mut [u8; FIFO_DEPTH],
reset_rx_timeout: bool,
) -> RxInterruptResult {
let mut result = RxInterruptResult::default();
let imr = self.regs.read_imr();
if !imr.rx_full()
&& !imr.rx_trg()
&& !imr.rx_parity()
&& !imr.rx_framing()
&& !imr.rx_over()
&& !imr.rx_timeout()
{
return result;
}
let isr = self.regs.read_isr();
if isr.rx_full() {
// Read all bytes in the full RX fifo.
for byte in buf.iter_mut() {
*byte = self.read_fifo_unchecked();
}
result.read_bytes = FIFO_DEPTH;
} else if isr.rx_trg() {
// It is guaranteed that we can read the FIFO level amount of data
let fifo_trigger = self.regs.read_rx_fifo_trigger().trig().as_usize();
(0..fifo_trigger).for_each(|i| {
buf[i] = self.read_fifo_unchecked();
});
result.read_bytes = fifo_trigger;
}
// Read everything else that is available, as long as there is space left.
while result.read_bytes < buf.len() {
if let Ok(byte) = self.read_fifo() {
buf[result.read_bytes] = byte;
result.read_bytes += 1;
} else {
break;
}
}
// Handle error events.
if isr.rx_parity() || isr.rx_framing() || isr.rx_over() {
result.errors = Some(RxErrors {
framing: isr.rx_framing(),
overrun: isr.rx_over(),
parity: isr.rx_parity(),
});
}
// Handle timeout event.
if isr.rx_timeout() && reset_rx_timeout {
self.regs.modify_cr(|mut cr| {
cr.set_rstto(true);
cr
});
}
self.clear_interrupts();
result
}
// This clears all RX related interrupts.
#[inline]
pub fn clear_interrupts(&mut self) {
self.regs.write_isr(
InterruptStatus::builder()
.with_tx_over(false)
.with_tx_near_full(false)
.with_tx_trig(false)
.with_rx_dms(true)
.with_rx_timeout(true)
.with_rx_parity(true)
.with_rx_framing(true)
.with_rx_over(true)
.with_tx_full(false)
.with_tx_empty(false)
.with_rx_full(true)
.with_rx_empty(true)
.with_rx_trg(true)
.build(),
);
}
}
impl embedded_hal_nb::serial::ErrorType for Rx {
type Error = Infallible;
}
impl embedded_hal_nb::serial::Read for Rx {
/// Read one byte from the FIFO.
///
/// This operation is infallible because pulling an available byte from the FIFO
/// always succeeds. If you want to be informed about RX errors, you should look at the
/// non-blocking API using interrupts, which also tracks the RX error bits.
#[inline]
fn read(&mut self) -> nb::Result<u8, Self::Error> {
self.read_fifo()
}
}
impl embedded_io::ErrorType for Rx {
type Error = Infallible;
}
impl embedded_io::Read for Rx {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
if buf.is_empty() {
return Ok(0);
}
let mut read = 0;
loop {
if !self.regs.read_sr().rx_empty() {
break;
}
}
for byte in buf.iter_mut() {
match <Self as embedded_hal_nb::serial::Read<u8>>::read(self) {
Ok(w) => {
*byte = w;
read += 1;
}
Err(nb::Error::WouldBlock) => break,
}
}
Ok(read)
}
}