bugfixes for RPi

This commit is contained in:
Robin Müller 2021-06-11 11:01:23 +02:00 committed by Robin Mueller
parent 2e4386d124
commit 35ef2e202e
3 changed files with 366 additions and 359 deletions

View File

@ -11,11 +11,12 @@
#include <linux/boardtest/LibgpiodTest.h>
#include <linux/boardtest/SpiTestClass.h>
#include <mission/devices/GyroL3GD20Handler.h>
//#include <mission/devices/GyroL3GD20Handler.h>
#include <mission/core/GenericFactory.h>
#include <mission/utility/TmFunnel.h>
#include <mission/devices/MGMHandlerLIS3MDL.h>
#include <mission/devices/MGMHandlerRM3100.h>
#include "fsfw_hal/devicehandlers/GyroL3GD20Handler.h"
#include <mission/devices/GyroADIS16507Handler.h>
#include <fsfw/datapoollocal/LocalDataPoolManager.h>
@ -59,7 +60,7 @@ void ObjectFactory::produce(void* args){
new UdpTcPollingTask(objects::UDP_POLLING_TASK, objects::UDP_BRIDGE);
GpioIF* gpioIF = new LinuxLibgpioIF(objects::GPIO_IF);
GpioCookie* gpioCookie = nullptr;
#if RPI_ADD_SPI_TEST == 1
new SpiTestClass(objects::SPI_TEST, gpioIF);
#endif
@ -80,27 +81,31 @@ void ObjectFactory::produce(void* args){
new SpiComIF(objects::SPI_COM_IF, gpioIF);
std::string spiDev;
SpiCookie* spiCookie = nullptr;
#if RPI_TEST_ACS_BOARD == 1
GpioCookie* gpioCookieAcsBoard = new GpioCookie();
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::MGM_0_LIS3_CS, gpio::MGM_0_BCM_PIN,
if(gpioCookie == nullptr) {
gpioCookie = new GpioCookie();
}
gpio::createRpiGpioConfig(gpioCookie, gpioIds::MGM_0_LIS3_CS, gpio::MGM_0_BCM_PIN,
"MGM_0_LIS3", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::MGM_1_RM3100_CS, gpio::MGM_1_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::MGM_1_RM3100_CS, gpio::MGM_1_BCM_PIN,
"MGM_1_RM3100", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::MGM_2_LIS3_CS, gpio::MGM_2_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::MGM_2_LIS3_CS, gpio::MGM_2_BCM_PIN,
"MGM_2_LIS3", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::MGM_3_RM3100_CS, gpio::MGM_3_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::MGM_3_RM3100_CS, gpio::MGM_3_BCM_PIN,
"MGM_3_RM3100", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::GYRO_0_ADIS_CS, gpio::GYRO_0_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::GYRO_0_ADIS_CS, gpio::GYRO_0_BCM_PIN,
"GYRO_0_ADIS", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::GYRO_1_L3G_CS, gpio::GYRO_1_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::GYRO_1_L3G_CS, gpio::GYRO_1_BCM_PIN,
"GYRO_1_L3G", gpio::Direction::OUT, 1);
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::GYRO_2_L3G_CS, gpio::GYRO_2_BCM_PIN,
gpio::createRpiGpioConfig(gpioCookie, gpioIds::GYRO_2_L3G_CS, gpio::GYRO_2_BCM_PIN,
"GYRO_2_L3G", gpio::Direction::OUT, 1);
gpioIF->addGpios(gpioCookieAcsBoard);
gpioIF->addGpios(gpioCookie);
std::string spiDev = "/dev/spidev0.0";
SpiCookie* spiCookie = new SpiCookie(addresses::MGM_0_LIS3, gpioIds::MGM_0_LIS3_CS, spiDev,
spiDev = "/dev/spidev0.0";
spiCookie = new SpiCookie(addresses::MGM_0_LIS3, gpioIds::MGM_0_LIS3_CS, spiDev,
MGMLIS3MDL::MAX_BUFFER_SIZE, spi::DEFAULT_LIS3_MODE, spi::DEFAULT_LIS3_SPEED);
auto mgmLis3Handler = new MGMHandlerLIS3MDL(objects::MGM_0_LIS3_HANDLER,
objects::SPI_COM_IF, spiCookie);
@ -121,13 +126,15 @@ void ObjectFactory::produce(void* args){
#endif /* RPI_TEST_ACS_BOARD == 1 */
#if RPI_TEST_ADIS16507 == 1
GpioCookie* gpioCookieAcsBoard = new GpioCookie();
gpio::createRpiGpioConfig(gpioCookieAcsBoard, gpioIds::GYRO_0_ADIS_CS, gpio::GYRO_0_BCM_PIN,
if(gpioCookie == nullptr) {
gpioCookie = new GpioCookie();
}
gpio::createRpiGpioConfig(gpioCookie, gpioIds::GYRO_0_ADIS_CS, gpio::GYRO_0_BCM_PIN,
"GYRO_0_ADIS", gpio::Direction::OUT, 1);
gpioIF->addGpios(gpioCookieAcsBoard);
gpioIF->addGpios(gpioCookie);
std::string spiDev = "/dev/spidev0.0";
SpiCookie* spiCookie = new SpiCookie(addresses::GYRO_0_ADIS, gpioIds::GYRO_0_ADIS_CS, spiDev,
spiDev = "/dev/spidev0.0";
spiCookie = new SpiCookie(addresses::GYRO_0_ADIS, gpioIds::GYRO_0_ADIS_CS, spiDev,
ADIS16507::MAXIMUM_REPLY_SIZE, spi::DEFAULT_ADIS16507_MODE, spi::DEFAULT_ADIS16507_SPEED,
nullptr, nullptr);
auto adisGyroHandler = new GyroADIS16507Handler(objects::GYRO_0_ADIS_HANDLER, objects::SPI_COM_IF, spiCookie);

View File

@ -1,260 +1,260 @@
#include "GyroL3GD20Handler.h"
#include <OBSWConfig.h>
#include <fsfw/datapool/PoolReadGuard.h>
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this) {
#if L3GD20_GYRO_DEBUG == 1
debugDivider = new PeriodicOperationDivider(5);
#endif
}
GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
void GyroHandlerL3GD20H::doStartUp() {
if(internalState == InternalState::NONE) {
internalState = InternalState::CONFIGURE;
}
if(internalState == InternalState::CONFIGURE) {
if(commandExecuted) {
internalState = InternalState::CHECK_REGS;
commandExecuted = false;
}
}
if(internalState == InternalState::CHECK_REGS) {
if(commandExecuted) {
internalState = InternalState::NORMAL;
#if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1
setMode(MODE_NORMAL);
#else
setMode(_MODE_TO_ON);
#endif
commandExecuted = false;
}
}
}
void GyroHandlerL3GD20H::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::NONE):
case(InternalState::NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::CONFIGURE): {
*id = L3GD20H::CONFIGURE_CTRL_REGS;
uint8_t command [5];
command[0] = L3GD20H::CTRL_REG_1_VAL;
command[1] = L3GD20H::CTRL_REG_2_VAL;
command[2] = L3GD20H::CTRL_REG_3_VAL;
command[3] = L3GD20H::CTRL_REG_4_VAL;
command[4] = L3GD20H::CTRL_REG_5_VAL;
return buildCommandFromCommand(*id, command, 5);
}
case(InternalState::CHECK_REGS): {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
default:
/* Might be a configuration error. */
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(L3GD20H::READ_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
rawPacket = commandBuffer;
rawPacketLen = L3GD20H::READ_LEN + 1;
break;
}
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
if(commandData == nullptr or commandDataLen != 5) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
ctrlReg1Value = commandData[0];
ctrlReg2Value = commandData[1];
ctrlReg3Value = commandData[2];
ctrlReg4Value = commandData[3];
ctrlReg5Value = commandData[4];
bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
if(not fsH and not fsL) {
scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_00) / INT16_MAX;
}
else if(not fsH and fsL) {
scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_01) / INT16_MAX;
}
else {
scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_11) / INT16_MAX;
}
commandBuffer[1] = ctrlReg1Value;
commandBuffer[2] = ctrlReg2Value;
commandBuffer[3] = ctrlReg3Value;
commandBuffer[4] = ctrlReg4Value;
commandBuffer[5] = ctrlReg5Value;
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, 5);
rawPacket = commandBuffer;
rawPacketLen = 6;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) {
/* For SPI, the ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen;
/* Data with SPI Interface has always this answer */
if (start[0] == 0b11111111) {
return HasReturnvaluesIF::RETURN_OK;
}
return DeviceHandlerIF::INVALID_DATA;
}
ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(L3GD20H::CONFIGURE_CTRL_REGS): {
commandExecuted = true;
break;
}
case(L3GD20H::READ_CTRL_REGS): {
if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
packet[5] == ctrlReg5Value) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(L3GD20H::READ_REGS): {
if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] != ctrlReg5Value) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
else {
if(internalState == InternalState::CHECK_REGS) {
commandExecuted = true;
}
}
statusReg = packet[L3GD20H::STATUS_IDX];
float angVelocX = (packet[L3GD20H::OUT_X_H] << 8 |
packet[L3GD20H::OUT_X_L]) * scaleFactor;
float angVelocY = (packet[L3GD20H::OUT_Y_H] << 8 |
packet[L3GD20H::OUT_Y_L]) * scaleFactor;
float angVelocZ = (packet[L3GD20H::OUT_Z_H] << 8 |
packet[L3GD20H::OUT_Z_L]) * scaleFactor;
int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
float temperature = 25.0 + temperaturOffset;
#if L3GD20_GYRO_DEBUG == 1
if(debugDivider->checkAndIncrement()) {
/* Set terminal to utf-8 if there is an issue with micro printout. */
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "GyroHandlerL3GD20H: Angular velocities in degrees per second:" <<
std::endl;
sif::info << "X: " << angVelocX << " \xC2\xB0" << std::endl;
sif::info << "Y: " << angVelocY << " \xC2\xB0" << std::endl;
sif::info << "Z: " << angVelocZ << " \xC2\xB0" << std::endl;
#else
sif::printInfo("GyroHandlerL3GD20H: Angular velocities in degrees per second:\n");
sif::printInfo("X: %f " "\xC2\xB0" "T\n", angVelocX);
sif::printInfo("Y: %f " "\xC2\xB0" "T\n", angVelocY);
sif::printInfo("Z: %f " "\xC2\xB0" "T\n", angVelocZ);
#endif
}
#endif
PoolReadGuard readSet(&dataset);
if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
dataset.angVelocX = angVelocX;
dataset.angVelocY = angVelocY;
dataset.angVelocZ = angVelocZ;
dataset.temperature = temperature;
dataset.setValidity(true, true);
}
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return result;
}
uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 10000;
}
ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::TEMPERATURE,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
}
void GyroHandlerL3GD20H::modeChanged() {
internalState = InternalState::NONE;
}
//#include "GyroL3GD20Handler.h"
//#include <OBSWConfig.h>
//
//#include <fsfw/datapool/PoolReadGuard.h>
//
//GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
// CookieIF *comCookie):
// DeviceHandlerBase(objectId, deviceCommunication, comCookie),
// dataset(this) {
//#if L3GD20_GYRO_DEBUG == 1
// debugDivider = new PeriodicOperationDivider(5);
//#endif
//}
//
//GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
//
//void GyroHandlerL3GD20H::doStartUp() {
// if(internalState == InternalState::NONE) {
// internalState = InternalState::CONFIGURE;
// }
//
// if(internalState == InternalState::CONFIGURE) {
// if(commandExecuted) {
// internalState = InternalState::CHECK_REGS;
// commandExecuted = false;
// }
// }
//
// if(internalState == InternalState::CHECK_REGS) {
// if(commandExecuted) {
// internalState = InternalState::NORMAL;
//#if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1
// setMode(MODE_NORMAL);
//#else
// setMode(_MODE_TO_ON);
//#endif
// commandExecuted = false;
// }
// }
//}
//
//void GyroHandlerL3GD20H::doShutDown() {
// setMode(_MODE_POWER_DOWN);
//}
//
//ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
// switch(internalState) {
// case(InternalState::NONE):
// case(InternalState::NORMAL): {
// return HasReturnvaluesIF::RETURN_OK;
// }
// case(InternalState::CONFIGURE): {
// *id = L3GD20H::CONFIGURE_CTRL_REGS;
// uint8_t command [5];
// command[0] = L3GD20H::CTRL_REG_1_VAL;
// command[1] = L3GD20H::CTRL_REG_2_VAL;
// command[2] = L3GD20H::CTRL_REG_3_VAL;
// command[3] = L3GD20H::CTRL_REG_4_VAL;
// command[4] = L3GD20H::CTRL_REG_5_VAL;
// return buildCommandFromCommand(*id, command, 5);
// }
// case(InternalState::CHECK_REGS): {
// *id = L3GD20H::READ_REGS;
// return buildCommandFromCommand(*id, nullptr, 0);
// }
// default:
// /* Might be a configuration error. */
// sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" <<
// std::endl;
// return HasReturnvaluesIF::RETURN_OK;
// }
// return HasReturnvaluesIF::RETURN_OK;
//}
//
//ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
// *id = L3GD20H::READ_REGS;
// return buildCommandFromCommand(*id, nullptr, 0);
//}
//
//ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(
// DeviceCommandId_t deviceCommand, const uint8_t *commandData,
// size_t commandDataLen) {
// switch(deviceCommand) {
// case(L3GD20H::READ_REGS): {
// commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
// L3GD20H::READ_MASK;
//
// std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
// rawPacket = commandBuffer;
// rawPacketLen = L3GD20H::READ_LEN + 1;
// break;
// }
// case(L3GD20H::CONFIGURE_CTRL_REGS): {
// commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
// if(commandData == nullptr or commandDataLen != 5) {
// return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
// }
//
// ctrlReg1Value = commandData[0];
// ctrlReg2Value = commandData[1];
// ctrlReg3Value = commandData[2];
// ctrlReg4Value = commandData[3];
// ctrlReg5Value = commandData[4];
//
// bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
// bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
//
// if(not fsH and not fsL) {
// scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_00) / INT16_MAX;
// }
// else if(not fsH and fsL) {
// scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_01) / INT16_MAX;
// }
// else {
// scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_11) / INT16_MAX;
// }
//
// commandBuffer[1] = ctrlReg1Value;
// commandBuffer[2] = ctrlReg2Value;
// commandBuffer[3] = ctrlReg3Value;
// commandBuffer[4] = ctrlReg4Value;
// commandBuffer[5] = ctrlReg5Value;
//
// rawPacket = commandBuffer;
// rawPacketLen = 6;
// break;
// }
// case(L3GD20H::READ_CTRL_REGS): {
// commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK |
// L3GD20H::READ_MASK;
//
// std::memset(commandBuffer + 1, 0, 5);
// rawPacket = commandBuffer;
// rawPacketLen = 6;
// break;
// }
// default:
// return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
// }
// return HasReturnvaluesIF::RETURN_OK;
//}
//
//ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
// DeviceCommandId_t *foundId, size_t *foundLen) {
// /* For SPI, the ID will always be the one of the last sent command. */
// *foundId = this->getPendingCommand();
// *foundLen = this->rawPacketLen;
//
// /* Data with SPI Interface has always this answer */
// if (start[0] == 0b11111111) {
// return HasReturnvaluesIF::RETURN_OK;
// }
// return DeviceHandlerIF::INVALID_DATA;
//}
//
//ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
// const uint8_t *packet) {
// ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
// switch(id) {
// case(L3GD20H::CONFIGURE_CTRL_REGS): {
// commandExecuted = true;
// break;
// }
// case(L3GD20H::READ_CTRL_REGS): {
// if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
// packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
// packet[5] == ctrlReg5Value) {
// commandExecuted = true;
// }
// else {
// /* Attempt reconfiguration. */
// internalState = InternalState::CONFIGURE;
// return DeviceHandlerIF::DEVICE_REPLY_INVALID;
// }
// break;
// }
// case(L3GD20H::READ_REGS): {
// if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
// packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
// packet[5] != ctrlReg5Value) {
// return DeviceHandlerIF::DEVICE_REPLY_INVALID;
// }
// else {
// if(internalState == InternalState::CHECK_REGS) {
// commandExecuted = true;
// }
// }
//
// statusReg = packet[L3GD20H::STATUS_IDX];
//
// float angVelocX = (packet[L3GD20H::OUT_X_H] << 8 |
// packet[L3GD20H::OUT_X_L]) * scaleFactor;
// float angVelocY = (packet[L3GD20H::OUT_Y_H] << 8 |
// packet[L3GD20H::OUT_Y_L]) * scaleFactor;
// float angVelocZ = (packet[L3GD20H::OUT_Z_H] << 8 |
// packet[L3GD20H::OUT_Z_L]) * scaleFactor;
//
// int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
// float temperature = 25.0 + temperaturOffset;
//#if L3GD20_GYRO_DEBUG == 1
// if(debugDivider->checkAndIncrement()) {
// /* Set terminal to utf-8 if there is an issue with micro printout. */
//#if FSFW_CPP_OSTREAM_ENABLED == 1
// sif::info << "GyroHandlerL3GD20H: Angular velocities in degrees per second:" <<
// std::endl;
// sif::info << "X: " << angVelocX << " \xC2\xB0" << std::endl;
// sif::info << "Y: " << angVelocY << " \xC2\xB0" << std::endl;
// sif::info << "Z: " << angVelocZ << " \xC2\xB0" << std::endl;
//#else
// sif::printInfo("GyroHandlerL3GD20H: Angular velocities in degrees per second:\n");
// sif::printInfo("X: %f " "\xC2\xB0" "T\n", angVelocX);
// sif::printInfo("Y: %f " "\xC2\xB0" "T\n", angVelocY);
// sif::printInfo("Z: %f " "\xC2\xB0" "T\n", angVelocZ);
//#endif
// }
//#endif
//
// PoolReadGuard readSet(&dataset);
// if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
// dataset.angVelocX = angVelocX;
// dataset.angVelocY = angVelocY;
// dataset.angVelocZ = angVelocZ;
// dataset.temperature = temperature;
// dataset.setValidity(true, true);
// }
// break;
// }
// default:
// return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
// }
// return result;
//}
//
//
//uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
// return 10000;
//}
//
//ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(
// localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
// localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X,
// new PoolEntry<float>({0.0}));
// localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y,
// new PoolEntry<float>({0.0}));
// localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z,
// new PoolEntry<float>({0.0}));
// localDataPoolMap.emplace(L3GD20H::TEMPERATURE,
// new PoolEntry<float>({0.0}));
// return HasReturnvaluesIF::RETURN_OK;
//}
//
//void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
// insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
// insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
// insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
//}
//
//void GyroHandlerL3GD20H::modeChanged() {
// internalState = InternalState::NONE;
//}

View File

@ -1,80 +1,80 @@
#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
#define MISSION_DEVICES_GYROL3GD20HANDLER_H_
#include "devicedefinitions/GyroL3GD20Definitions.h"
#include <OBSWConfig.h>
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
/**
* @brief Device Handler for the L3GD20H gyroscope sensor
* (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
* @details
* Advanced documentation:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/L3GD20H_Gyro
*
* Data is read big endian with the smallest possible range of 245 degrees per second.
*/
class GyroHandlerL3GD20H: public DeviceHandlerBase {
public:
GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie);
virtual ~GyroHandlerL3GD20H();
protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged() override;
uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private:
GyroPrimaryDataset dataset;
enum class InternalState {
NONE,
CONFIGURE,
CHECK_REGS,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t statusReg = 0;
uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
float scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_00) / INT16_MAX;
#if L3GD20_GYRO_DEBUG == 1
PeriodicOperationDivider* debugDivider = nullptr;
#endif
};
#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */
//#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
//#define MISSION_DEVICES_GYROL3GD20HANDLER_H_
//
//#include "devicedefinitions/GyroL3GD20Definitions.h"
//#include <OBSWConfig.h>
//
//#include <fsfw/devicehandlers/DeviceHandlerBase.h>
//#include <fsfw/globalfunctions/PeriodicOperationDivider.h>
//
//
///**
// * @brief Device Handler for the L3GD20H gyroscope sensor
// * (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
// * @details
// * Advanced documentation:
// * https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/L3GD20H_Gyro
// *
// * Data is read big endian with the smallest possible range of 245 degrees per second.
// */
//class GyroHandlerL3GD20H: public DeviceHandlerBase {
//public:
// GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
// CookieIF* comCookie);
// virtual ~GyroHandlerL3GD20H();
//
//protected:
//
// /* DeviceHandlerBase overrides */
// ReturnValue_t buildTransitionDeviceCommand(
// DeviceCommandId_t *id) override;
// void doStartUp() override;
// void doShutDown() override;
// ReturnValue_t buildNormalDeviceCommand(
// DeviceCommandId_t *id) override;
// ReturnValue_t buildCommandFromCommand(
// DeviceCommandId_t deviceCommand, const uint8_t *commandData,
// size_t commandDataLen) override;
// ReturnValue_t scanForReply(const uint8_t *start, size_t len,
// DeviceCommandId_t *foundId, size_t *foundLen) override;
// ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
// const uint8_t *packet) override;
//
// void fillCommandAndReplyMap() override;
// void modeChanged() override;
// uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
// ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
// LocalDataPoolManager &poolManager) override;
//
//private:
// GyroPrimaryDataset dataset;
//
// enum class InternalState {
// NONE,
// CONFIGURE,
// CHECK_REGS,
// NORMAL
// };
// InternalState internalState = InternalState::NONE;
// bool commandExecuted = false;
//
// uint8_t statusReg = 0;
//
// uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
// uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
// uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
// uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
// uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
//
// uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
//
// float scaleFactor = static_cast<float>(L3GD20H::RANGE_DPS_00) / INT16_MAX;
//
//#if L3GD20_GYRO_DEBUG == 1
// PeriodicOperationDivider* debugDivider = nullptr;
//#endif
//};
//
//
//
//#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */