eive-obsw/mission/controller/acs/SusConverter.cpp

244 lines
9.7 KiB
C++
Raw Normal View History

2022-09-23 09:56:32 +02:00
/*
* SusConverter.cpp
*
* Created on: 17.01.2022
* Author: Timon Schwarz
*/
2022-09-27 11:06:11 +02:00
#include "SusConverter.h"
2022-09-27 11:06:11 +02:00
#include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/datapoollocal/LocalPoolVector.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h> //for atan2
2022-09-23 09:56:32 +02:00
#include <iostream>
2022-09-23 09:56:32 +02:00
bool SusConverter::checkSunSensorData(lp_vec_t<uint16_t, 6> susChannel) {
if (susChannel.value[0] <= susChannelValueCheckLow ||
susChannel.value[0] > susChannelValueCheckHigh ||
susChannel.value[0] > susChannel.value[GNDREF]) {
return false;
}
if (susChannel.value[1] <= susChannelValueCheckLow ||
susChannel.value[1] > susChannelValueCheckHigh ||
susChannel.value[1] > susChannel.value[GNDREF]) {
return false;
};
if (susChannel.value[2] <= susChannelValueCheckLow ||
susChannel.value[2] > susChannelValueCheckHigh ||
susChannel.value[2] > susChannel.value[GNDREF]) {
return false;
};
if (susChannel.value[3] <= susChannelValueCheckLow ||
susChannel.value[3] > susChannelValueCheckHigh ||
susChannel.value[3] > susChannel.value[GNDREF]) {
return false;
2022-09-23 09:56:32 +02:00
};
susChannelValueSum = 4 * susChannel.value[GNDREF] - (susChannel.value[0] + susChannel.value[1] +
susChannel.value[2] + susChannel.value[3]);
if ((susChannelValueSum < susChannelValueSumHigh) &&
(susChannelValueSum > susChannelValueSumLow)) {
return false;
2022-09-23 09:56:32 +02:00
};
return true;
2022-09-23 09:56:32 +02:00
}
void SusConverter::calcAngle(lp_vec_t<uint16_t, 6> susChannel) {
2022-09-27 11:06:11 +02:00
float xout, yout;
float s = 0.03; // s=[mm] gap between diodes
uint8_t d = 5; // d=[mm] edge length of the quadratic aperture
uint8_t h = 1; // h=[mm] distance between diodes and aperture
2022-09-23 09:56:32 +02:00
int ch0, ch1, ch2, ch3;
// Substract measurement values from GNDREF zero current threshold
ch0 = susChannel.value[GNDREF] - susChannel.value[0];
ch1 = susChannel.value[GNDREF] - susChannel.value[1];
ch2 = susChannel.value[GNDREF] - susChannel.value[2];
ch3 = susChannel.value[GNDREF] - susChannel.value[3];
2022-09-23 09:56:32 +02:00
// Calculation of x and y
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles
alphaBetaRaw[0] = atan2(xout, h) * (180 / M_PI); //[°]
alphaBetaRaw[1] = atan2(yout, h) * (180 / M_PI); //[°]
2022-09-23 09:56:32 +02:00
}
void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) {
uint8_t index, k, l;
2022-09-23 09:56:32 +02:00
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k = k + 1;
l = 0;
while (l < 3) {
l = l + 1;
// if-condition to check in which cell the data point has to be
if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3)) - halfCellWidth) &&
alphaBetaRaw[0] < ((completeCellWidth * (k / 3)) - halfCellWidth)) &&
(alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3)) - halfCellWidth) &&
alphaBetaRaw[1] < ((completeCellWidth * (l / 3)) - halfCellWidth))) {
2022-09-23 09:56:32 +02:00
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
alphaBetaCalibrated[0] =
coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] +
coeffAlpha[index][2] * alphaBetaRaw[1] +
coeffAlpha[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
alphaBetaCalibrated[1] =
coeffBeta[index][0] + coeffBeta[index][1] * alphaBetaRaw[0] +
coeffBeta[index][2] * alphaBetaRaw[1] +
coeffBeta[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
2022-09-23 09:56:32 +02:00
}
}
}
}
float* SusConverter::calculateSunVector() {
2022-09-23 09:56:32 +02:00
// Calculate the normalized Sun Vector
sunVectorBodyFrame[0] = (tan(alphaBetaCalibrated[0] * (M_PI / 180)) /
(sqrt((powf(tan(alphaBetaCalibrated[0] * (M_PI / 180)), 2)) +
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
sunVectorBodyFrame[1] = (tan(alphaBetaCalibrated[1] * (M_PI / 180)) /
(sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
sunVectorBodyFrame[2] =
(-1 / (sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
powf((tan(alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
return sunVectorBodyFrame;
2022-09-23 09:56:32 +02:00
}
float* SusConverter::getSunVectorSensorFrame(lp_vec_t<uint16_t, 6> susChannel,
const float coeffAlpha[9][10],
const float coeffBeta[9][10]) {
calcAngle(susChannel);
calibration(coeffAlpha, coeffBeta);
return calculateSunVector();
2022-09-23 09:56:32 +02:00
}
bool SusConverter::getValidFlag(uint8_t susNumber) { return validFlag[susNumber]; }
2022-09-23 14:27:05 +02:00
float* SusConverter::TransferSunVector() {
2022-09-27 11:06:11 +02:00
float* sunVectorEIVE = 0;
sunVectorEIVE = new float[3];
2022-09-23 09:56:32 +02:00
2022-09-27 11:06:11 +02:00
uint8_t susAvail = 12;
int8_t basisMatrixUse[3][3];
float sunVectorMatrixEIVE[3][12] = {0};
float sunVectorMatrixBodyFrame[3][12];
2022-09-23 09:56:32 +02:00
2022-09-27 11:06:11 +02:00
for (uint8_t susNumber = 0; susNumber < 12;
susNumber++) { // save the sun vector of each SUS in their body frame into an array for
// further processing
2022-09-27 11:57:15 +02:00
float* SunVectorBodyFrame = &SunVectorBodyFrame[susNumber];
2022-09-27 11:06:11 +02:00
sunVectorMatrixBodyFrame[0][susNumber] = SunVectorBodyFrame[0];
sunVectorMatrixBodyFrame[1][susNumber] = SunVectorBodyFrame[1];
sunVectorMatrixBodyFrame[2][susNumber] = SunVectorBodyFrame[2];
2022-09-23 09:56:32 +02:00
}
2022-09-27 11:06:11 +02:00
for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
if (getValidFlag(susNumber) == returnvalue::FAILED) {
susAvail -= 1;
2022-09-23 09:56:32 +02:00
} // if the SUS data is not valid ->
for (uint8_t c1 = 0; c1 < 3; c1++) {
for (uint8_t c2 = 0; c2 < 3; c2++) {
2022-09-27 11:06:11 +02:00
switch (susNumber) {
2022-09-23 09:56:32 +02:00
case 0:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus0orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 1:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus1orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 2:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus2orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 3:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus3orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 4:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus4orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 5:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus5orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 6:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus6orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 7:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus7orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 8:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus8orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 9:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus9orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 10:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus10orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
case 11:
basisMatrixUse[c1][c2] =
acsParameters.susHandlingParameters.sus11orientationMatrix[c1][c2];
2022-09-23 09:56:32 +02:00
break;
}
}
}
// matrix multiplication for transition in EIVE coordinatesystem
for (uint8_t p = 0; p < 3; p++) {
for (uint8_t q = 0; q < 3; q++) {
// normal matrix multiplication
2022-09-27 11:06:11 +02:00
sunVectorMatrixEIVE[p][susNumber] +=
(basisMatrixUse[p][q] * sunVectorMatrixBodyFrame[q][susNumber]);
2022-09-23 09:56:32 +02:00
}
}
}
2022-09-27 11:06:11 +02:00
if (susAvail > 0) { // Calculate one sun vector out of all sun vectors from the different SUS
2022-09-23 09:56:32 +02:00
for (uint8_t i = 0; i < 3; i++) {
2022-09-27 11:06:11 +02:00
float sum = 0;
for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
if (getValidFlag(susNumber) == returnvalue::OK) {
2022-09-27 11:06:11 +02:00
sum += sunVectorMatrixEIVE[i][susNumber];
// printf("%f\n", SunVectorMatrixEIVE[i][susNumber]);
2022-09-23 14:27:05 +02:00
}
2022-09-23 09:56:32 +02:00
}
2022-09-23 14:27:05 +02:00
// ToDo: decide on length on sun vector
2022-09-27 11:06:11 +02:00
sunVectorEIVE[i] = sum;
2022-09-23 09:56:32 +02:00
}
2022-09-27 11:06:11 +02:00
VectorOperations<float>::normalize(sunVectorEIVE, sunVectorEIVE, 3);
2022-09-23 09:56:32 +02:00
} else {
// No sus is valid
throw std::invalid_argument("No sun sensor is valid"); // throw error
}
2022-09-27 11:06:11 +02:00
return sunVectorEIVE;
2022-09-23 09:56:32 +02:00
}