eive-obsw/mission/controller/acs/control/SafeCtrl.cpp

142 lines
6.4 KiB
C++
Raw Normal View History

2022-09-20 13:46:42 +02:00
#include "SafeCtrl.h"
2022-10-20 11:07:45 +02:00
2022-09-27 11:06:11 +02:00
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
2023-03-21 17:19:27 +01:00
#include <fsfw/globalfunctions/sign.h>
2022-10-20 11:07:45 +02:00
#include <math.h>
2022-09-27 11:06:11 +02:00
2022-10-20 11:07:45 +02:00
#include "../util/MathOperations.h"
2022-09-20 13:46:42 +02:00
2023-02-28 09:18:44 +01:00
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
2022-09-20 13:46:42 +02:00
2022-10-20 11:07:45 +02:00
SafeCtrl::~SafeCtrl() {}
2022-09-20 13:46:42 +02:00
2023-03-24 11:35:46 +01:00
ReturnValue_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const ReturnValue_t mekfValid,
const bool satRotRateValid, const bool sunDirValid) {
if (not magFieldValid) {
return SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (mekfValid) {
return SAFECTRL_USE_MEKF;
} else if (satRotRateValid and sunDirValid) {
return SAFECTRL_USE_NONMEKF;
} else if (satRotRateValid and not sunDirValid) {
return SAFECTRL_USE_DAMPING;
} else {
return SAFECTRL_NO_SENSORS_FOR_CONTROL;
}
}
ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool quatBJValid,
double *magFieldModel, bool magFieldModelValid,
double *sunDirModel, bool sunDirModelValid, double *satRateMekf,
bool rateMekfValid, double *sunDirRef, double *satRatRef,
double *outputAngle, double *outputMagMomB) {
if (!quatBJValid || !magFieldModelValid || !sunDirModelValid || !rateMekfValid) {
2022-10-20 11:07:45 +02:00
return SAFECTRL_MEKF_INPUT_INVALID;
}
double kRate = acsParameters->safeModeControllerParameters.k_rate_mekf;
double kAlign = acsParameters->safeModeControllerParameters.k_align_mekf;
2022-10-20 11:07:45 +02:00
// Calc sunDirB ,magFieldB with mekf output and model
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ);
double sunDirB[3] = {0, 0, 0}, magFieldB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1);
// change unit from uT to T
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldB, 3);
2022-10-20 11:07:45 +02:00
double crossSun[3] = {0, 0, 0};
2022-10-20 11:07:45 +02:00
VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun);
double normCrossSun = VectorOperations<double>::norm(crossSun, 3);
// calc angle alpha between sunDirRef and sunDIr
double dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB);
double alpha = acos(dotSun);
2022-10-20 11:07:45 +02:00
// Law Torque calculations
double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, torqueRate[3] = {0, 0, 0},
torqueAll[3] = {0, 0, 0};
double scalarFac = kAlign * alpha / normCrossSun;
2022-10-20 11:07:45 +02:00
VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3);
double rateSafeMode[3] = {0, 0, 0};
VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3);
VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3);
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3);
// Adding factor of inertia for axes
2023-02-28 09:18:44 +01:00
MatrixOperations<double>::multiplyScalar(*(acsParameters->inertiaEIVE.inertiaMatrix), 10,
*gainMatrixInertia, 3,
3); // why only for mekf one and not for no mekf
2022-10-20 11:07:45 +02:00
MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1);
// MagMom B (orthogonal torque)
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, 1 / pow(normMag, 2), outputMagMomB, 3);
*outputAngle = alpha;
2022-10-20 11:07:45 +02:00
return returnvalue::OK;
2022-09-20 13:46:42 +02:00
}
2023-03-24 11:35:46 +01:00
void SafeCtrl::safeNoMekf(const double *magFieldB, const double *satRotRateB, const double *sunDirB,
const double *sunDirRefB, const double *satRotRateRefB, double *magMomB,
double &errorAngle) {
// convert magFieldB from uT to T
2023-03-22 08:59:29 +01:00
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
2023-03-21 17:19:27 +01:00
2023-03-24 11:35:46 +01:00
// calculate angle alpha between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
// split rotational rate into parallel and orthogonal parts
double satRotRateParallelB[3] = {0, 0, 0}, satRotRateOrthogonalB[3] = {0, 0, 0};
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
// calculate torque for parallel rotational rate
double cmdParallel[3] = {0, 0, 0};
if (errorAngle < (double)acsParameters->safeModeControllerParameters.angleStartSpin) {
VectorOperations<double>::subtract(satRotRateRefB, satRotRateParallelB, cmdParallel, 3);
2023-03-21 17:19:27 +01:00
VectorOperations<double>::mulScalar(
2023-03-24 11:35:46 +01:00
cmdParallel, acsParameters->safeModeControllerParameters.k_parallel_mekf, cmdParallel, 3);
2022-10-20 11:07:45 +02:00
}
2023-03-24 11:35:46 +01:00
// calculate torque for orthogonal rotational rate
double cmdOrtho[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(satRotRateOrthogonalB,
-acsParameters->safeModeControllerParameters.k_ortho_mekf,
cmdOrtho, 3);
// calculate torque for alignment
double cmdAlign[3] = {0, 0, 0}, crossAlign[3] = {0, 0, 0},
alignFactor[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiplyScalar(*acsParameters->inertiaEIVE.inertiaMatrix,
acsParameters->safeModeControllerParameters.k_align_mekf,
*alignFactor, 3, 3);
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
MatrixOperations<double>::multiply(*alignFactor, *crossAlign, *cmdAlign, 3, 3, 1);
// sum of all torques
double cmdTorque[3] = {0, 0, 0};
2023-03-21 17:19:27 +01:00
for (uint8_t i = 0; i < 3; i++) {
2023-03-24 11:35:46 +01:00
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
2023-03-21 17:19:27 +01:00
}
2023-03-22 08:59:29 +01:00
// MagMom B (orthogonal torque)
double torqueMgt[3] = {0, 0, 0};
2023-03-24 11:35:46 +01:00
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
2023-03-22 08:59:29 +01:00
double normMag = VectorOperations<double>::norm(magFieldB, 3);
2023-03-24 11:35:46 +01:00
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
2023-03-21 17:19:27 +01:00
}