Marius Eggert
3079dabc20
Some checks failed
EIVE/eive-obsw/pipeline/head There was a failure building this commit
244 lines
9.7 KiB
C++
244 lines
9.7 KiB
C++
/*
|
|
* SusConverter.cpp
|
|
*
|
|
* Created on: 17.01.2022
|
|
* Author: Timon Schwarz
|
|
*/
|
|
|
|
#include "SusConverter.h"
|
|
|
|
#include <fsfw/datapoollocal/LocalPoolVariable.h>
|
|
#include <fsfw/datapoollocal/LocalPoolVector.h>
|
|
#include <fsfw/globalfunctions/math/VectorOperations.h>
|
|
#include <math.h> //for atan2
|
|
|
|
#include <iostream>
|
|
|
|
bool SusConverter::checkSunSensorData(lp_vec_t<uint16_t, 6> susChannel) {
|
|
if (susChannel.value[0] <= susChannelValueCheckLow ||
|
|
susChannel.value[0] > susChannelValueCheckHigh ||
|
|
susChannel.value[0] > susChannel.value[GNDREF]) {
|
|
return false;
|
|
}
|
|
if (susChannel.value[1] <= susChannelValueCheckLow ||
|
|
susChannel.value[1] > susChannelValueCheckHigh ||
|
|
susChannel.value[1] > susChannel.value[GNDREF]) {
|
|
return false;
|
|
};
|
|
if (susChannel.value[2] <= susChannelValueCheckLow ||
|
|
susChannel.value[2] > susChannelValueCheckHigh ||
|
|
susChannel.value[2] > susChannel.value[GNDREF]) {
|
|
return false;
|
|
};
|
|
if (susChannel.value[3] <= susChannelValueCheckLow ||
|
|
susChannel.value[3] > susChannelValueCheckHigh ||
|
|
susChannel.value[3] > susChannel.value[GNDREF]) {
|
|
return false;
|
|
};
|
|
|
|
susChannelValueSum = 4 * susChannel.value[GNDREF] - (susChannel.value[0] + susChannel.value[1] +
|
|
susChannel.value[2] + susChannel.value[3]);
|
|
if ((susChannelValueSum < susChannelValueSumHigh) &&
|
|
(susChannelValueSum > susChannelValueSumLow)) {
|
|
return false;
|
|
};
|
|
return true;
|
|
}
|
|
|
|
void SusConverter::calcAngle(lp_vec_t<uint16_t, 6> susChannel) {
|
|
float xout, yout;
|
|
float s = 0.03; // s=[mm] gap between diodes
|
|
uint8_t d = 5; // d=[mm] edge length of the quadratic aperture
|
|
uint8_t h = 1; // h=[mm] distance between diodes and aperture
|
|
int ch0, ch1, ch2, ch3;
|
|
// Substract measurement values from GNDREF zero current threshold
|
|
ch0 = susChannel.value[GNDREF] - susChannel.value[0];
|
|
ch1 = susChannel.value[GNDREF] - susChannel.value[1];
|
|
ch2 = susChannel.value[GNDREF] - susChannel.value[2];
|
|
ch3 = susChannel.value[GNDREF] - susChannel.value[3];
|
|
|
|
// Calculation of x and y
|
|
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
|
|
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
|
|
|
|
// Calculation of the angles
|
|
alphaBetaRaw[0] = atan2(xout, h) * (180 / M_PI); //[°]
|
|
alphaBetaRaw[1] = atan2(yout, h) * (180 / M_PI); //[°]
|
|
}
|
|
|
|
void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) {
|
|
uint8_t index, k, l;
|
|
|
|
// while loop iterates above all calibration cells to use the different calibration functions in
|
|
// each cell
|
|
k = 0;
|
|
while (k < 3) {
|
|
k = k + 1;
|
|
l = 0;
|
|
while (l < 3) {
|
|
l = l + 1;
|
|
// if-condition to check in which cell the data point has to be
|
|
if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3)) - halfCellWidth) &&
|
|
alphaBetaRaw[0] < ((completeCellWidth * (k / 3)) - halfCellWidth)) &&
|
|
(alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3)) - halfCellWidth) &&
|
|
alphaBetaRaw[1] < ((completeCellWidth * (l / 3)) - halfCellWidth))) {
|
|
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
|
|
alphaBetaCalibrated[0] =
|
|
coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] +
|
|
coeffAlpha[index][2] * alphaBetaRaw[1] +
|
|
coeffAlpha[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
|
|
coeffAlpha[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
|
|
coeffAlpha[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
|
|
coeffAlpha[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
|
|
coeffAlpha[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
|
|
coeffAlpha[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
|
|
coeffAlpha[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
|
|
alphaBetaCalibrated[1] =
|
|
coeffBeta[index][0] + coeffBeta[index][1] * alphaBetaRaw[0] +
|
|
coeffBeta[index][2] * alphaBetaRaw[1] +
|
|
coeffBeta[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
|
|
coeffBeta[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
|
|
coeffBeta[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
|
|
coeffBeta[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
|
|
coeffBeta[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
|
|
coeffBeta[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
|
|
coeffBeta[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float* SusConverter::calculateSunVector() {
|
|
// Calculate the normalized Sun Vector
|
|
sunVectorBodyFrame[0] = (tan(alphaBetaCalibrated[0] * (M_PI / 180)) /
|
|
(sqrt((powf(tan(alphaBetaCalibrated[0] * (M_PI / 180)), 2)) +
|
|
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
|
|
sunVectorBodyFrame[1] = (tan(alphaBetaCalibrated[1] * (M_PI / 180)) /
|
|
(sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
|
|
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
|
|
sunVectorBodyFrame[2] =
|
|
(-1 / (sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
|
|
powf((tan(alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
|
|
|
|
return sunVectorBodyFrame;
|
|
}
|
|
|
|
float* SusConverter::getSunVectorSensorFrame(lp_vec_t<uint16_t, 6> susChannel,
|
|
const float coeffAlpha[9][10],
|
|
const float coeffBeta[9][10]) {
|
|
calcAngle(susChannel);
|
|
calibration(coeffAlpha, coeffBeta);
|
|
return calculateSunVector();
|
|
}
|
|
|
|
bool SusConverter::getValidFlag(uint8_t susNumber) { return validFlag[susNumber]; }
|
|
|
|
float* SusConverter::TransferSunVector() {
|
|
float* sunVectorEIVE = 0;
|
|
sunVectorEIVE = new float[3];
|
|
|
|
uint8_t susAvail = 12;
|
|
int8_t basisMatrixUse[3][3];
|
|
float sunVectorMatrixEIVE[3][12] = {0};
|
|
float sunVectorMatrixBodyFrame[3][12];
|
|
|
|
for (uint8_t susNumber = 0; susNumber < 12;
|
|
susNumber++) { // save the sun vector of each SUS in their body frame into an array for
|
|
// further processing
|
|
float* SunVectorBodyFrame = &SunVectorBodyFrame[susNumber];
|
|
sunVectorMatrixBodyFrame[0][susNumber] = SunVectorBodyFrame[0];
|
|
sunVectorMatrixBodyFrame[1][susNumber] = SunVectorBodyFrame[1];
|
|
sunVectorMatrixBodyFrame[2][susNumber] = SunVectorBodyFrame[2];
|
|
}
|
|
|
|
for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
|
|
if (getValidFlag(susNumber) == returnvalue::FAILED) {
|
|
susAvail -= 1;
|
|
} // if the SUS data is not valid ->
|
|
|
|
for (uint8_t c1 = 0; c1 < 3; c1++) {
|
|
for (uint8_t c2 = 0; c2 < 3; c2++) {
|
|
switch (susNumber) {
|
|
case 0:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus0orientationMatrix[c1][c2];
|
|
break;
|
|
case 1:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus1orientationMatrix[c1][c2];
|
|
break;
|
|
case 2:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus2orientationMatrix[c1][c2];
|
|
break;
|
|
case 3:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus3orientationMatrix[c1][c2];
|
|
break;
|
|
case 4:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus4orientationMatrix[c1][c2];
|
|
break;
|
|
case 5:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus5orientationMatrix[c1][c2];
|
|
break;
|
|
case 6:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus6orientationMatrix[c1][c2];
|
|
break;
|
|
case 7:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus7orientationMatrix[c1][c2];
|
|
break;
|
|
case 8:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus8orientationMatrix[c1][c2];
|
|
break;
|
|
case 9:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus9orientationMatrix[c1][c2];
|
|
break;
|
|
case 10:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus10orientationMatrix[c1][c2];
|
|
break;
|
|
case 11:
|
|
basisMatrixUse[c1][c2] =
|
|
acsParameters.susHandlingParameters.sus11orientationMatrix[c1][c2];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// matrix multiplication for transition in EIVE coordinatesystem
|
|
for (uint8_t p = 0; p < 3; p++) {
|
|
for (uint8_t q = 0; q < 3; q++) {
|
|
// normal matrix multiplication
|
|
sunVectorMatrixEIVE[p][susNumber] +=
|
|
(basisMatrixUse[p][q] * sunVectorMatrixBodyFrame[q][susNumber]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (susAvail > 0) { // Calculate one sun vector out of all sun vectors from the different SUS
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
float sum = 0;
|
|
for (uint8_t susNumber = 0; susNumber < 12; susNumber++) {
|
|
if (getValidFlag(susNumber) == returnvalue::OK) {
|
|
sum += sunVectorMatrixEIVE[i][susNumber];
|
|
// printf("%f\n", SunVectorMatrixEIVE[i][susNumber]);
|
|
}
|
|
}
|
|
// ToDo: decide on length on sun vector
|
|
sunVectorEIVE[i] = sum;
|
|
}
|
|
VectorOperations<float>::normalize(sunVectorEIVE, sunVectorEIVE, 3);
|
|
} else {
|
|
// No sus is valid
|
|
throw std::invalid_argument("No sun sensor is valid"); // throw error
|
|
}
|
|
|
|
return sunVectorEIVE;
|
|
}
|