eive-obsw/linux/ipcore/PapbVcInterface.cpp

134 lines
4.1 KiB
C++
Raw Normal View History

2022-01-24 16:33:22 +01:00
#include <fsfw_hal/linux/uio/UioMapper.h>
#include <linux/ipcore/PapbVcInterface.h>
2023-03-23 15:43:14 +01:00
#include <unistd.h>
2022-01-26 17:59:31 +01:00
2023-03-27 17:42:54 +02:00
#include <ctime>
2021-09-19 12:27:48 +02:00
2023-03-27 21:39:37 +02:00
#include "fsfw/serviceinterface/ServiceInterface.h"
PapbVcInterface::PapbVcInterface(LinuxLibgpioIF* gpioComIF, gpioId_t papbBusyId,
gpioId_t papbEmptyId, std::string uioFile, int mapNum)
: gpioComIF(gpioComIF),
papbBusyId(papbBusyId),
papbEmptyId(papbEmptyId),
2022-10-27 14:02:34 +02:00
uioFile(std::move(uioFile)),
mapNum(mapNum) {}
2021-09-19 12:27:48 +02:00
PapbVcInterface::~PapbVcInterface() {}
2021-09-19 12:27:48 +02:00
2022-01-24 16:33:22 +01:00
ReturnValue_t PapbVcInterface::initialize() {
UioMapper uioMapper(uioFile, mapNum);
2023-03-30 23:52:37 +02:00
ReturnValue_t result = uioMapper.getMappedAdress(const_cast<uint32_t**>(&vcBaseReg),
2023-03-31 01:14:59 +02:00
UioMapper::Permissions::WRITE_ONLY);
2023-03-23 15:43:14 +01:00
if (result != returnvalue::OK) {
return result;
}
return returnvalue::OK;
2021-09-19 12:27:48 +02:00
}
2022-01-17 15:58:27 +01:00
ReturnValue_t PapbVcInterface::write(const uint8_t* data, size_t size) {
2023-03-27 17:02:02 +02:00
if (pollPapbBusySignal(0) == returnvalue::OK) {
startPacketTransfer();
2023-03-23 18:31:47 +01:00
} else {
return DirectTmSinkIF::IS_BUSY;
}
for (size_t idx = 0; idx < size; idx++) {
2023-03-28 21:45:04 +02:00
// This delay is super-important, DO NOT REMOVE!
2023-03-28 21:49:16 +02:00
// Polling the GPIO too often can mess up the scheduler.
2023-03-28 22:04:40 +02:00
// TODO: Maybe this should not be done like this. It would be better if there was a custom
// FPGA module which can accept packets and then takes care of dumping that packet into
// the PTME. DMA would be an ideal solution for this.
2023-03-31 01:14:59 +02:00
// nanosleep(&BETWEEN_POLL_DELAY, &remDelay);
2023-03-28 21:45:04 +02:00
if (pollPapbBusySignal(2) == returnvalue::OK) {
2023-03-23 15:43:14 +01:00
*(vcBaseReg + DATA_REG_OFFSET) = static_cast<uint32_t>(data[idx]);
} else {
2023-03-23 15:43:14 +01:00
abortPacketTransfer();
2023-03-23 18:31:47 +01:00
return returnvalue::FAILED;
2022-01-24 16:33:22 +01:00
}
}
2023-03-31 01:14:59 +02:00
// nanosleep(&BETWEEN_POLL_DELAY, &remDelay);
2023-03-28 21:45:04 +02:00
if (pollPapbBusySignal(2) == returnvalue::OK) {
2023-03-23 15:43:14 +01:00
completePacketTransfer();
2023-03-23 18:31:47 +01:00
} else {
abortPacketTransfer();
return returnvalue::FAILED;
}
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
2021-09-19 12:27:48 +02:00
}
void PapbVcInterface::startPacketTransfer() { *vcBaseReg = CONFIG_START; }
2021-09-19 12:27:48 +02:00
2023-03-23 15:43:14 +01:00
void PapbVcInterface::completePacketTransfer() { *vcBaseReg = CONFIG_END; }
2021-09-19 12:27:48 +02:00
2023-03-27 17:02:02 +02:00
ReturnValue_t PapbVcInterface::pollPapbBusySignal(uint32_t maxPollRetries) const {
2023-03-20 14:31:10 +01:00
uint32_t busyIdx = 0;
nextDelay.tv_nsec = 0;
2023-03-20 14:31:10 +01:00
while (true) {
2023-03-30 23:52:37 +02:00
// Check if PAPB interface is ready to receive data. Use the configuration register for this.
// Bit 5, see PTME ptme_001_01-0-7-r2 Table 31.
bool busy = ((*vcBaseReg) >> 5) & 0b1;
if (not busy) {
2023-03-20 14:31:10 +01:00
return returnvalue::OK;
}
2023-03-23 18:31:47 +01:00
busyIdx++;
if (busyIdx >= maxPollRetries) {
2023-03-20 14:31:10 +01:00
return PAPB_BUSY;
}
2023-03-23 18:31:47 +01:00
2023-03-27 17:43:52 +02:00
// Ignore signal handling here for now.
nanosleep(&nextDelay, &remDelay);
2023-03-27 18:13:00 +02:00
// Adaptive delay.
2023-03-28 14:59:31 +02:00
if (nextDelay.tv_nsec == 0) {
nextDelay.tv_nsec = FIRST_NON_NULL_DELAY_NS;
} else if (nextDelay.tv_nsec * 2 <= MAX_DELAY_PAPB_POLLING_NS) {
2023-03-27 17:42:54 +02:00
nextDelay.tv_nsec *= 2;
2023-03-27 17:02:02 +02:00
}
}
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
2021-09-19 12:27:48 +02:00
}
void PapbVcInterface::isVcInterfaceBufferEmpty() {
2022-08-24 17:27:47 +02:00
ReturnValue_t result = returnvalue::OK;
2022-05-04 14:08:27 +02:00
gpio::Levels papbEmptyState = gpio::Levels::HIGH;
2022-01-24 16:33:22 +01:00
2022-05-04 14:08:27 +02:00
result = gpioComIF->readGpio(papbEmptyId, papbEmptyState);
2021-09-19 12:27:48 +02:00
2022-08-24 17:27:47 +02:00
if (result != returnvalue::OK) {
sif::warning << "PapbVcInterface::isVcInterfaceBufferEmpty: Failed to read papb empty signal"
<< std::endl;
2021-09-19 12:27:48 +02:00
return;
}
2022-05-04 14:08:27 +02:00
if (papbEmptyState == gpio::Levels::HIGH) {
sif::debug << "PapbVcInterface::isVcInterfaceBufferEmpty: Buffer is empty" << std::endl;
} else {
sif::debug << "PapbVcInterface::isVcInterfaceBufferEmpty: Buffer is not empty" << std::endl;
}
return;
2021-09-19 12:27:48 +02:00
}
2023-03-27 17:02:02 +02:00
bool PapbVcInterface::isBusy() const { return pollPapbBusySignal(0) == PAPB_BUSY; }
2023-03-23 18:31:47 +01:00
void PapbVcInterface::cancelTransfer() { abortPacketTransfer(); }
2023-03-10 18:04:04 +01:00
2021-09-19 12:27:48 +02:00
ReturnValue_t PapbVcInterface::sendTestFrame() {
/** Size of one complete transfer frame data field amounts to 1105 bytes */
uint8_t testPacket[1105];
2021-09-19 12:27:48 +02:00
/** Fill one test packet */
for (int idx = 0; idx < 1105; idx++) {
testPacket[idx] = static_cast<uint8_t>(idx & 0xFF);
}
2021-09-19 12:27:48 +02:00
ReturnValue_t result = write(testPacket, 1105);
2022-08-24 17:27:47 +02:00
if (result != returnvalue::OK) {
return result;
}
2021-09-19 12:27:48 +02:00
2022-08-24 17:27:47 +02:00
return returnvalue::OK;
2021-09-19 12:27:48 +02:00
}
2023-03-23 15:43:14 +01:00
void PapbVcInterface::abortPacketTransfer() { *vcBaseReg = CONFIG_ABORT; }