rm3100 tested now as well

This commit is contained in:
Robin Müller 2021-03-06 20:37:17 +01:00
parent 32670f4a81
commit 88f84c4393
5 changed files with 252 additions and 254 deletions

View File

@ -99,12 +99,12 @@ void ObjectFactory::produce(){
gpioIF->addGpios(gpioCookieAcsBoard);
std::string spiDev = "/dev/spidev0.0";
SpiCookie* spiCookie = new SpiCookie(addresses::MGM_0_LIS3,
gpioIds::MGM_0_LIS3_CS, spiDev, 24, spi::SpiMode::MODE_3, 3'900'000);
SpiCookie* spiCookie = new SpiCookie(addresses::MGM_0_LIS3, gpioIds::MGM_0_LIS3_CS, spiDev, 24,
spi::SpiMode::MODE_3, 3'900'000);
auto mgmLis3Handler = new MGMHandlerLIS3MDL(objects::MGM_0_LIS3_HANDLER,
objects::SPI_COM_IF, spiCookie);
mgmLis3Handler->setStartUpImmediately();
spiCookie = new SpiCookie(addresses::MGM_1_RM3100, gpioIds::MGM_1_RM3100_CS, spiDev, 32,
spiCookie = new SpiCookie(addresses::MGM_1_RM3100, gpioIds::MGM_1_RM3100_CS, spiDev, 16,
spi::SpiMode::MODE_3, 976'000);
auto mgmRm3100Handler = new MGMHandlerRM3100(objects::MGM_1_RM3100_HANDLER,
objects::SPI_COM_IF, spiCookie);

View File

@ -7,8 +7,8 @@
#define RPI_LOOPBACK_TEST_GPIO 0
/* Only one of those 2 should be enabled! */
#define RPI_ADD_SPI_TEST 1
#define RPI_TEST_ACS_BOARD 0
#define RPI_ADD_SPI_TEST 0
#define RPI_TEST_ACS_BOARD 1
/* Adapt these values accordingly */
namespace gpio {

2
fsfw

@ -1 +1 @@
Subproject commit 17b8d3fed05cae6e208dc3f14b6ba0d44c9ec5ef
Subproject commit 778ef4ef230019ca4b155a77518156793cf5d308

View File

@ -26,7 +26,8 @@ debugging. */
#define PDU2_DEBUG 0
#define ACU_DEBUG 1
#define FSFW_LINUX_SPI_WIRETAPPING 1
/* Can be used for low-level debugging of the SPI bus */
#define FSFW_LINUX_SPI_WIRETAPPING 0
#ifdef __cplusplus

View File

@ -1,6 +1,7 @@
#include <fsfw/datapool/PoolReadGuard.h>
#include "MGMHandlerRM3100.h"
#include <fsfw/globalfunctions/bitutility.h>
#include <fsfw/devicehandlers/DeviceHandlerMessage.h>
#include <fsfw/objectmanager/SystemObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
@ -8,10 +9,10 @@
MGMHandlerRM3100::MGMHandlerRM3100(object_id_t objectId,
object_id_t deviceCommunication, CookieIF* comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
primaryDataset(this) {
DeviceHandlerBase(objectId, deviceCommunication, comCookie),
primaryDataset(this) {
#if OBSW_VERBOSE_LEVEL >= 1
debugDivider = new PeriodicOperationDivider(10);
debugDivider = new PeriodicOperationDivider(10);
#endif
}
@ -52,307 +53,303 @@ void MGMHandlerRM3100::doStartUp() {
}
void MGMHandlerRM3100::doShutDown() {
setMode(_MODE_POWER_DOWN);
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MGMHandlerRM3100::buildTransitionDeviceCommand(
DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::STATE_NONE):
case(InternalState::STATE_NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::STATE_CONFIGURE_CMM): {
*id = RM3100::CONFIGURE_CMM;
break;
}
case(InternalState::STATE_READ_CMM): {
*id = RM3100::READ_CMM;
break;
}
case(InternalState::STATE_CONFIGURE_TMRC): {
*id = RM3100::CONFIGURE_TMRC;
break;
}
case(InternalState::STATE_READ_TMRC): {
*id = RM3100::READ_TMRC;
break;
}
default:
// might be a configuration error.
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown "
<< "internal state!" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
DeviceCommandId_t *id) {
switch(internalState) {
case(InternalState::STATE_NONE):
case(InternalState::STATE_NORMAL): {
return HasReturnvaluesIF::RETURN_OK;
}
case(InternalState::STATE_CONFIGURE_CMM): {
*id = RM3100::CONFIGURE_CMM;
break;
}
case(InternalState::STATE_READ_CMM): {
*id = RM3100::READ_CMM;
break;
}
case(InternalState::STATE_CONFIGURE_TMRC): {
*id = RM3100::CONFIGURE_TMRC;
break;
}
case(InternalState::STATE_READ_TMRC): {
*id = RM3100::READ_TMRC;
break;
}
default:
// might be a configuration error.
sif::debug << "GyroHandler::buildTransitionDeviceCommand: Unknown "
<< "internal state!" << std::endl;
return HasReturnvaluesIF::RETURN_OK;
}
return buildCommandFromCommand(*id, nullptr, 0);
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t MGMHandlerRM3100::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(RM3100::CONFIGURE_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER;
commandBuffer[1] = RM3100::CMM_VALUE;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::READ_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_TMRC): {
return handleTmrcConfigCommand(deviceCommand, commandData,
commandDataLen);
}
case(RM3100::READ_TMRC): {
commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_CYCLE_COUNT): {
return handleCycleCountConfigCommand(deviceCommand, commandData,
commandDataLen);
}
case(RM3100::READ_CYCLE_COUNT): {
commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER |
RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 6);
rawPacket = commandBuffer;
rawPacketLen = 7;
break;
}
case(RM3100::READ_DATA): {
commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 9);
rawPacketLen = 10;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return RETURN_OK;
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(RM3100::CONFIGURE_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER;
commandBuffer[1] = RM3100::CMM_VALUE;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::READ_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_TMRC): {
return handleTmrcConfigCommand(deviceCommand, commandData,
commandDataLen);
}
case(RM3100::READ_TMRC): {
commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0;
rawPacket = commandBuffer;
rawPacketLen = 2;
break;
}
case(RM3100::CONFIGURE_CYCLE_COUNT): {
return handleCycleCountConfigCommand(deviceCommand, commandData,
commandDataLen);
}
case(RM3100::READ_CYCLE_COUNT): {
commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 6);
rawPacket = commandBuffer;
rawPacketLen = 7;
break;
}
case(RM3100::READ_DATA): {
commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 9);
rawPacketLen = 10;
break;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return RETURN_OK;
}
ReturnValue_t MGMHandlerRM3100::buildNormalDeviceCommand(
DeviceCommandId_t *id) {
*id = RM3100::READ_DATA;
return buildCommandFromCommand(*id, nullptr, 0);
DeviceCommandId_t *id) {
*id = RM3100::READ_DATA;
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t MGMHandlerRM3100::scanForReply(const uint8_t *start,
size_t len, DeviceCommandId_t *foundId,
size_t *foundLen) {
size_t *foundLen) {
/* For SPI, ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = len;
return HasReturnvaluesIF::RETURN_OK;
/* For SPI, ID will always be the one of the last sent command. */
*foundId = this->getPendingCommand();
*foundLen = len;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MGMHandlerRM3100::interpretDeviceReply(
DeviceCommandId_t id, const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(RM3100::CONFIGURE_CMM):
case(RM3100::CONFIGURE_CYCLE_COUNT):
case(RM3100::CONFIGURE_TMRC): {
/* We can only check whether write was successful with read operation. */
break;
}
case(RM3100::READ_CMM): {
if(packet[1] == cmmRegValue) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::STATE_CONFIGURE_CMM;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_TMRC): {
if(packet[1] == tmrcRegValue) {
commandExecuted = true;
/* Reading TMRC was commanded. Trigger event to inform ground. */
if(mode != _MODE_START_UP) {
triggerEvent(tmrcSet, tmrcRegValue, 0);
}
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::STATE_CONFIGURE_TMRC;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_CYCLE_COUNT): {
uint16_t cycleCountX = packet[1] << 8 | packet[2];
uint16_t cycleCountY = packet[3] << 8 | packet[4];
uint16_t cycleCountZ = packet[5] << 8 | packet[6];
if(cycleCountX != cycleCountRegValueX or
cycleCountY != cycleCountRegValueY or
cycleCountZ != cycleCountRegValueZ) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
/* Reading TMRC was commanded. Trigger event to inform ground. */
if(mode != _MODE_START_UP) {
uint32_t eventParam1 = cycleCountX << 16 | cycleCountY;
triggerEvent(cycleCountersSet, eventParam1, cycleCountZ);
}
break;
}
case(RM3100::READ_DATA): {
result = handleDataReadout(packet);
break;
}
default:
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
DeviceCommandId_t id, const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) {
case(RM3100::CONFIGURE_CMM):
case(RM3100::CONFIGURE_CYCLE_COUNT):
case(RM3100::CONFIGURE_TMRC): {
/* We can only check whether write was successful with read operation. */
break;
}
case(RM3100::READ_CMM): {
uint8_t cmmValue = packet[1];
/* We clear the seventh bit in any case
* because this one is zero sometimes for some reason */
bitutil::bitClear(&cmmValue, 6);
if(cmmValue == cmmRegValue) {
commandExecuted = true;
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::STATE_CONFIGURE_CMM;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_TMRC): {
if(packet[1] == tmrcRegValue) {
commandExecuted = true;
/* Reading TMRC was commanded. Trigger event to inform ground. */
if(mode != _MODE_START_UP) {
triggerEvent(tmrcSet, tmrcRegValue, 0);
}
}
else {
/* Attempt reconfiguration. */
internalState = InternalState::STATE_CONFIGURE_TMRC;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_CYCLE_COUNT): {
uint16_t cycleCountX = packet[1] << 8 | packet[2];
uint16_t cycleCountY = packet[3] << 8 | packet[4];
uint16_t cycleCountZ = packet[5] << 8 | packet[6];
if(cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or
cycleCountZ != cycleCountRegValueZ) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
/* Reading TMRC was commanded. Trigger event to inform ground. */
if(mode != _MODE_START_UP) {
uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY;
triggerEvent(cycleCountersSet, eventParam1, cycleCountZ);
}
break;
}
case(RM3100::READ_DATA): {
result = handleDataReadout(packet);
break;
}
default:
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
return result;
return result;
}
ReturnValue_t MGMHandlerRM3100::handleCycleCountConfigCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
if(commandData == nullptr) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
ReturnValue_t MGMHandlerRM3100::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) {
if(commandData == nullptr) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
// Set cycle count
if(commandDataLen == 2) {
handleCycleCommand(true, commandData, commandDataLen);
}
else if(commandDataLen == 6) {
handleCycleCommand(false, commandData, commandDataLen);
}
else {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
// Set cycle count
if(commandDataLen == 2) {
handleCycleCommand(true, commandData, commandDataLen);
}
else if(commandDataLen == 6) {
handleCycleCommand(false, commandData, commandDataLen);
}
else {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE;
std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2);
std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2);
std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2);
rawPacketLen = 7;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE;
std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2);
std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2);
std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2);
rawPacketLen = 7;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MGMHandlerRM3100::handleCycleCommand(bool oneCycleValue,
const uint8_t *commandData, size_t commandDataLen) {
RM3100::CycleCountCommand command(oneCycleValue);
ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen,
SerializeIF::Endianness::BIG);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
const uint8_t *commandData, size_t commandDataLen) {
RM3100::CycleCountCommand command(oneCycleValue);
ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen,
SerializeIF::Endianness::BIG);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
// Data sheet p.30
// "while noise limits the useful upper range to ~400 cycle counts."
if(command.cycleCountX > 450 ) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
/* Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts." */
if(command.cycleCountX > 450 ) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
if(not oneCycleValue and
(command.cycleCountY > 450 or command.cycleCountZ > 450)) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
if(not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
cycleCountRegValueX = command.cycleCountX;
cycleCountRegValueY = command.cycleCountY;
cycleCountRegValueZ = command.cycleCountZ;
return HasReturnvaluesIF::RETURN_OK;
cycleCountRegValueX = command.cycleCountX;
cycleCountRegValueY = command.cycleCountY;
cycleCountRegValueZ = command.cycleCountZ;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t MGMHandlerRM3100::handleTmrcConfigCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
if(commandData == nullptr) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
if(commandData == nullptr) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
if(commandDataLen != 1) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
if(commandDataLen != 1) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::TMRC_REGISTER;
commandBuffer[1] = commandData[1];
rawPacketLen = 2;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
commandBuffer[0] = RM3100::TMRC_REGISTER;
commandBuffer[1] = commandData[1];
rawPacketLen = 2;
rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK;
}
void MGMHandlerRM3100::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 1);
insertInCommandAndReplyMap(RM3100::READ_CMM, 1);
insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 1);
insertInCommandAndReplyMap(RM3100::READ_CMM, 1);
insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 1);
insertInCommandAndReplyMap(RM3100::READ_TMRC, 1);
insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 1);
insertInCommandAndReplyMap(RM3100::READ_TMRC, 1);
insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 1);
insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 1);
insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 1);
insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 1);
insertInCommandAndReplyMap(RM3100::READ_DATA, 1, &primaryDataset);
insertInCommandAndReplyMap(RM3100::READ_DATA, 1, &primaryDataset);
}
void MGMHandlerRM3100::modeChanged(void) {
internalState = InternalState::STATE_NONE;
internalState = InternalState::STATE_NONE;
}
ReturnValue_t MGMHandlerRM3100::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z, new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
}
uint32_t MGMHandlerRM3100::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 60000;
return 60000;
}
ReturnValue_t MGMHandlerRM3100::handleDataReadout(const uint8_t *packet) {
/* Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift
* trickery here to calculate the raw values first */
int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8;
int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8;
int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8;
/* Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift
* trickery here to calculate the raw values first */
int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8;
int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8;
int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8;
/* Now scale to physical value in microtesla */
float fieldStrengthX = fieldStrengthRawX * scaleFactorX;
/* Now scale to physical value in microtesla */
float fieldStrengthX = fieldStrengthRawX * scaleFactorX;
float fieldStrengthY = fieldStrengthRawY * scaleFactorX;
float fieldStrengthZ = fieldStrengthRawZ * scaleFactorX;
#if OBSW_VERBOSE_LEVEL >= 1
if(debugDivider->checkAndIncrement()) {
sif::info << "MGMHandlerLIS3: Magnetic field strength in"
" microtesla:" << std::endl;
/* Set terminal to utf-8 if there is an issue with micro printout. */
sif::info << "X: " << fieldStrengthX << " \xC2\xB5T" << std::endl;
sif::info << "Y: " << fieldStrengthY << " \xC2\xB5T" << std::endl;
sif::info << "Z: " << fieldStrengthZ << " \xC2\xB5T" << std::endl;
}
if(debugDivider->checkAndIncrement()) {
sif::info << "MGMHandlerLIS3: Magnetic field strength in"
" microtesla:" << std::endl;
/* Set terminal to utf-8 if there is an issue with micro printout. */
sif::info << "X: " << fieldStrengthX << " \xC2\xB5T" << std::endl;
sif::info << "Y: " << fieldStrengthY << " \xC2\xB5T" << std::endl;
sif::info << "Z: " << fieldStrengthZ << " \xC2\xB5T" << std::endl;
}
#endif
/* TODO: Sanity check on values */
PoolReadGuard readGuard(&primaryDataset);
if(readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
primaryDataset.fieldStrengthX = fieldStrengthX;
primaryDataset.fieldStrengthY = fieldStrengthY;
primaryDataset.fieldStrengthZ = fieldStrengthZ;
primaryDataset.setValidity(true, true);
}
return RETURN_OK;
/* TODO: Sanity check on values */
PoolReadGuard readGuard(&primaryDataset);
if(readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
primaryDataset.fieldStrengthX = fieldStrengthX;
primaryDataset.fieldStrengthY = fieldStrengthY;
primaryDataset.fieldStrengthZ = fieldStrengthZ;
primaryDataset.setValidity(true, true);
}
return RETURN_OK;
}